
BIOL 680: Advanced Statistics for Biological
Sciences
Guest Lecture: Machine Learning (K-Means)

Hammed A. Akande
Quantitative and Community Ecology Lab, Concordia University
2025-03-18



K-Means Clustering

2 / 52



Goals of the lecture
Understand the principles of clustering and K-Means.

Learn how to implement K-Means.

Interpret and evaluate K-Means clustering results.

Explore practical applications of K-Means and best practices.

3 / 52



Types of Machine Learning

Machine Learning

Supervised Learning Unsupervised Learning Reinforcement Learning Recommendation Systems

4 / 52



Supervised Learning

5 / 52



Unsupervised Learning

6 / 52



Unsupervised Learning
Can we make sense of data without a target variable?

Yes, at least to some extent. Although our focus would shift to finding the underlying
structure of the input data instead of function between input and output like in
supervised learning.

Examples include:

Clustering (e.g., K-Means)
Dimensionality Reduction (e.g., PCA)

7 / 52



Clustering

8 / 52



Clustering

Partitioning data into groups called clusters based on their similarities.

The goal is to discover underlying groups/patterns in a given dataset such that:

data in the same group are as similar as possible.

data in different groups are as different as possible.

9 / 52



Clustering

What is the "correct" grouping here?

10 / 52



Use Cases: Document Clustering

Group different topics from different articles or new soruces.

11 / 52



Use Cases: Species Distribution and Habitat Classification

We can cluster ecoregions based on environmental variables (temperature, precipitation,
etc) to identify distinct habitat types.

Source: Zhang et al., 2016 12 / 52

https://www.nature.com/articles/srep22400


Other Common Applications

Genetic and Genomic Clustering: cluster genes with similar expression patterns in
transcriptomics studies.

Social Network Analysis

Customer segmentation

13 / 52



K-Means clustering

14 / 52



K-Means clustering

K-Means is among the most widely used algorithms for clustering data

Input

 -> set of data points
 -> number of clusters

Output

 clusters of the data points

X

k

k

15 / 52



KMeans
##             X1          X2
## 1  -4.78603750 -5.74576905
## 2  -4.52034187 -4.07844964
## 3  -4.91217130 -4.24994565
## 4  -4.55614149 -7.50855402
## 5  -5.36283792 -8.04093410
## 6  -4.87732597 -4.99973420
## 7  -5.86384519 -5.39401899
## 8  -4.51037573 -6.74502766
## 9  -5.36411691 -4.50136855
## 10 -6.29424201 -4.72904621
## 11  1.09892152  1.37305395
## 12  0.75251346  0.45025656
## 13 -0.05941669 -0.14629386
## 14 -0.34456879  0.12809724
## 15  0.22266830 -2.29472095
## 16  0.55178634 -1.36656892
## 17  0.68364282 -0.19747955
## 18 -0.54587940  0.06808578
## 19 -1.36743616  0.09050341
## 20  1.40005184  0.32275997

16 / 52



KMeans

17 / 52



KMeans

# K-means clustering
kmeans_result #- kmeans(X, centers = 3, nstart = 10)

kmeans_result$cluster

##  [1] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3

The output of KMeans is n_clusters (groups) of the data points

Now, we can retrieve the cluster assignment for each observation and add them to the data.

## # A tibble: 9 × 3
##    feat1  feat2 `cluster labels`
##    <dbl>  <dbl>            <int>
## 1 -0.345  0.128                1
## 2  0.684 -0.197                1
## 3  1.10   1.37                 1
## 4 -4.79  -5.75                 2
## 5 -4.88  -5.00                 2
## 6 -4.91  -4.25                 2
## 7  4.08   4.47                 3
## 8  4.13   5.39                 3
## 9  4.84   4.25                 3 18 / 52



KMeans
In KMeans, each cluster is usually denoted by its center/centroid

19 / 52



KMeans Prediction
# predict cluster assignments for new data points
predict_kmeans #- function(model, newdata) {
  centers #- model$centers
  distances #- as.matrix(dist(rbind(centers, newdata)))[-(1:nrow(centers)), 1:nrow(cen
  max.col(-distances)
}

# New data points
new_examples #- matrix(c(-2, -2.5, 2, 4), ncol = 2, byrow = TRUE)

# Predict cluster assignments for new data points
new_labels #- predict_kmeans(kmeans_result, new_examples)
new_labels

## [1] 1 3

20 / 52



KMeans Prediction
Now, we can visualize the clusters, centers and new data points

21 / 52



K-Means algorithm
In K-Means clustering, the objective is to represent each cluster by its centroid and assign
each data point to a cluster.

