“This is statistics”

by Dr. Genevera Allen

Associate Professor at Rice University

https://www.youtube.com/watch?v=xURKTKtDq_M
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Regression analysis
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General linear models (not Generalized linear model)

Linear Model Common name
Y= pn+X Simple linear regression
Y= p+A; One-factorial (one-way) ANOVA

Y= pn+A; +A; +A; XA, Two-factorial (two-way) ANOVA
Y= p+A; +X(+A1xX) Analysis of Covariance (ANCOVA)
Y=p+X; +X; +X3 Multiple regression
Y=pu+A; +g+A;xg Mixed model ANOVA
Y, +Y, = u+A; +A, +A XA, Multivariate ANOVA (MANOVA)
Y (response) is a continuous variable
X (predictor) is a continuous variable

A represents categorical predictors (factors)
g represents groups of data (more on this later)

(+A;Xx X) - step 1 on an ANCOVA, but not in the final analysis
Multiple factors A; + A, + etc (and their interactions)




Multiple regression — the “model of all models”!

Part I:

Causation, regression model, properties of
estimators and sensibility to assumptions

Part Il:
Goodness of fit and model simplicity metrics,

hypotheses testing, standardized slopes, model
selection, examples and diagnostics
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Multiple regression — the “model of all models”!

The essential idea with regression models is to find driving

forces like the train engine and determine the path of the
railway track.

The “driving force” in statistics is
often called “generating
process”

Correlation, Causation, & Coincidence

One of the key concepts in regression models, or science

in general, is to distinguish between correlation and
causation.

source - hitp://ucanalytics.com/

Unless in experimental settings and in some time series
(and even then), regression models cannot necessarily
distinguish between causation and correlation.

The role of researchers when using regression is to provide

strong evidence and a narrative of causation (even though
it can’t always be confirmed).



http://ucanalytics.com/
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Likely a coincidence

DID AVAS CAUSE
THE U.S. HOUSING BUBBLE?

15,826

™

b

100  Housing
price index
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named Ava”
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Source: Bloomberg

Likely a coincidence

Number people who drowned by falling into a swimming-

pool
correlates with

Number of films Nicolas Cage appeared in

lling into a swimming-pool
ared in

— % —1
2001 2002 2 005 2006 2007 2008 2009

Correlation: 0.666004
Source: http://tylervigen.com

Likely a coincidence

Honey producing bee colonies (US)
inversely correlates with

Juvenile arrests for possession of marijuana (US)

Correlation: -0.933389

Source: http://tylervigen.com




Coincidence =

spurious correlations

http://tylervigen.com/discover?type_select=fun
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Likely a correlation

\

1S GLOBAL WARMING A HOAX
PROPAGATED BY SCIENTISTS?
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Causation
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Source - www.e-education.psu.edu
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Causation
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3 / Multiple regression
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Discussion: Causation & Correlation versus Prediction
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Some thoughts on « explanation »

In 1964, during a lecture at Cornell University, the physicist Richard Feynman articulated
a profound mystery about the physical world. He told his listeners to imagine two
objects, each gravitationally attracted to the other. How, he asked, should we predict
their movements? Feynman identified three approaches, each invoking a different belief
about the world.

source — The New Yorker
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Some thoughts on « explanation »

In 1964, during a lecture at Cornell University, the physicist Richard Feynman articulated
a profound mystery about the physical world. He told his listeners to imagine two
objects, each gravitationally attracted to the other. How, he asked, should we predict
their movements? Feynman identified three approaches, each invoking a different belief
about the world.

1) The first approach used Newton’s law of gravity, according to which the objects exert a
pull on each other.

2) The second imagined a gravitational field extending through space, which the objects
distort.

3) The third applied the principle of least action, which holds that each object moves by
following the path that takes the least energy in the least time.

source — The New Yorker
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Some thoughts on « explanation »

All three approaches produced the same, correct prediction. They were three equally
useful descriptions of how gravity works. “One of the amazing characteristics of nature
is this variety of interpretational schemes,” Feynman said.

source — The New Yorker
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Multiple regression — the “models of all models”!

Y= Bo+ B1X1 + BXp+ .. +f,Xp + e

ﬁ 0 model intercept (or constant)

ﬁ 1 ,8 2 ﬁp Partial regression coefficients (or partial slopes)
€ model residuals or error
The general purpose of multiple regression are:

1) Describe, investigate and learn about the relationship between several
independent or predictor variables and a dependent variable.

2) Make predictions.

3) Plan experiments to test causality (in regression, causality is often implied).
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Multiple regression — the “models of all models”!

Y = ﬁo + ﬁle + ﬁZXZ T a0 +ﬁpo +e

ﬂ 0 model intercept (or constant)

B 1 ,B 2 " Bp Partial regression coefficients (or partial slopes)

€ model residuals or error

Fitting method = Ordinary least square (OLS) ,,

The OLS method minimizes the sum of square
differences between the observed and predicted 60 -
values.

21



A small fictional example to facilitate understanding
of what regression coefficients mean!

Y =42cm + B X + B,X, +e
Y is plant height (cm)

Xy is amount of bacteria in the soil (1000 bacteria per ml of soil)
Xz is amount of plant exposure to sun light (% exposure)

Bo

« Model intercept (or constant) is the value that is predicted for Y if
predictors X1 and Xz are zero, i.e., the expected plant height if there is
no bacteria in the soil and no sun light.

2025-02-17
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A small fictional example to facilitate understanding
of what regression coefficients mean!

Y =42cm + B X + B,X, +e

Y is plant height (cm)
Xy is amount of bacteria in the soil (1000 bacteria per ml of soil)
Xz is amount of plant exposure to sun light (% exposure)

BO « Model intercept (or constant) is the value that is predicted for Y
if predictors X1 and Xz are zero, i.e., the expected plant height
if there is no bacteria in the soil and no sun light.

This is only a reasonable interpretation if either X1+ and X2 can
be zero and if the data include values for X1 and Xz that are
closer to zero). For instance, the intercept could be negative for
this model even though a plant can't have negative height.

The unit of the intercept is the same as the response variable
(i.e., cm).
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A small fictional example to facilitate understanding
of what regression coefficients mean!

Y =42cm + 2.3X; + ,X, +e

Y is plant height (cm)
X4 is amount of bacteria in the soil (1000 bacteria per ml of soil)
Xz is amount of plant exposure to sun light (% exposure)

ﬁ 1 It represents the difference in predicted value of Y (plant height)
for each one unit difference in bacteria amount if sun exposure is
kept constant (i.e., as if plants were exposed to the same amount
of mean sun light) — called partial effects/slopes

Plants with 5000/ml bacteria counts would, on average, be 2.3 cm
taller (in average) than plants in soils with 4000/ml (which would
be 2.3 cm taller in average than plants with 3000/ml).

The slope of any single partial regression line (partial regression slope) represents the
rate of change or effect of that specific predictor variable (holding all the other
predictor variables constant to their respective mean values) on the response variable.

24



A small fictional example to facilitate understanding
of what regression coefficients mean!

Y =42cm + 2.3X; + ,X, +e

Y is plant height (cm)
Xy is amount of bacteria in the soil (1000 bacteria per ml of soil)
Xz is amount of plant exposure to sun light (% exposure)

b1

Represents the difference in predicted value of Y (plant
height) for each one unit difference in bacteria amount if sun
exposure is kept constant (i.e., as if plants were exposed to
the same mean amount of sun light).

2025-02-17
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A small fictional example to facilitate understanding
of what regression coefficients mean!

Y =42cm + 2.3X; + 5,X, +e

Y is plant height (cm)
Xy is amount of bacteria in the soil (1000 bacteria per ml of soil)
Xz is amount of plant exposure to sun light (% exposure)

ﬁ 1 It represents the difference in predicted value of Y (plant height)
for each one unit difference in bacteria amount if sun exposure is
kept constant (i.e., as if plants were exposed to the same
amount of sun light).

Plants with 5000/ml bacteria counts would, on average, be 2.3 cm
taller (in average) than plants in soils with 4000/ml (which would
be 2.3 cm taller in average than plants with 3000/ml).

“Kept constant” means that that the association between
bacterial amount and plant height is independent (controlled for)
of amount of sun.

26

A small fictional example to facilitate understanding
of what regression coefficients mean!

Y =42cm + 2.3X; + ,X, +e

Y is plant height (cm)
X4 is amount of bacteria in the soil (1000 bacteria per ml of soil)
Xz is amount of plant exposure to sun light (% exposure)

ﬁl - It represents the difference in predicted value of Y (plant height) for each one unit
difference in bacteria amount if sun exposure is kept constant (i.e., as if plants were
exposed to the same amount of sun light).

Plants with 5000/ml bacteria counts would, on average, be 2.3 cm taller (in average)
than plants in soils with 4000/m| (which would be 2.3 cm taller in average than plants
with 3000/ml).

“Kept constant” means that that the association between bacterial amount and
plant height is independent (controlled for) of amount of sun

The unit attached to the slope is the unit of the response
divided by the unit of the predictor (i.e., cm/ 1000 bacteria

per ml)
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A small fictional example to facilitate understanding
of what regression coefficients mean!

Y =42cm + 2.3X, + 11X, +e

Y is plant height (cm)
Xy is amount of bacteria in the soil (1000 bacteria per ml of soil)
Xz is amount of plant exposure to sun light (% exposure)

ﬁ + It represents the difference in predicted value of Y (plant height) for each one unit difference in
1 bacteria amount if amount of sun s kept constant (i.e., as if plants were exposed to the same:
amount of sun light).

Plants with 5000/ml bacteria counts wouid, on average, be 2.3 cm taller (in average) than plants in
soils with 4000/m (which would be 2.3 cm taller in average than plants with 3000/mi).

“Kept constant” means that that the association between bacterial amount and plant height is
independent (controlled for) of amount of sun.

ﬁ 2 Reverse interpretation in relation to ﬁ 1

Units attached - cm/ % exposure

2025-02-17
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What do model slopes
represent?

29

Model slopes - represents the difference in predicted value of Y (plant height)
for each one unit difference in bacteria amount if amount of sun is kept constant
(i.e., as if plants were exposed to the same amount of sun light).

To do that, we use partial slopes — this is important because continuous
predictors will rarely be orthogonal and, as such, we can't assign its effects to
one or the other predictor.

bacteria sun light

Total variation in

plant height = amount exposure

residual variation

anlllnll
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Experimental (likely close to orthogonal) versus observational
(non-orthogonal) approaches.

Manipulative Experiment Observational study

(balanced = orthogonal) (non-balanced)
flooooo 8%
¢|looo00O0 S0
:|le®@0o0O0 o%°®
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&

Resources (g/m?3) Resources (g/m?3)

Optimal combination of the two variables
for fish growth.
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Experimental (likely close to orthogonal) versus observational
(non-orthogonal) approaches.

Manipulative Experiment Observational stud
(non-balanced = quasi-orthogonal) (non-balanced) y
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‘ Optimal combination of the two variables
for fish growth.
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The properties of a regression model
(let’s use a small simulation)

Regression estimation (based on a sample) of the
true population regression involves assumptions.

These assumptions are necessary so that the
sample model is an unbiased estimate of the true
population model; and that the tests involved have

correct behaviour (e.g., Type | error rates = selected
alpha).

A word on simulations versus math!

33
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The properties of a regression model
(let’s use a small simulation)

Y =42cm + 2.3X; + 11X, +e

e residual error assumed to be N (0,0?)

Let’s start with a really large sample size

2025-02-17

4
5 n = 1000000
6 constant = 42
7 X1 = rnorm(n,1000,10)
8 X2 = rnorm(n,40,4)
9 error = rnorm(n,9,10)
10
11 Y = constant + 2.3*X1 + 11*X2 + error
12
34
The properties of a regression model
(let’s use a small simulation)
Y =42cm + 2.3X; + 11X, +e
e residual error assumed to be N (0,0?)
; n = 1000000
6 constant = 42
7 X1 = rnorm(n,1000,10)
8 X2 = rnorm(n,40,4)

©

10

12

11 Y = constant + 2.3*X1 + 11*X2 + error

error = rnorm(n,0,10)

Model results from simulated data
(large sample size, more accuracy)

> Im(Y~X1+X2)

Call:
Im(formula = Y ~ X1 + X2)

Coefficients:
(Intercept) X1 X2
42.687 2.299 10.998

35

The properties of a regression model
(let’s use a small simulation)

Let’s reduce sample size

36
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The properties of a regression model
(let’s use a small simulation)
Y =42cm + 2.3X; + 11X, +e
e residual error are assumed to be N(0,0?%)
19
20 n = 30 «~—
21 constant = 42
22 X1 = rnorm(n,1000,10)
23 X2 = rnorm(n,40,4) Model results from simulated data
24 error = rnorm(n,®,10) . .
25 (smaller sample size, less accuracy;
26 Y = constant + 2.3*XL + 11*X2 + error compare with previous example)
& > Im(Y~X1+X2)
Call:
Im(formula = Y ~ X1 + X2)
Coefficients:
(Intercept) X1 X2
247.123 2.076 11.322
37
The properties of a regression model -
Predicted and residual variation
38
Understanding predicted values and residuals
Y =24712 + 2.08X; + 11.32X, +e
Y =247.12 + 2.08X; + 11.32X,
e=Y-Y 1
E
E
= s
;i; 2800 > Im(Y~X1+X2)
e Call:
é 2750 Im(formula = Y ~ X1 + X2)
Coefficients:
2700 (Intercept) X1 X2
247.123 2.076 11.322
predicted
39
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Observed (plant height mm)

~

2000

2850

2800

2750

2700

Understanding predicted values and residuals

= 24712 + 2.08X; + 11.32X, +e

= 247.12 + 2.08X; + 11.32X,
=Y-Y v ¢ e

2835.268 2835.723  -0.4548141
2772625 2796.753 -24.1282583

1
2

3

4

s 2722375 2739.964 -17.5887528
6 2748106 2736255 118513100
7 2759842 2782933 -23.0909896
8 2660.578 2864679  4.8993415
9 2016781 2818402 16200332
10 2698379 2686.358 120206930
11 2901853 2876740 251125353
12 2600559 2724710 -34.1513236
13 2717386 2698.825 185610430
14 2711867 2697.578 143091974
15 2730354 2695.064 352899672
16 2846528 283441 13.0866948

2700 2750 2800 2850

v
predicted et (n = 30)

2025-02-17
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Understanding predicted residuals

multiple regression assumes vertical offsets (residuals)

-
-
-
-
- -

vertical offsets perpendicular offsets

Residuals for Type | regression Residuals for Type Il regression

Errorin Y but not in X Error in both Y and X

Type | and Ill sum-of-squares Type Il sum-of-squares
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meaningful predictors reduce variance of residuals

A small fictional example to facilitate understanding
of what regression coefficients mean!

Y = 42cm + ﬁlxl + ﬁzXz +e
Y is plant height (cm)

X1 is amount of bacteria in the soil (count per ml)
Xz is amount of plant exposure to sun light (% exposure)

42
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meaningful predictors reduce variance of residuals
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100 4 °
§ of!é e=Y-Y
1‘.
1]y =Y
43

meaningful predictors reduce variance of residuals
100 { * .
& 50 7 ;. .
2 o0 '! ;3 e=Y-Y
50 % i
12
1]y =Y
[2] Y = 247.12 + 2.65X,
44

meaningful predictors reduce variance of residuals
(i.e., uncertainty)
100 { * .
50 T
g o " ;: } e=Y-Y
5045
12 3
11y =Y
[2] Y = 247.12 + 2.65X%,
[3]Y = 247.12 + 2.08X; + 11.32X,
45
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The properties/assumptions of a regression
model
Linearity assumption
(big one)
47
population regression
Y =42 + 2.3X; + 11XZ+e
260
261 n = 100

262 constant = 42
263 X1 = rnorm(n,1,1)
264 X2 = rnorm(n,1,1)

265 error = rnorm(n,@,1) /

266 Y = constant + 2.3*X1 + 11*X2A2 + error
267 —_ ) —

48
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sample regression - linear relationship
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predicted
49
population regression
Y =42 + 2.3X; + 11XZ+e
sample regression
Call:

Im(formula = Y ~ X1 + X2)

treated as linear

Coefficients:
(Intercept) X1 X2

42.8848 -0.7586 25.6188
T Y

Y = 42 —0.76X, +25.62X,

50

population regression
Y =42 + 2.3X; + 11X +e
sample regression (non-linear regression)

> ImCY~X1+I(X2A2))

treated as non-linear

Call: |

Im(formula = