
A forward-backward SDE approach to affine models

Cody Blaine Hyndman

Department of Mathematics and Statistics, Concordia University

1455 Boulevard de Maisonneuve Ouest
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1 Introduction

Affine term structure models (ATSMs) in interest rate theory have been the focus of a great deal of

study. The popularity of ATSMs is due to their analytic tractability and empirical properties. Examples

of ATSMs include the models of Vašı́ček [39], Cox, Ingersoll, and Ross [7], Hull and White [20],

Longstaff and Schwartz [29], Chen and Scott [4], and many others. The term ATSM was introduced by

Duffie and Kan [11] who carried out a general study of ATSMs and provided a characterization of the

bond price when the underlying factors process is an affine diffusion. The general ATSM of Duffie and

Kan [11] included as special cases most of the popular term structure models in the literature. ATSMs

have been further generalized to include a jump component in the factors process (see, for example,

Björk et al. [1] or Chacko and Das [3] and the references therein). The study of ATSMs in finance has

also lead to very general studies of a class of processes, the regular affine processes, by Duffie et al.

[10].

Elliott and van der Hoek [14] studied ATSMs in the context of stochastic flows and the forward

measure to provide an alternative proof that the bond price is an exponential affine function of the

factors. A contribution to ATSMs of the flows methodology offered by Elliott and van der Hoek [14]

is that it avoids the necessity, as is in Duffie and Kan [11], of solving Riccati equations to determine

the bond price. Instead, the flows method involves solving a nonlinear integral equation with two

parameters and then integrating the solution with respect to one of the parameters. A key result upon

which the flows methodology is based is an approximation lemma which states that the conditional

expectation under the forward measure of the Jacobian of the stochastic flow is deterministic and is

equivalent to the two parameter integral equation.

While the flows methodology as presented by Elliott and van der Hoek [14] is conceptually very

interesting we have not been able to verify, in the case of the general ATSM, the approximation lemma

on which the method is based; there is a definite mistake in the proof of the approximation lemma.

Part of this paper completes and clarifies the results of Elliott and van der Hoek [14], to the extent

possible, by the introduction of forward-backward stochastic differential equations (FBSDEs) to the

stochastic flows approach. The introduction of FBSDEs avoids the technical difficulties with the orig-

inal approach of Elliott and van der Hoek [14] but it does come at a cost. The solvability of the Riccati

equation which appears in Duffie and Kan [11] is a sufficient condition for the FBSDE approach to

recover the main results of Elliott and van der Hoek [14] and thus their claim that “Riccati equations

are not needed” is weakened.

The application of FBSDEs to the particular case of the one-dimensional (CIR) model has already

been treated in Hyndman [21]. There are several important differences between the present paper and
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[21] beyond the obvious difference in dimensions of the model. Elliott and van der Hoek [14] employed

particular properties of the one-dimensional model, namely the semi-group property, to prove that the

Jacobian of the stochastic flow was deterministic and did not rely on the flawed approximation lemma.

The approach employed by Elliott and van der Hoek [14] for the CIR model cannot be directly applied

to multidimensional ATSM hence the authors’ use of the approximation lemma. Therefore, in contrast

to [21], the present paper addresses the results of Elliott and van der Hoek [14] in the case of the general

multidimensional ATSM.

The exposition of the FBSDE method presented in [21], while closer to the way we originally

derived our results, cannot be directly generalized to the multidimensional ATSM without some careful

modifications. A further difference between this paper and [21] is that the derivation of the backward

stochastic differential equation (BSDE) for the bond price presented in this paper is entirely different

from the approach presented in [21]. Where the approach presented in [21] requires the use of a result

on the representation of one component of the FBSDE in terms of the derivatives of the other two

components [21, equation (17)] a similar result is not used in this paper. In fact the result in question

emerges as Corollary 4.2 of the present paper. Therefore, the approach presented in this paper is the

probabilistic approach we state would be preferable in [21].

Grasselli and Tebaldi [16, 17] study the relationship between the flows approach, Riccati equa-

tions, and interest rate risk-management by algebraic methods. The flows approach must necessarily

be equivalent to solving the Riccati equation in cases where the ATSM is well-posed in the sense of

admissibility defined by Dai and Singleton [8] and consistency defined by Levendorskiı̆ [27, 28]. Gras-

selli and Tebaldi [16] take as a starting point for certain calculations that the conditional expectation of

the Jacobian of the stochastic flow is deterministic as claimed Elliott and van der Hoek [14]. However,

Grasselli and Tebaldi [16] assume the admissibility conditions of Dai and Singleton [8] and, as we shall

show, these conditions are sufficient to ensure that the conditional expectation of the Jacobian of the

stochastic flow is deterministic. Therefore, the results of Grasselli and Tebaldi [16] are not in question.

Nevertheless, one of these results, Grasselli and Tebaldi [16, Proposition 5], follows from the proof of

Corollary 4.4 of this paper.

The main result of this paper is the proof of an existence and uniqueness theorem for a coupled

nonlinear FBSDE, under the forward measure, associated with the bond price. Apart from the financial

applications the result is of independent interest since few explicit existence and uniqueness results

are available for coupled nonlinear FBSDEs and it represents a partial generalization of results proved

by Yong [40] for linear FBSDEs. From the existence and uniqueness theorem the characterization of

the ATSM and other results of Elliott and van der Hoek [14] and Grasselli and Tebaldi [16] follow as

corollaries.
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The remainder of the paper considers affine price models (APMs) which have been used extensively

in financial modelling. The spot price of a risky asset (or a commodity) is specified as an exponential

affine function of a factors process. These models include Gaussian models as special cases. Examples

of Gaussian factor models include those of Gibson and Schwartz [15], Schwartz [36, 37], Cortazar

and Schwartz [5], Miltersen and Schwartz [32], Schwartz and Smith [38], and Manoliu and Tompaidis

[31] among others. General APMs offer further flexibility by also incorporating square-root or Cox,

Ingersoll, and Ross [7]-type factors and jump components. The general APM, in the context of futures

and forward contracts was studied by Björk and Landén [2].

We extend the FBSDE approach for the bond to consider the futures and forward prices of a risky

asset (or commodity) paying a stochastic dividend yield (or convenience yield). The interest rate and

dividend yield are modelled as affine functions of the factors process. We also assume that the asset

price is modelled as an exponential affine function of the factors process. Similar to the case of the

bond we are able to completely characterize the futures price and forward price as exponential affine

functions of the factors process. We also indicate how the stochastic flows approach can be applied to

futures and forward prices, generalizing the results presented in Hyndman [22] for the Gaussian case.

The remainder of this paper is organized as follows. In Section 2 we provide the set-up for the

ATSM, review some of the existing results, and deal with some technical preliminaries. In Section 3

we introduce FBSDEs associated with the ATSM, and demonstrate the main results of the paper. In

Section 4 we examine the flows approach of Elliott and van der Hoek [14] and show the relation to the

FBSDE approach. Section 5 considers the generalization of the FBSDE method to APMs, futures and

forward prices, and stochastic flows. Section 6 concludes.

2 Preliminaries and Notation

As is done in much of the literature on ATSMs, a notable exception being Duffee [9], we shall begin

our analysis on the risk neutral probability space (Ω,F ,{Ft , t ≥ 0},Q) for 0 ≤ t ≤ T ∗ where T ∗ is

the investment horizon and Ft is a right-continuous and complete filtration, and Q is the risk-neutral

(martingale) measure. The price of the zero-coupon bond is then given by

P(t,T ) = EQ[exp(−
Z T

t
rudu)|Ft ] (1)

at time t for maturity T ≤ T ∗. There are numerous methods for calculating this conditional expecta-

tion. However, before any method can be applied some description of the risk-neutral dynamics of the

riskless interest rate, (ru), must be proposed.

We shall follow the methodology of Duffie and Kan [11] and assume that the riskless interest rate
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is a function of an Rn-valued, {Ft}-adapted state process Xt defined on (Ω,F ,{Ft , t ≥ 0},Q) for

0 ≤ t ≤ T ∗. That is, rt = r(Xt), for some function r : Rn → R which will be specified shortly. As in

Duffie and Kan [11] and Elliott and van der Hoek [14] we study a factors process given by an affine

diffusion

dXt = (AXt + B̃)dt +Sdiag
(

√

αi +βiXt

)

dWt (2)

where W is an n-dimensional Ft-Brownian motion (with respect to Q), A is an (n×n)-matrix of scalars,

B̃ is an (n× 1)-vector of scalars, for each i ∈ {1, . . . ,n} the αi are scalars, for each i ∈ {1, . . . ,n} the

βi = (βi1, . . . ,βin) are (1×n)-vectors taking values in Rn, and S is a non-singular (n×n)-matrix.

In order to ensure nonnegative volatilities Duffie and Kan [11] consider solutions to equation (2)

taking values in the open set

D := {x ∈ Rn : αi +βix > 0, i ∈ {1, . . . ,n}} .

Further, Duffie and Kan [11] show that if, for all i, the conditions:

(A-I) for all x such that αi +βix = 0, βi(Ax+ B̃) > βiSS
′β′

i/2;

(A-II) for all j, if (βiS) j 6= 0, then αi +βix = α j +β jx

are satisfied then there exists a unique strong solution Xt to the SDE (2) that takes values in D. Further,

for all i, αi +βiXt is strictly positive for all t almost surely.

Assumption 2.1 Throughout we shall assume that conditions (A-I) and (A-II) hold.

As remarked by Duffie and Kan [11], the set D is open and convex since it is the intersection of open

half-spaces. Therefore, the separating hyperplane theorem can be applied to prove the existence of a

strictly positive non-constant interest rate process rt = r(Xt) which is an affine transformation of Xt .

That is, we have:

Assumption 2.2 the short rate process is given by rt = r(Xt) where, for x ∈ D,

r(x) = R
′
x+ k > 0.

Where R is an (n×1)-column vector and k is a scalar.

For example, as in Duffie and Kan [11], we may set r(x) = ∑n
i=1 γi(αi + βix) for scalars γi ≥ 0 not all

equal zero.
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3 Connection between ATSMs and FBSDEs

In this section we explore connections between the bond price, the forward measure, and forward-

backward stochastic differential equations (FBSDEs). Basic results on FBSDEs can be found in [33],

[13], and [30]. The derivation of the BSDE for the bond price presented here differs from that previ-

ously presented in [21].

Define Hs = exp(−
R s

0 r(Xv)dv) and Vs = EQ[exp
(

−
R T

0 r(Xv)dv
)

|Fs] for all s ∈ [0,T ]. Note that Hs

is of finite variation and satisfies

dHs = −r(Xs)Hsds. (3)

Since Vs is a martingale there exists a progressively measurable process, J, taking values in Rn and

written as a (1×n)-row vector J = (J(1), . . . ,J(n)) such that

Vs = V0 +
Z s

0
JudWu. (4)

Define Ys = Vs/Hs. Then clearly P(s,T ) = Ys and by Itô’s formula we have that Ys satisfies

Ys = Y0 +
Z s

0
Yur(Xu)du+

Z s

0

Ju

Hu
dWu.

Define Zu = Ju/Hu to find

Ys −YT = −
Z T

s
r(Xu)Yudu−

Z T

s
ZudWu.

Since YT = 1 we have that the factors process and the bond price satisfy the decoupled FBSDE

Xs = Xt +
Z s

t
(AXv + B̃)dv+

Z s

t
Sdiag

(

√

αi +βiXv

)

dWv (5)

Ys = 1−
Z T

s

(

R
′
Xv + k

)

Yvdv−
Z T

s
ZvdWv (6)

under the Q measure, for s ∈ [t,T ]. Recall the definition of the forward measure:

Definition 3.1 The forward measure, QT , is defined on FT by

QT (A) := EQ[ΛT 1A]

where

ΛT =
dQT

dQ

∣

∣

∣

∣

FT

:= {P(0,T )}−1 exp(−
Z T

0
r(Xu)du). (7)

Define Λt = E[ΛT |Ft ]. Note that Λt = Vt/V0 so that, from equation (4), Λt satisfies

Λt = 1+
Z t

0

Ju

V0
dWu = 1+

Z t

0

JuHuVu

V0HuVu
dWu = 1+

Z t

0

Zu

Yu
ΛudWu.
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Hence, by Girsanov’s theorem

W T
t = Wt −

Z t

0

Z
′

u

Yu
du (8)

is an Ft -Brownian motion under the forward measure. We may then write the dynamics of the FB-

SDE (5)-(6) under the forward measure:

Xs = Xt +
Z s

t
{AXv + B̃+Sdiag

(

√

αi +βiXv

)(Zv)
′

Yv
}dv+

Z s

t
Sdiag

(

√

αi +βiXv

)

dW T
v (9)

Ys = 1−
Z T

s

{

(R
′
Xv + k)Yv +

Zv(Zv)
′

Yv

}

dv−
Z T

s
ZvdW T

v . (10)

Note that Itô’s formula, from s to T , applied to equation (10) gives

logYs = −
Z T

s

{

(

R
′
Xv + k

)

+
1
2

ZvZ
′

v

Y 2
v

}

dv−
Z T

s

Zv

Yv
dW T

v . (11)

The preceding arguments, employing the martingale representation theorem and Itô’s formula, ex-

hibit the existence of a solution of the FBSDE (5)-(6) which characterizes the joint dynamics of the

factors process and the bond price. By changing to the forward measure we are also able to construct a

solution of the FBSDE (9)-(10). This nonlinear and coupled FBSDE appears much more complicated

and if we are interested in providing an explicit solution and proving uniqueness we might initially

attempt to study the FBSDE under the risk neutral measure. However, as is often the case, the forward

measure simplifies things despite the rather more complicated appearance of the FBSDE (9)-(10).

Indeed, we next prove an existence and uniqueness result, independent of the construction already pre-

sented, for the nonlinear FBSDE (9)-(10), by adapting a technique for linear FBSDEs from Yong [40],

which gives the solution explicitly. A corollary completes the characterization of the bond price as an

exponential affine function of the factors process. The following notation will be needed to state the

main result.

Since the diffusion matrix of the square root affine SDE (2) is an affine function of the state vari-

ables, adopting the notation of Björk and Landén [2], we may write

Sdiag(αi +βix)S
′
= k0 +

n

∑
j=1

k jx j

for symmetric (n×n) matrices k j, where x j is the j-th element of a vector x ∈ D. Define the (n2 ×n)

matrix K and, given a (1×n) row vector~y, the (n×n2) matrix β(~y) by

K =

















k1

k2
...

kn

















and β(~y) =

















~y 01×n · · · 01×n

01×n ~y
... . . . ...

01×n · · · ~y

















respectively.
7



Theorem 3.2 If the Riccati equation

U̇(u)+U(u)A+ 1
2U(u)K

′
[β(U(u))]

′

−R
′
= 0, u ∈ [0,T ]

U(T ) = 0.
(12)

admits a unique solution U(·) over the interval [0,T ] then the FBSDE (9)-(10) admits a unique adapted

solution (X,Y,Z) with explicit representation given by

dXs =
(

AXs + B̃+ k0 [U(s)]
′

+K
′
[β(U(s))]

′

Xs

)

ds+Sdiag
(

√

αi +βiXs

)

dW T
s , (13)

logYs = U(s)Xs + p(s), and (14)

Zs = U(s)Sdiag
(

√

αi +βiXs

)

Ys, (15)

where, for all s ∈ [0,T ],

p(s) = −
Z T

s

(

k−
1
2U(u)k0 [U(u)]

′

−U(u)B̃

)

du. (16)

Proof: Applying Itô’s formula from s to T to f (s,x) = exp(U(s)x+ p(s)), when Xs is given by the

SDE (13) and p(s) satisfies equation (16), gives that Ys = f (s,Xs) satisfies

Ys = 1 −
Z T

s

{

U̇(u)Xu −U(u)B̃−
1
2U(u)k0 [U(u)]

′

+ k

}

Yudu

−
Z T

s

{

U(u)
[

(AXu + B̃)+ k0 [U(u)]
′

+K
′
[β(U(u))]

′

Xu

]}

Yudu

−
Z T

s
U(u)Sdiag

(

√

αi +βiXu

)

YudW T
u

−
1
2

n

∑
i=1

n

∑
j=1

Z T

s
Ui(u)U j(u)

[

k0 +
n

∑
l=1

klX
(l)
u

]

i j

Yudu (17)

where U j(u) is the j-th component of U(u), X (l)
u is the l-th component of Xu, and [A]i j is the (i, j)

component of a matrix A for i, j = 1, . . . ,n. Note,

n

∑
i=1

n

∑
j=1

Ui(u)U j(u)

[

k0 +
n

∑
l=1

klX
(l)
u

]

i j

= U(u)k0 [U(u)]
′

+U(u)K
′
[β(U(u))]

′

Xu

so that after some simplification equation (17) becomes

Ys = 1 −
Z T

s

{

U̇(u)+U(u)A+
1
2U(u)K

′
[β(U(u))]

′

−R
′

}

XuYudu

−
Z T

s

{

(R
′
Xu + k)+U(u)k0 [U(u)]

′

+U(u)K
′
[β(U(u))]

′

Xu

}

Yudu

−
Z T

s
U(u)Sdiag

(

√

αi +βiXu

)

YudW T
u . (18)

Applying equations (12) and (15) to (18) gives that Ys satisfies equation (10). Substituting equation (15)

into equation (13) gives that Xs satisfies equation (9). Therefore, the process (X ,Y,Z) that is determined

by equations (13), (14), (15) and (16) is an adapted solution of the FBSDE (9)-(10).
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To prove uniqueness let (X ,Y,Z) be any adapted solution of the FBSDE (9)-(10). Set

logȲs = U(s)Xs + p(s)

Z̄s = U(s)Sdiag
(

√

αi +βiXs

)

eU(s)Xs+p(s).
(19)

Applying Itô’s formula from s to T to the function f (s,x) = U(s)x + p(s) when Xs is given by the

SDE (9) gives that f (s,Xs) = logȲs satisfies

logȲs = −
Z T

s

{

U̇(u)U(u)A+
1
2U(u)K

′
[β(U(u))]

′

−R
′

}

Xudu

−
Z T

s

{

(R
′
Xu + k)−

1
2U(u)k0 [U(u)]

′

−
1
2U(u)K

′
[β(U(u))]

′

Xu

+ U(u)Sdiag
(

√

αi +βiXu

)Z
′

u

Yu

}

du−
Z T

s
U(u)Sdiag

(

√

αi +βiXu

)

dW T
u

= −
Z T

s

{

(R
′
Xu + k)−

1
2

Z̄uZ̄
′

u

Ȳ 2
u

+
Z̄u

Ȳu

Z
′

u

Yu

}

du−
Z T

s

Z̄u

Ȳu
dW T

u .

Therefore, by equation (11), we have

logYs − logȲs = −
Z T

s

{

1
2

ZuZ
′

u

Y 2
u

−
Z̄u

Ȳu

Z
′

u

Yu
+

1
2

Z̄uZ̄
′

u

Ȳ 2
u

}

du−
Z T

s

{

Zu

Yu
−

Z̄u

Ȳu

}

dW T
u .

Define Ŷs := (logYs − logȲs) and Z̃u := (Zu/Yu − Z̄u/Ȳu) to obtain the equivalent BSDE

Ŷs = −
Z T

s

1
2 Z̃uZ̃

′

udu−
Z T

s
Z̃udW T

u . (20)

By the results of Kobylanski [26] the BSDE (20) admits a unique adapted solution (Ŷ , Z̃) = 01×(n+1).

This means that any adapted solution (X ,Y,Z) of the FBSDE (9)-(10) must satisfy (14)-(15). Then, X

given by (9)-(10) must also satisfy the equation (13). Hence, we obtain uniqueness from the SDE (13).

Remark 3.3 In a more general setting Duffie et al. [10] prove that admissibility of the model parame-

ters is a necessary and sufficient condition for the associated Riccati equations to have a solution over

the interval [0,T ]. In the special case of the model considered in this paper Assumption 2.1 (see also

the admissibility conditions of Dai and Singleton [8]) give that the Riccati equation (12) has a unique

solution on [0,T ] by [10, Theorem 6.1]. Therefore, the remainder of our results shall not explicitly

mention the solvability of the Riccati equation (12) as this is guaranteed by Assumption 2.1.1

The complete characterization of bond prices as exponential affine functions of the factors process

follows as a corollary to Theorem 3.2, in particular the explicit representation of the solution given by

equation (14).
1We thank an anonymous referee for pointing out this fact.
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Corollary 3.4 Under Assumption 2.1 the bond price has exponential affine form,

P(t,T ) = eU(t)Xt+p(t),

where U(t) and p(t) solve equations (12) and (16) respectively.

Proof: Since P(t,T ) = Yt and, by Assumption 2.1, the Riccati equation (12) has a unique solution

over [0,T ] the result follows from equation (14) of Theorem 3.2.

In the next section we discuss some results of Elliott and van der Hoek [14] and their relationship

to our FBSDE approach.

4 Stochastic Flows and the Forward Measure

We shall consider, as in Elliott and van der Hoek [14], a stochastic flow associated with the factors

process. For 0 ≤ t ≤ s < T write X t,x
s for the flow associated with the solution of equation (2) such that

X t,x
t = x. That is, consider

X t,x
s = x+

Z s

t
(AX t,x

v + B̃)dv+
Z s

t
Sdiag( dBv)vec(

√

αi +βiX
t,x
v ) (21)

where vec(
√

αi +βiX
t,x
v ) = (

√

α1 +β1X t,x
v , . . . ,

√

αn +βnX t,x
v )

′
. For x ∈ D let ζ(x,ω) be the explosion

time of the SDE (21) as in [34, pp. 247-248]. As pointed out by Grasselli and Tebaldi [16] the

admissibility conditions of Dai and Singleton [8] imply, by Duffie et al. [10, Theorem 2.7], the existence

of a solution to the SDE (21) for all s ≥ t. Further, since the coefficient of the stochastic integral in

(21) is locally Lipschitz with respect to X t,x
v and ζ(x,ω) = ∞, for all x ∈ D, we have (see Protter [34,

Theorem 39]) that for x ∈ D, the map x → X t,x
u is almost surely differentiable and the Jacobian matrix

of partial derivatives with respect to x satisfies the equation

(∂xX t,x
u ) =I +

Z u

t
A(∂xX t,x

v )dv+
1
2

Z u

t
Sdiag(dWv)diag

(

(αi +βiX
t,x
v )−

1
2

)

C(∂xX t,x
v ) (22)

where C is the (n×n)-matrix whose rows are the vectors β1, . . . ,βn.

For 0 ≤ t ≤ T , since Xt is a Markov process, it follows that

P(t,T ) = P(t,T,Xt) (23)

Q−a.s, where for x ∈ D we define

P(t,T,x) := EQ[exp(−
Z T

t
r(X t,x

u )du)]. (24)

10



By differentiating P(t,T,x) with respect to x, where we write ∂xP(t,T,x) for the vector of partial

derivatives, we obtain, subject to regularity conditions that allow the exchange of expectation and

differentiation

∂xP(t,T,x) = EQ[exp(−
Z T

t
r(X t,x

u )du)L(t,T,x)] (25)

where

L(t,T,x) := −
Z T

t
(∂xX t,x

u )
′
Rdu. (26)

We briefly consider the purely Gaussian dynamics where βi = 0 for i = 1, . . . ,n. In this case C = 0 and

equation (22) reduces to

(∂xX t,x
u ) = I +

Z u

t
A(∂xX t,x

v )dv

which has solution Dtu := (∂xX t,x
u ) = exp(A[u− t]) not depending on x. With

B(t,T ) :=
Z T

t
D

′

tuRdu

equation (25) reduces to

∂xP(t,T,x) = −B(t,T )P(t,T,x)

and can be solved to obtain P(t,T,x) = exp(−[B(t,T )]
′
x+A(t,T )). All that remains is to identify

A(t,T ) (which can be done using the Feynman-Kac theorem as in Elliott and van der Hoek [14]) and

substitute x = Xt to complete the characterization of the bond price as an exponential affine function of

the factors in the Gaussian case.

For C 6= 0, in contrast to the Gaussian case, L(t,T,x) cannot be brought outside of the expectation

in equation (25). Instead, by applying a general form of Bayes’ theorem with the forward measure it

can be shown (as in Elliott and van der Hoek [14]) that

∂xP(t,T,Xt) = P(t,T,Xt)ET [L(t,T,Xt)|Ft ]. (27)

Provided ET [L(t,T,Xt)|Ft ] does not depend on Xt for all t ∈ [0,T ] equation (27) can be solved to obtain

an exponential affine form for the bond price. In order to explore this possibility it is necessary to

examine the dynamics of (∂xX t,x
u ) under the forward measure. As a first step Elliott and van der Hoek

[14] employ Girsanov’s Theorem to construct a Brownian motion with respect to the forward measure.

Theorem 4.1 (Elliott and van der Hoek [14]) The process (W T
· ) defined by

W T
t := Wt −

Z t

0
diag

(

√

αi +βiXu

)

S
′
ET [L(t,T,Xu)|Fu]du (28)

is a standard Brownian motion with respect to (QT ,Ft).

11



Using the notation

D̂tu := ET [ (∂xX t,x
u )
∣

∣

x=Xt
|Ft ], for 0 ≤ t ≤ u ≤ T,

the dynamics for the i-th component, W iT
t , of W T can be written in differential form as

dW iT
t = dW i

t +
√

αi +βiXtR
′

(

Z T

t
D̂tvdv

)

Seidt (29)

where ei denotes the unit vector in Rn with 1 in the i-th position. Equation (29) can then be used to

write the dynamics of the Jacobian matrix of partial derivatives of the stochastic flow, evaluated at

x = Xt , under the forward measure.

Taking the QT conditional expectation of these dynamics with respect to Ft gives that D̂tu satisfies

D̂tu = I +
Z u

t
AD̂tvdv−

1
2

n

∑
i=1

Z u

t
Sdiag(ei)CET [R

′
(
Z T

v
D̂vv1dv1)Sei

(

∂xX t,x
v

)∣

∣

x=Xt
|Ft ]dv (30)

almost surely. At this point it should be obvious that the key to proving the exponential affine form of

the bond price from equation (27) is a complete understanding of D̂tv for 0 ≤ t ≤ v ≤ T .

Based on equation (30) it is stated by Elliott and van der Hoek [14, Lemma 4.3] that D̂tu is deter-

ministic for 0 ≤ t ≤ u ≤ T . The proof given by Elliott and van der Hoek [14] proceeds by constructing

a sequence of deterministic processes which are supposed to converge to D̂tu represented by equation

(30). However, there is a mistake in the proof using the proposed approximation since an upper bound

which is assumed, by Elliott and van der Hoek [14], to be constant actually grows from iteration to

iteration and the application of Gronwall’s inequality is ineffective. It should be noted that for the

particular case of the (one-dimensional) CIR model [7] Elliott and van der Hoek [14] prove, directly,

that D̂tu is deterministic by using the semi-group property of the stochastic flow and properties of

expectation to solve equation (30) explicitly. However, these techniques are not generalizable to the

multidimensional case unless all the square-root factors are independent.

It is possible to prove a local version of the approximation lemma (see Hyndman [24]) by carefully

modifying the original proof of Elliott and van der Hoek [14] which, while of independent interest,

is not strong enough for our purposes. In fact, we shall prove that, under Assumption 2.1, D̂tu is

deterministic for all 0 ≤ t ≤ u ≤ T . This result emerges as a simple corollary to our existence and

uniqueness result, Theorem 3.2, for the FBSDE (9)-(10).

By adapting the results of Section 3 to include dependence on the parameters (t,x), through a

combination of a translation argument similar to that of [13, Proposition 4.1] with the derivation of the

BSDE (6), we may consider the BSDE associated with P(t,T,x)

Y t,x
s = 1−

Z T

s
(R

′
X t,x

u + k)Y t,x
u du−

Z T

s
Zt,x

u dWu. (31)

12



where X t,x
s is the solution to equation (21). For 0 ≤ t ≤ s < T define

F t
s = σ(W (u)−W (t) : t ≤ u ≤ s)∨N

where N denotes the Q-null subsets of F W
T ∗ . Then (X t,x

s ,Y t,x
s ,Zt,x

s ) is the unique F t
s -adapted solution

to the FBSDE defined by equations (21) and (31). Further, we find that Y t,x
t is deterministic, Y t,x

t =

P(t,T,x), and comparing with equation (27)

∂
∂xY t,x

t

Y t,x
t

∣

∣

∣

∣

∣

x=Xt

= ET [L(t,T,Xt)|Ft ]. (32)

The derivation of forward measure, Brownian motion (8), and the FBSDE (9)-(10) may also be

carried through with a dependence on the initial conditions (t,x) so that we may consider the version

of the FBSDE depending on (t,x). Let QT,t,x and W T,t,x denote the parameterized forward measure

and parameterized F t
s -Brownian motion respectively. Then, given Assumption 2.1, the Riccati equa-

tion (12) has a unique solution over [0,T ] and Theorem 3.2 gives that (X t,x
s ,Y t,x

s ,Zt,x
s ) satisfy (13)-(15)

with respect to W T,t,x on (Ω,F ,{F t
s }s≥t ,QT,t,x).

An immediate corollary is a partial generalization of Pardoux and Peng [33, Lemma 2.5] and

El Karoui et al. [13, Proposition 5.9] adapted to the specific setting of ATSMs which was employed in

[21]

Corollary 4.2 Under Assumption 2.1, for any t ∈ [0, t], s ∈ [t,T ], and x ∈ D

Zt,x
s = (∂xY

t,x
s )

′
(∂xX t,x

s )−1σ(X t,x
s ),

where σ(x) = Sdiag
(

√

αi +βix
)

. In particular Zt,x
t = (∂xY

t,x
t )

′σ(x).

Note that as the function σ(x) is only locally Lipschitz and the generator of the BSDE does not satisfy

the required differentiability hypotheses the results of Pardoux and Peng [33], El Karoui et al. [13] do

not apply.

By comparing the integrand in equation (28) with our alternative derivation of the dynamics (8) of

the Brownian motion, the existence and uniqueness result, and equation (15) one can formally observe

the following completion, in a weaker form, of the results of Elliott and van der Hoek [14].

Corollary 4.3 Under Assumption 2.1

ET [L(t,T,Xt)|Ft ] = [U(t)]
′

for all t ∈ [0,T ].
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Proof: If we evaluate equations (21) and (31) at x = Xt then, under the forward measure, the triple

(X t,Xt
s ,Y t,Xt

s ,Zt,Xt
s ) satisfies the FBSDE (9)-(10). Since, by Assumption 2.1, the Riccati equation (12) is

solvable Theorem 3.2 implies that

logYs
t,x = U(s)X t,x

s + p(s), s ∈ [t,T ].

From the initial conditions X t,x
t = x so, for s = t, we obtain logY t,x

t = U(t)x + p(t). Therefore, by

equation (32)

ET [L(t,T,Xt)|Ft ] =

(

∂
∂xY t,x

t

Y t,x
t

)∣

∣

∣

∣

∣

x=Xt

=

(

∂
∂x

logY t,x
t

)∣

∣

∣

∣

x=Xt

= [U(t)]
′

.

The final result of this section completes the results of Elliott and van der Hoek [14] by providing a

sufficient condition for the conditional expectation, under the forward measure, of the Jacobian of the

stochastic flow to be deterministic.

Corollary 4.4 Under Assumption 2.1 the matrix D̂tu is deterministic for 0 ≤ t ≤ u ≤ T and satisfies

the integral equation

Φ(u, t) = I +
Z u

t

{

A+
1
2

n

∑
i=1

Sdiag(ei)CU(v)Sei

}

Φ(v, t)dv. (33)

Proof: Assumption 2.1 and Corollary 4.3 give that [U(v1)]
′

= ET [L(v1,T,Xv1)|Fv1 ] for v1 ∈ [t,u].

Therefore, by equation (30), we have that D̂tu satisfies

D̂tu = I +
Z u

t
AD̂tv1dv1 +

1
2

n

∑
i=1

Z u

t
Sdiag(ei)CU(v1)SeiET [(∂xX t,Xt

v1 )|Ft ]dv1

= I +
Z u

t

{

A+
1
2

n

∑
i=1

Sdiag(ei)CU(v1)Sei

}

D̂tv1dv1 (34)

almost surely. Equation (34) is equivalent to a deterministic linear system of ordinary differential

equations. Consider the (n×n) matrix Ψ(t) whose columns are the vectors~x(1), . . . ,~x(n), which form a

fundamental set of solutions for the system

~x′(t) =

{

A+
1
2

n

∑
i=1

Sdiag(ei)CU(t)Sei

}

~x(t). (35)

Since the columns of the fundamental matrix, Ψ(t), for the system (35) are linearly independent Ψ(t)

is invertible. Define

Φ(u, t) := Ψ(u)Ψ−1(t), 0 ≤ t ≤ u ≤ T.

Then Φ(u, t) satisfies the integral equation (33). Therefore, we have that D̂tu is the deterministic matrix

Φ(u, t) for all 0 ≤ t ≤ u ≤ T .
14



Note that equation (33) is analogous to Proposition 4.5 of Grasselli and Tebaldi [16] after reconciling

notation.

In the next section we consider the relationship between FBSDEs and affine price models for a

risky asset. We show how the method developed for the bond can be adapted to characterize the futures

and forward prices.

5 Connection between APMs and FBSDEs

Suppose the factors process given by (2) is driving not only the short interest rate but also the price of

a risky asset (or commodity) and the dividend yield of the asset (or convenience yield of the commod-

ity). We shall retain Assumption 2.1, Assumption 2.2, and make the following assumptions about the

functional form of the dividend (convenience) yield and risky asset price similar to Björk and Landén

[2].

Assumption 5.1 We assume that the the asset (spot) price, and the dividend (convenience) yield are

functions of the factors process. That is,

St = S(t,Xt), and δt = δ(Xt),

where δ : Rn → R, and S : [0,T ]×Rn → R++ are specified by

(i) St = S(t,Xt), where for (t,x) ∈ [0,T ]×Rn, S(t,x) = exp(M(t)
′
x+h(t)), M : [0,T ]→ Rn, M(t) is

an (n×1)-column vector, h(t) : [0,T ]→ R and both M(t) and h(t) are differentiable functions of

t,

(ii) δt = δ(Xt), where for x ∈ Rn, δ(x) = N
′
x+ l, N is an (n×1)-column vector and l is a scalar.

We have included time dependence in the specification of the asset price so that we may consider

futures and forward contracts on zero coupon bonds with exponential affine forms, that is bond prices

resulting from affine term structure models, as underlying assets. Models satisfying Assumptions2.1-

5.1 have been referred to as affine price models (APMs). Within this framework a number of interest

rate and commodity price models which have appeared in the literature are included as special cases. In

the special case of Gaussian factor models (αi = 1,βi = 0, i = 1, . . . ,n) futures and forward prices were

considered separately in Hyndman [22] where we employed a version of the flows method. Examples

of models covered by Assumptions 2.1-5.1 which incorporate factors that are not all Gaussian include

the models of Ribeiro and Hodges [35] and Heston [18] as well as the continuous version of Björk and

Landén [2].
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5.1 The Futures Price

We next develop connections between the futures price, the risk-neutral measure for the futures price

reinvested in the bank account as numéraire, and forward-backward stochastic differential equations.

We shall also characterize the futures price as an exponential affine function of the factors process,

whose dynamics are given by (2), when the market model satisfies Assumptions 2.1-5.1.

A futures contract is an agreement to deliver some quantity of the underlying asset in the future for

a price agreed upon at the initiation of the contract. The delivery price which makes the value to both

parties of the contract zero at all times is called the futures price. By the mechanism of marking to

market, where changes in the value of the futures contract are settled daily, in accordance with changes

in the futures price the risk of default by one party is transfered to the exchange. Basic information on

futures contracts and market mechanics can be found in Hull [19]. The futures price of the risky asset

S is given by

G(t,T ) = EQ[S(T,XT )|Ft ] (36)

at time t for maturity T (see Karatzas and Shreve [25, Theorem 3.7, pp. 45-46] for a proof).

We next derive the FBSDE for the factors process and the futures price which is similar to the

case the bond but actually simpler. We shall use similar notation as in Section 3. In particular, define

Ys = G(s,T ) for all s ∈ [0,T ]. Since Ys is a martingale there exists a progressively measurable process,

Z, taking values in Rn and written as a (1×n)-row vector Z = (Z(1), . . . ,Z(n)) such that

Ys = Y0 +
Z s

0
ZudWu. (37)

Since YT = S(T,XT ) we have that the futures price satisfies the BSDE

Ys = S(T,XT )−
Z T

s
ZvdWv (38)

for s ∈ [t,T ] and, taken together, equations (5) and (38) constitute a decoupled FBSDE for the factors

process and the futures price.

We may define the following risk-neutral measure for the futures price reinvested in the bank ac-

count as numéraire. This is the natural measure change that will allow us to characterize the futures

price in terms of a linear ordinary differential equation similar to equation (27) and, ultimately, as an

exponential affine function of the square root affine factors.

Definition 5.2 The risk-neutral measure for the futures price invested in the bank account as numéraire,

exp(
R ·

0 r(Xu)du)G(·,T ), is defined on FT by

QG(A) := EQ[ΞT 1A]
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for all A ∈ FT , where

ΞT =
dQG

dQ

∣

∣

∣

∣

FT

:= G(T,T )

G(0,T )
=

S(T,XT )

G(0,T )
.

For 0 ≤ t ≤ T define Ξt := EQ[ΞT |Ft ]. Note that Ξt = Yt/Y0 so that, from equation (37), Ξt satisfies

Ξt = 1+
Z t

0
ZudWu = 1+

Z t

0

Zu

Yu

Yu

Y0
dWu = 1+

Z t

0

Zu

Yu
ΞudWu.

Hence, by Girsanov’s theorem,

W G
t = Wt −

Z t

0

Zu

Yu
du

is an Ft -Brownian motion under the risk-neutral measure QG for the futures price reinvested in the

bank account as numéraire. We may then write the dynamics of the FBSDE (5),(38) under the measure

QG as

Xs = Xt +
Z s

t
{AXv + B̃+Sdiag

(

√

αi +βiXv

)(Zv)
′

Yv
}dv+

Z s

t
Sdiag

(

√

αi +βiXv

)

dW G
v (39)

Ys = S(T,XT )−
Z T

s

Zv(Zv)
′

Yv
dv−

Z T

s
ZvdW G

v . (40)

As in Section 3 we are able to prove an existence and uniqueness result, independent of the financial

application, for the nonlinear FBSDE (39)-(40). We omit the proof in the case of the futures price as

it is similar to, and simpler than, the proof of Theorem 3.2. A corollary completes the characterization

of the futures price as an exponential affine function of the factors process.

Theorem 5.3 If the Riccati equation

U̇G(u)+UG(u)A+ 1
2UG(u)K

′
[β(UG(u))]

′

= 0, u ∈ [0,T ]

UG(T ) = M(T )
′
.

(41)

admits a unique solution UG(·) over the interval [0,T ] then the FBSDE (39)-(40) admits a unique

adapted solution (X,Y,Z) given by

dXs =
(

AXs + B̃+ k0 [UG(s)]
′

+K
′
[β(UG(s))]

′

Xs

)

dt +Sdiag
(

√

αi +βiXs

)

dW G
t , (42)

logYs = UG(s)Xs + pG(s), and (43)

Zs = UG(s)Sdiag
(

√

αi +βiXs

)

Ys, (44)

where, for all s ∈ [0,T ],

pG(s) = h(T )−
Z T

s

(

−
1
2UG(u)k0 [UG(u)]

′

−UG(u)B̃

)

du. (45)

As in Section 3, Assumption 2.1 guarantees that the Riccati equation (41) has a unique solution over

[0,T ] (see Remark 3.3). Therefore, we obtain complete characterization of futures prices as exponential

affine functions of the factors process as a corollary to Theorem 5.3.
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Corollary 5.4 Under Assumption 2.1 the futures price has exponential affine form,

G(t,T ) = eUG(t)Xt+pG(t),

where UG(t) and pG(t) solve equations (41) and (45) respectively.