But this is a bit complex in reality:

Assigning Data Points: If the cluster centers were known, each data point could be
assigned to the nearest center.

Determining Cluster Centers: Conversely, if the cluster assignments were known, the
centers could be computed as the mean of the assigned points.

The problem, however, is we neither know the cluster centers nor the assignments(a priori).

So, how do we resolve that?

Iterative approach

22 / 52



KMeans algorithm
Recall,

Input: our data points (X) and the number of clusters (K)

Initialization: Randomly select initial cluster centers.

Iterative process:

Assignment Step: Assign each data point to the nearest cluster center.
Update Step: Recalculate the cluster centers as the mean of the assigned points.
Convergence Check: Repeat the above steps until the assignments no longer change or
maximum iterations reached.

23 / 52



Example
So, Let’s execute K-Means algorithm on our simulated data.

## Number of examples: 30

##            [,1]      [,2]
##  [1,] -4.786037 -5.745769
##  [2,] -4.520342 -4.078450
##  [3,] -4.912171 -4.249946
##  [4,] -4.556141 -7.508554
##  [5,] -5.362838 -8.040934
##  [6,] -4.877326 -4.999734
##  [7,] -5.863845 -5.394019
##  [8,] -4.510376 -6.745028
##  [9,] -5.364117 -4.501369
## [10,] -6.294242 -4.729046

Recall, that k = 3

24 / 52



Initialization

25 / 52



Next: Iterative process
repeat

Assignment Step: Assign each data point to the nearest cluster center.

Update Step: Recalculate the cluster centers as the mean of the assigned points.

Convergence Check: repeat the steps untill the assignments no longer change

26 / 52



How do we find closest centers?
First step is to assign examples to the closest center.

We can consider distance of data to all centers and assign that to the closest center.

Let's see this example.

Closest Centers Example

27 / 52

https://hammed.shinyapps.io/shiny_app/


Finding Closest Centers
# calculate distances and update cluster assignments
update_Z #- function(X, centers) {
  X #- as.matrix(X)
  centers #- as.matrix(centers)

  # Number of data points and centers
  n_points #- nrow(X)
  n_centers #- nrow(centers)

  # Initialize a matrix to store distances
  dist_matrix #- matrix(0, nrow = n_points, ncol = n_centers)

  # Calculate Euclidean distances
  for (i in 1:n_points) {
    for (j in 1:n_centers) {
      dist_matrix[i, j] #- sqrt(sum((X[i, ] - centers[j, ])^2))
    }
  }

  # nearest center for each point
  cluster_assignments #- apply(dist_matrix, 1, which.min)

  return(list(distances = dist_matrix, assignments = cluster_assignments))
}

28 / 52



Update centers
Now that we have new cluster assignments, we need to update cluster centers.

New cluster centers are means of data points in each cluster.

update_centers #- function(X, Z, old_centers, k) {
  # Initialize new centers
  new_centers #- old_centers

  # Iterate over each cluster
  for (kk in 1:k) {
    # Identify the indices of data points assigned to cluster kk
    cluster_indices #- which(Z #= kk)

    # Calculate the mean of these data points to update the cluster center
    if (length(cluster_indices) > 0) {
      new_centers[kk, ] #- colMeans(X[cluster_indices, , drop = FALSE])
    } else {
      # If a cluster has no points assigned, retain the old center
      new_centers[kk, ] #- old_centers[kk, ]
    }
  }

  return(new_centers)
} 29 / 52



Putting Together
Initialize

Iteratively alternate between the following two steps.

Assignments update  -> we assign each data to the closest center

Center Update -> we estimate new centers as average of data in a cluster

z

30 / 52



Iterations
Iterations Example

31 / 52

https://hammed.shinyapps.io/iteration_app/


KMeans: When do we stop?
When the centroids are no longer changing

That indicates KMeans convergence, thus we stop!

KMeans will eventually converge, but doesn't necessarily mean it find the "right"
clusters. It can converge to local optima - the final clusters depend on the starting
positions of the centroids.

32 / 52



Initialization of K-Means is stochastic

Because the initial cluster centers are selected randomly

This means that if you run the K-Means multiple times with different random
initializations, you might get different clustering results.

Initialization is Important

K-Means can converge to local optima — the final clusters depend on the starting
positions of the centroids.

Poor initialization can lead to:

Slow convergence.

Incorrect clustering.

Higher final inertia (sum of squared distances from points to cluster centers will be
larger).

33 / 52



How do we decide the value of K?

34 / 52



Hyperparameter Optimization
The number of clusters must be defined before running K-Means.

