Now we can test for differences in
adjusted means; but before that:

Critical statistical issues underlying
General Linear Models
(including ANCOVASs)

Lecture 10
(Type | and Ill sum-of-square)



Initial conclusion: greater fruit production under
grazing!

> anova(lm(Fruit~Grazing))
Analysis of Variance Table

Response: Fruit
Df Sum Sq Mean Sq F value Pr(>F)
Grazing 1 2910.4 2910.44 5.3086 0.02678 *
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Grazing is significant - but in what direction?
Does grazing increase or reduce fruit production?
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Analysis of covariance (ANCOVA) evaluates whether the means of a dependent
variable are equal across levels of a categorical independent variable (treatment),
while statistically controlling for the effects of other continuous variables that are not
of primary interest, known as covariates or nuisance variables.

Between group variance ‘[

(variation among group means)
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Between-group variance
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Variation in fruit production

Covariation between discrete (grazing) and

continuous (initial plant
size) predictors (e.g., greater grazing in large plants)

Adapted from https://en.wikipedia.org/wiki/Analysis_of covariance
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Before we proceed in testing for differences in adjusted means -
a few really important issues

1) Since the two main conditions hold (1) Covariate can predict the
response; and 2) Groups share a common slope, i.e., interaction is not
significant), we can proceed to test the effect of grazing (categorical
predictor) while controlling for initial plant size (root size). Also, given
that the slopes are similar, we can drop the interaction in the final analysis
(thought there are discussions about whether this is cautious or not).

Y= pu+A; +X(+A1 X Xy)

Fruit production = p + Grazing + Root size




Fruit production = p + Grazing + Root size

fruit production

fruit production

Before we proceed in testing for differences in adjusted means -

a few really important issues

Y = v + A]_ + X1(+A1X Xl)

+ Grazing X Root size

’
’
’
’
-
———
’
L4

initial root size

QD

O

initial root size

fruit production

fruit production

-
-
-
-
-
-
-
=
-
-
-
-
-

-
Pl
-
. -

-
il
-
-
-

-
P il
-

initial root size

fruit production

fruit production

initial root size

initial root size



BIOL 422 & 680, Pedro Peres-Neto, Biology, Concordia University

ANOVA, Regression and types of sum-of-squares




Before we proceed in testing for differences in adjusted means -
a few really important issues

1) Since the two main conditions hold (1) Covariate can predict the
response; and 2) Groups share a common slope), we can proceed to test
the effect of grazing (categorical predictor) while controlling for initial
plant size (root size). Also, given that the slopes are similar, we can drop
the interaction in the final analysis.

2) When multiple predictors are used, we estimate partial effects i.e., the
total amount of variation explained by grazing once initial size (covariate)

is controlled for (removed).



Before we proceed in testing for differences in adjusted means -
a few really important issues

2) When multiple predictors are used, we estimate partial effects i.e., the
total amount of variation explained by grazing once initial size (covariate)
is controlled for (removed).

Fruit production = p + Grazing + Root size

variation shared between Grazing and Root size (non — orthogonal)

Fruit production = A I B residual

|

unique ef fect of Root size independent
of grazing (partial ef fect)

unique ef fect of Grazing independent of root size (partial effect)

Note that interaction can’t be significant for adjustement; so assumed zero here



Before we proceed in testing for differences in adjusted means -
a few really important issues

2) Remember that as in a regression model, partial effects are used, i.e.,
the total amount of variation explained by grazing once initial size
(covariate) is controlled for (removed).

3) However, standard ANOVA assumes that categorical factors are
orthogonal, and this is not possible when a categorical and a continuous
variable are tested in the same model. After all, if grazing and Root
would be orthogonal, there would be no correlation between them!

variation shared between Grazing and Root size (non — orthogonal) > ()

Fruit production = A I B residual

|

unique ef fect of Root size independent
| of grazing (partial ef fect)
unique ef fect of Grazing independent of root size (partial effect)




Before we proceed in testing for differences in adjusted means -
a few really important issues

2) Remember that as in a regression model, partial effects are used, i.e.,
the total amount of variation explained by grazing once initial size
(covariate) is controlled for (removed).

3) However, standard ANOVA assumes that categorical factors are
orthogonal, and this is not possible when a categorical and a continuous
variable are tested in the same model. After all, if grazing and Root
would be orthogonal, there would be no correlation between them!

grazing is a contrast (as seen in our last lecture)

> cor(as.numeric(Grazing),Root)
[1] -0.772087



Because of lack of orthogonality between categorical (grazed /non-grazed) and
covariate (initial root size), the order of the categorical and covariate change the
results when using a common ANOVA (which is based on type I Sum of squares).

> anova(lm(Fruit ~ Grazing+Root))
Analysis of Variance Table

Response: Fruit

Df Sum Sq Mean Sq F value Pr(>F)
Grazing 1 2910.4 2910.4 63.929 1.397e-09 ***
Root 1 19148.9 19148.9 420.616 < 2.2e-16 ***
Residuals 37 1684.5 45.5

> anova(lm(Fruit ~ Root+Grazing))
Analysis of Variance Table

Response: Fruit

Df Sum Sq Mean Sq F value Pr(>F)
Root 1 16795.0 16795.0 368.91 < 2.2e-16 ***
Grazing 1 52064.4 5264.4 115.63 6.107e-13 ***
Residuals 37 1684.5 45.5




Understanding the
Type I sum-of-squares (sequential)




The Grazing treatment (A) is entered 1% into the model

Total variation in _ residual
response variable (Y) A
\ A
Y |
15% 85%

Type I sum-of-squares
(sequential)

Fruit production = p + Grazing



The Grazing treatment (A) is entered 1% into the model and then initial root size (B)

Total variation in

response variable (Y) A residual
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(sequential)

Fruit production = u + Grazing + Root size



The Grazing treatment (A) is entered 1% into the model and then initial root size (B)

Total variation in _ residual
response variable (Y) A
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Initial root size (B) is entered 1% into the model and then the grazing treatment (A)
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Fruit production = u + Root size



The Grazing treatment (A) is entered 1% into the model and then initial root size (B)
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Understanding the
Type III sum-of-squares
(marginal or orthogonal)



The Grazing treatment (A) is entered 1% into the model and then initial root size (B)

Total variation in _ residual
response variable (Y) A
‘ \ ’
Y |
15% 85%

Type III sum-of-squares
(orthogonal)



The Grazing treatment (A) is entered 1% into the model and then initial root size (B)
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The Grazing treatment (A) is entered 1% into the model and then initial root size (B)
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The Grazing treatment (A) is entered 1% into the model and then initial root size (B)

Total variation in _ residual
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(orthogonal)
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Analysis of covariance (ANCOVA) evaluates whether the means of a dependent
variable are equal across levels of a categorical independent variable (treatment),
while statistically controlling for the effects of other continuous variables that are not
of primary interest, known as covariates or nuisance variables.
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Adapted from https://en.wikipedia.org/wiki/Analysis_of covariance
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VARIATION PARTITIONING OF SPECIES DATA MATRICES:
ESTIMATION AND COMPARISON OF FRACTIONS

PeDprO R. PEREs-NETo,1 PiERRE LEGENDRE, STEPHANE DRAY, AND DANIEL BORCARD

Understanding semi-partial contributions via variation partitioning




Final test: Does grazing atfect fruit
production once controlled for initial
root size?




Final test: Does grazing atfect fruit production once
controlled for initial root size?

H,: Grazing treatments do not differ in fruit production.

H,: Grazing treatments differ in fruit production.

> Anova(lm.Fruit, type = "III") # note "A" in Anova 1s capitalized
Anova Table (Type III tests)

Response: Fruit

Sum Sq Df F value Pr(>F)
(Intercept) 7965.2 1 174.96 1.35Q0e-15 ***
|Grazing 5264.4 1 115.63 6.107e-13 ***
Root 19148.9 1 420.62 < 2.2e-16b ***
Residuals 1684 .5 37

Type II and III Sum of squares so that order of entrance of

categorical (grazing treatment) and continuous (covariate =
initial root size).



Grazing is significant - but in which direction?
Does grazing increase or reduce fruit production?
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Grazing is significant - but in which direction?
Does grazing increase or reduce fruit production?
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Oecologia

- June 1992, Volume 90, Issue 3, pp 435-444 | Cite as

The effects of grazers on the performance of individuals
and populations of scarlet gilia, Ipomopsis aggregata

Authors Authors and affiliations

Joy Bergelson, Michael J. Crawley

I. aggregata exhibits considerable powers of regrowth following removal of its primary shoot
by herbivores, but we found no evidence of overcompensation (i.e. of significantly higher plant
performance where plants were exposed to ungulate herbivory) in a comparison between

individuals on grazed and ungrazed sides of exclosure fences



Assessing if assumptions hold!
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Y= pu+A; +X;+ (A;XX;) Analysis of Covariance (ANCOVA)

Testing for assumptions should be performed
betore reporting results — we did not do it
here so that we paid attention to the problem

first!




Assumptions

Assumption 1: linearity (more in the regression module)
The regression relationship between the dependent variable and
concomitant variables must be linear.

Assumption 2: homogeneity of error variances (residual plot or the
Breusch-Pagan test)

Equal variances for different treatment classes and observations.
Assumption 3: independence of error terms (more in mixed models)
The errors are uncorrelated. That is, the error covariance matrix is

diagonal.

Assumption 4: normality of error terms (Q-Q plot)
The residuals (errors) should be normally distributed.

Assumption 5: homogeneity of regression slopes (tested already).



Y= pu+A; +X;+ (A;XX;) Analysis of Covariance (ANCOVA)

Testing for normality assumptions (Q-Q normal residual plot)

27e

Standardized residuals
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Theoretical quantiles
(normally distributed)



Y= pu+A; +X;+ (A;XX;) Analysis of Covariance (ANCOVA)

Testing for normality assumptions (Q-Q normal residual plot)

B 3@

270

Shapiro-Wilk normality test

data: residuals(lm.result)

W= 0.97358, p-value

0.4037

In doubt, resort to a formal test, though General Linear
models (ANOVAs and regressions) are quite robust against
non-normality.



Y= u+A; +X;+ (A;XX;) Analysis of Covariance (ANCOVA)

Testing for homoscedasticity
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Y= pu+A; +X;+ (A;XX ) Analysis of Covariance (ANCOVA)

Testing for homoscedasticity

§“°1;;;*\<Q;\ studentized Breusch-Pagan test
§05 . . .. .\.
N ¢ - data: 1m.result
now @ o BP = 1.7063, df = 2, p-value = 0.4261

Predicted values
(fruit production mg)

In doubt, resort to a formal test, General Linear models are
sensitive to heteroscedasticity.



What to do in more
complex cases?




There are approaches for the more complex cases when slopes differ
between groups or when the response (Y) does not depend on the
covariate (initial root size)
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There are approaches for the more complex cases when slopes differ
between groups or when the response (Y) does not depend on the
covariate (initial root size) — later in the class.

When there is an interaction, then the differences in mean values between treatments
vary as a function of the covariate, so we can’t generalize to all initial root sizes.

Solution: categorize the
covariate (divide into few

. classes of initial root size) and
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There are approaches for the more complex cases when slopes differ between groups or when the
response (Y) does not depend on the covariate (initial root size) — later in the class.

When there is an interaction, then the differences in mean values between treatments
vary as a function of the covariate, so we can’t generalize to all initial root sizes.
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There are approaches for the more complex cases when slopes differ between groups or when the
response (Y) does not depend on the covariate (initial root size) — later in the class.

When there is an interaction, then the differences in mean values between treatments
vary as a function of the covariate, so we can’t generalize to all initial root sizes.

Solution: categorize the
covariate (divide into few

. classes of initial root size) and
Jole use a two-factorial design:
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3) The two series need to
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® grazed covariate values.

® non-grazed



There are approaches for the more complex cases when slopes differ between groups or when the
response (Y) does not depend on the covariate (initial root size) — later in the class.

When response variable (fruit production) is independent of continuous predictor
(initial root size), but continuous differ in average between treatments.

Solution: categorize the

covariate (divide into few

'--"--'r--:'- ------------ classes of initial root size) and
o use a two-factorial design:

I b I 1) the interpretation is more
complex (i.e., there will be an
interaction);
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2) Loss of statistical power by
decreasing the degrees of
freedom via creating categories.

Small Big

3) The two series need to
initial root size overlap substantially in their
® grazed covariate values.

® non-grazed



Y= pu+A; +X;+ (A;XxX;) Analysis of Covariance (ANCOVA)

- It is not always possible to randomize factors
completely independent of each other. In the case of the
fruit productivity, ideally the researchers should have
made sure that the plants in grazing and no grazing
plots should have had the same size.

- Confounding or nuisance (non-random) factors can
often be the case, particularly in non-experimental
studies.

- The terminology and some of the theory underlying
“Type I, Il & III” sum of squares seems to have been
generated by SAS (Statistical Analysis System).



Doctor Tyrano, look for a covariate

Doctor Tyrano, stewed in the realization that he would win
no accolades for finding the world’s most medium-sized
dinosaur!



General linear models (not Generalized linear model)

Linear Model Common name
Y= u+X Simple linear regression
Y= pu+A4Aq One-factorial (one-way) ANOVA

Y= pu+A; +A, +A; XA,  Two-factorial (two-way) ANOVA
Y=pu+A; +X(+AXX) Analysis of Covariance

(ANCOVA)
Y= pu+X;+X, + X3 Multiple regression
Y=p+A;+g+AXg Mixed model ANOVA
Y.+ Y, Multivariate ANOVA (MANOVA)

— H+A1 +A2 +A1XA2
A represents categorical predictors (factors)
g represents groups of data (more on this later)

(+A; X X) - step 1 on an ANCOVA, but not in the final analysis
Multiple factors A; + A, + etc (and their interactions)



Grazing is significant - but in which direction?
Does grazing increase or reduce fruit production?

)

non—grazed(adjusted mean)

—125.17mg + 36.1mg +
23.56mg/cm X 7.18cm =
77.46212

Ygrazed (adjusted mean)

= —125.17mg + 0.00mg +
23.56mg/cm X 7.18cm =
43.35888

Adjusted (final) inference:
grazed fruit production <
non-grazed fruit production