Example 5.5 [Bond Futures] With the dynamics (2) as the model for the factors of the economy and

Assumptions 2.1-5.1 in force, Theorem 3.2 gives that the bond price has exponential affine form.

Therefore, we may consider a zero coupon bond with maturity TB as the asset underlying a futures

contract with maturity TG where TG < TB. Set M(t) = U(t) and h(t) = p(t), where U(t) and p(t) solve

equations (12) and (16) respectively with T replaced by TB. It then follows from Assumptions 2.1-5.1

and Corollary 5.4 that, with the terminal condition UG(TG) = U(TG) in equation (41), for all t ∈ [0,TG]

the futures price with a bond as underlying asset is an exponential affine function of the factors.

5.2 Stochastic flows and the measure QG

As in Section 4 we may consider the stochastic flow (21) associated with the factors process (2). In the

Gaussian case futures and forward prices were considered in [22] where, due to the Gaussian dynamics,

a change of measure was not necessary. For 0 ≤ t ≤ T we may write

G(t,T ) = G(t,T,Xt)

Q−a.s, where for x ∈ Rn we define

G(t,T,x)
4
= EQ[S(T,X t,x

T )]. (46)

Similar to Section 4 we may consider the vector of partial derivatives, ∂xG(t,T,x), of G(t,T,x) with

respect to x

∂xG(t,T,x) = EQ[(∂xX t,x
T )

′
M(T )S(T,X t,x

T )]

where (∂xX t,x
T ) satisfies equation (22). By applying a general form of Bayes’ theorem with the measure

QG it can be shown that

∂xG(t,T,Xt) = G(t,T,Xt)EG[LG(t,T,Xt)|Ft ]

where LG(t,T,x) = (∂xX t,x
T )

′
M(t). Define, for 0 ≤ u ≤ v ≤ T , D̆uv := EG[∂xXu,x

v |Fu]. Then, similar to

Elliott and van der Hoek [14] and Section 4, we may express the dynamics of the Jacobian of the

stochastic flow, equation (22), under the measure QG and take the conditional expectation with respect

to Ft to show that D̆uv satisfies

D̆tu = I +
Z u

t
AD̆tvdv+

1
2

n

∑
i=1

Z u

t
Sdiag(ei)CEG[M(T )

′
D̆vT Sei(∂xX t,Xt

v )|Ft ]dv. (47)
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almost surely. Generalizing the derivation of the FBSDE (39)-(40) to include dependence on the initial

conditions (t,x), as outlined in Section 4 in the case of the bond, we obtain the following corollary to

Theorem 5.3.

Corollary 5.6 Under Assumption 2.1

EG[LG(t,T,Xt)|Ft ] = [UG(t)]
′

for t ∈ [0,T ].

Then, similar to Corollary 4.4, combining Corollary 5.6 with equation (47) we find that D̆tu is deter-

ministic for 0 ≤ t ≤ u ≤ T and satisfies the integral equation (33) with U(v) replaced by UG(v).

We next consider the forward price of the risky asset.

5.3 The Forward Price

Similar to a futures contract a forward contract is an agreement to deliver some quantity of the under-

lying asset in the future for a price agreed upon at the initiation of the contract. The delivery price

which makes the value to both parties of the contract zero at the time of initiation is called the forward

price. A forward contract, in contrast to a futures contract, is not marked to market so the value of the

contract may differ from zero beyond the initiation date. The forward price of the risky asset S is given

by

F(t,T ) =
EQ[exp(−

R T
t rudu)ST |Ft ]

P(t,T )
(48)

at time t for maturity T , where P(t,T ) is the zero coupon bond price at time t for maturity T (see

Karatzas and Shreve [25, Sec 2.3, pp. 43-45] for details).

In the absence of a stochastic dividend (or convenience) yield the numerator of equation (48) re-

duces to the current spot price St by the fact that Q is a martingale measure. In the case of deterministic

interest rates the discount factor in the conditional expectation of equation (48) can be brought outside

and cancels the denominator. That is, in the case of deterministic interest rates the forward price (48)

of the risky asset is equal to the futures price (36) as noted by Cox et al. [6]. Therefore, in both cases

the results on the bond from Section 3 and futures price from Section 5.1 may be used to prove that

the forward price is an exponential affine function of the factors. As such, we shall only consider mod-

els which include stochastic interest rates and a stochastic dividend (or convenience) yield given by

Assumption 5.1.

Define

Vs = EQ[exp(−
Z T

0
r(Xu)du)S(T,XT )|Fs] (49)
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and note that Vs is a martingale and apply the martingale representation theorem as in Section 3. Define

Ys = Vs/Hs where Hs is given by equation (3). Then clearly F(s,T )P(s,T ) = Ys and YT = S(T,XT ).

Similar to Section 3 we find that Ys satisfies the BSDE

Ys = S(T,XT )−
Z T

s

(

R
′
Xv + k

)

Yvdv−
Z T

s
ZvdWv (50)

for s ∈ [t,T ] and taken together equations (5) and (50) constitute a decoupled FBSDE for the factors

process and F(s,T )P(s,T ).

We may define the following risk-neutral measure for the forward price reinvested in the zero-

coupon bond as numéraire.

Definition 5.7 The risk-neutral measure for the numéraire F(·,T )P(·,T ) is defined on FT by

QF(A) = EQ[ΓT 1A]

for all A ∈ FT , where

ΓT =
dQF

dQ

∣

∣

∣

∣

FT

:= F(T,T )

F(0,T )P(0,T )
exp(−

Z T

0
r(Xu))du).

Define Γt := EQ[ΓT |Ft ]. Note that Γt = Vt/V0 so that, similar to Section 3, Γt satisfies

Γt = 1+
Z t

0

Zu

Yu
ΓudWu.

Hence, by Girsanov’s theorem, the process W F defined by

W F
t = Wt −

Z t

0

Zu

Yu
du.

is an Ft-Brownian motion under the measure QF . We may then write the dynamics of the FB-

SDE (5),(50) under the measure QF as

Xs = Xt +
Z s

t
{AXv + B̃+Sdiag

(

√

αi +βiXv

)(Zv)
′

Yv
}dv+

Z s

t
Sdiag

(

√

αi +βiXv

)

dW F
v (51)

Ys = S(T,XT )−
Z T

s

{

(R
′
Xv + k)Yv +

Zv(Zv)
′

Yv

}

dv−
Z T

s
ZvdW F

v . (52)

We next give an existence and uniqueness result, independent of the construction already presented,

for the coupled nonlinear FBSDE (51)-(52), by adapting a technique for linear FBSDEs from Yong

[40], which gives the solution explicitly. A corollary completes the characterization of the forward

price as an exponential affine function of the factors process.

Theorem 5.8 If the Riccati equation

U̇F(u)+UF(u)A+ 1
2UF(u)K

′
[β(UF(u))]

′

−R
′
= 0, u ∈ [0,T ]

UF(T ) = M(T )
′
.

(53)
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admits a unique solution UF(·) over [0,T ] then the FBSDE (51)-(52) admits a unique adapted solution

(X ,Y,Z) given by

dXs =
(

AXs + B̃+ k0 [UF(u)]
′

+K
′
[β(UF(u))]

′

Xs

)

dt +Sdiag
(

√

αi +βiXs

)

dW F
t , (54)

logYs = UF(s)Xs + pF(s), and (55)

Zs = UF(s)Sdiag
(

√

αi +βiXs

)

Ys, (56)

where, for all s ∈ [0,T ],

pF(s) = h(T )−
Z T

s

(

k−
1
2UF(u)k0 [UF(u)]

′

−UF(u)B̃

)

du. (57)

As in Section 3, Assumption 2.1 guarantees that the Riccati equation (53) has a unique solution

over [0,T ] (see Remark 3.3). Therefore, we obtain complete characterization of forward prices as

exponential affine functions of the factors process as a corollary to Theorem 5.8.

Corollary 5.9 Under Assumption 2.1 the forward price has exponential affine form,

F(t,T ) = e([UF (t)−U(t)]Xt+[pF (t)−p(t)]),

where U(t), p(t), UF(t), and pF(t) solve (12), (16), (53), and (57) respectively.

5.4 Stochastic flows and the measure QF

Again, as in Section 4, we may consider the stochastic flow (21) associated with the factors process

(2). For 0 ≤ t ≤ T we may write

F(t,T ) = F(t,T,Xt)

Q-almost surely, where for x ∈ Rn we define

F(t,T,x)
4
=

EQ[exp(−
R T

t r(X t,x
u )du)S(T,X t,x

T )]

P(t,T,x)
(58)

and P(t,T,x) is as in equation (24). Differentiating (58) with respect to x gives

∂xF(t,T,x) =
EQ[exp(−

R T
t r(X t,x

u )du)S(T,X t,x
T )LF(t,T,x)]−F(t,T,x)∂xP(t,T,x)

P(t,T,x)
(59)

where LF(t,T,x) = (−
R T

t (∂xX t,x
u )

′
Rdu+(∂xX t,x

T )
′
M(T )). Applying a general form of Bayes’ theorem

with the measure QF and using equation (27) it can be shown that

∂xF(t,T,Xt) = F(t,T,Xt)(EF [LF(t,T,Xt)|Ft ]−ET [L(t,T,Xt)|Ft ]) (60)
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Define, for 0 ≤ u ≤ v ≤ T , D̃uv = EF [∂xXu,x
v |Fu]. Then, similar to Elliott and van der Hoek [14] and

Section 4, we can write the dynamics (22) under the measure QF and take the conditional expectation

with respect to Ft to show that D̃tu satisfies

D̃tu = I +
Z u

t
AD̃tvdv−

1
2

n

∑
i=1

Z u

t
Sdiag(ei)CEF [

(

R
′
Z T

v
D̃vv1dv1 − M(T )

′
D̃vT

)

Sei(∂xX t,Xt
v )|Ft ]dv

(61)

almost surely. Generalizing the derivation of the FBSDE (51)-(52) to include dependence on the initial

conditions (t,x), as outlined in Section 4 in the case of the bond, we obtain the following corollary to

Theorem 5.8.

Corollary 5.10 Under Assumption 2.1

EF [LF(t,T,Xt)|Ft ] = [UF(t)]
′

for t ∈ [0,T ].

Then, similar to Corollary 4.4, combining Corollary 5.10 with equation (61) we find that D̃tu is deter-

ministic for 0 ≤ t ≤ u ≤ T and satisfies the integral equation (33) with U(v) replaced by UF(v).

6 Summary

In this paper we have considered a factor model whose risk-neutral dynamics are given by an affine

diffusion. The short interest rate is supposed to be an affine function of the factors process. We provided

a characterization of the joint dynamics of the interest rate and the zero-coupon bond price in terms

of a forward-backward stochastic differential equation (FBSDE) which is, after a change of measure,

coupled and nonlinear and to which the usual existence and uniqueness theorems for FBSDEs do not

apply. The main result of the paper is to prove that provided certain Riccati equations are solvable, a

condition guaranteed by the assumptions of the model, the nonlinear FBSDE associated with the bond

price under the forward measure has a unique solution. The solution of the nonlinear FBSDE is given

explicitly and is determined by the solution of the Riccati equation, the solution of a deterministic

terminal value problem, the solution of an SDE, and a pair of equations expressing the backward

components of the FBSDE in terms if the solution of the SDE.

The first corollary to the existence and uniqueness result provides the characterization of the bond

price as an exponential affine function of the factors process. Further corollaries provide sufficient

conditions such that the conditional expectation (under the forward measure) associated with the linear

ordinary differential equation for the bond price is deterministic. In fact this conditional expectation
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is equal to the solution of the Riccati equation. This result unifies the approach of Elliott and van der

Hoek [14] with the approach of Duffie and Kan [11]. A final corollary to the existence and uniqueness

theorem shows that, if the Riccati equation is solvable, the conditional expectation under the forward

measure of the Jacobian of the stochastic flow is deterministic. This result addresses a mistake in the

proof of the approximation lemma of Elliott and van der Hoek [14].

The methods presented for the bond price were also applied to characterize futures and forward

prices. We assume that the underling asset price is given by an exponential affine function of the

factors and the dividend yield (or convenience yield in the case of a commodity) is an affine function

of the factors process. The characterization of futures and forward prices in terms of FBSDEs proceeds

in much the same way, apart from the measure changes, as the characterization of the bond price.

Our approach, based on FBSDEs, can be extended to the affine jump-diffusion models for the factors

studied by Duffie et al. [12], Duffie et al. [10], Björk and Landén [2], Chacko and Das [3], Björk et al.

[1], and Levendorskiı̆ [28]. The approach has been further generalized to consider the transforms of

an affine diffusion introduced by Duffie et al. [12]. The inclusion of jumps and the consideration of

transforms allows for the consideration of other financial derivatives and is considered in Hyndman

[23].
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