For example, in supervised learning, hyperparameter tuning can be done by cross-
validation.

However, In unsupervised learning, since we don't have target values, it's harder to
evaluate the algorithm’s performance objectively.

There’s no single perfect method for choosing the optimal number of clusters.

However, there are several strategies that can help estimate a suitable value for K.

35 / 52



The Elbow method
This method evaluates the total sum of distances within each cluster, known as inertia

Inertia represents the sum of squared distances between each data point and its
assigned cluster center.

the intra-cluster distance can be expressed as:

∑
Pi∈C1

distance(Pi, C1)2 + ∑
Pi∈C2

distance(Pi, C2)2 + ∑
Pi∈C3

distance(Pi, C3)2

36 / 52



Inertia

37 / 52



Inertia

38 / 52



Inertia
##     K   Inertia
## 1   1 9519.7190
## 2   2 3030.2442
## 3   3 1559.8330
## 4   4  828.0066
## 5   5  634.7676
## 6   6  519.9277
## 7   7  467.0376
## 8   8  416.6967
## 9   9  376.1895
## 10 10  339.3888

From the above table, as  increases, inertia decreasesk

39 / 52



So, should the inertia be small or very large?

Actually, the goal is not to just look for a  that minimizes inertia since it decreases as 
increases.

For example:

If we have number of  number of data points, each data will have its own cluster
and then intra-cluster distance will .

So, trade-off is necessary here: i.e., we need small  vs small intra-cluster distances.

k k

k =

= 0

k

40 / 52



The plot suggests that three clusters
should be okay, as indicated by the
inflection point on the curve.

Although inertia decreases with more
than three clusters, the improvement
is minimal, so  is a reasonable
choice.

In our example here, the plot is
straightforward to interpret, but it can
be challenging in real-world scenarios.

Inertia

K = 3

41 / 52



Silhouette method
Does not rely on the concept of cluster centroids.

Computed using two metrics for each data point:

The mean distance to all other points within the same cluster (a).

The mean distance to all points in the nearest neighboring cluster (b).

42 / 52



Mean intra-cluster distance (a)
For a given sample (e.g., the green point here), calculate the average distance to all
other points within the same cluster.

These distances are depicted by black lines connecting the sample to other points in its
cluster.

43 / 52



The average distance from the green
point to the blue points is smaller
than to the red points, making the
blue cluster the closest.

Thus, the mean nearest-cluster
distance  average distance between
the green point and the blue points.

Mean nearest-cluster distance (b)

=

44 / 52



Silhouette Score for samples
The silhouette distance for a sample is the difference between the mean nearest-
cluster distance (b) and the mean intra-cluster distance (a), normalized by the
maximum of the two values:

i.e.,

It ranges from  to  (worst to best values) with values near  means we have many
overlapping clusters.

Thus, the overall Silhouette score is the average Silhouette scores for all samples.

S =
b − a

max(a, b)

−1 1 0

45 / 52



How do we use Silhouette scores to select the number of clusters?

46 / 52



How do we use Silhouette scores to select the number of clusters?

47 / 52



How do we use Silhouette scores to select the number of clusters?

48 / 52



Interpretation of Silhouette Plots

Silhouette Values:

Higher silhouette values indicate that a data point is close to its own cluster and
far from neighboring clusters, suggesting well-separated clusters.

Cluster Size Representation:

The width of each silhouette reflects the number of data points in the cluster,
providing insight into cluster sizes.

Cluster Quality:

The shape and length of each silhouette  the quality of the clustering; a more
rectangular shape with a slower drop-off indicates that more points are
appropriately clustered.

=

49 / 52



Recap and Key Takeaways

The silhouette method can be applied to evaluate the results of different clustering
algorithms beyond K-Means.

Remeber, Clustering is an unsupervised learning.

Distance Metrics: While not extensively covered here, the choice of distance metrics is a
crucial factor in clustering, as it influences how similarity between data points is
measured.

50 / 52



Recap and Key Takeaways

K-Means requires specifying the number of clusters  in advance.

Assigns each data point exclusively to one cluster.

The cluster labels generated are arbitrary and no specific meaning.

Cluster centroids are computed as the mean of data points within a cluster

KMeans always converge: however, that may be suboptimal as it's influenced by the
initial centroids.

Elbow and Silhouette techniques are commonly used to assess the optimal number of
clusters for a given dataset.

Applications: Data exploration, feature engineering, customer segmentation, and
document clustering.

Interpreting the results of clustering algorithms often requires manual effort and
domain expertise to extract meaningful insights

(k)

51 / 52



Thank you

52 / 52


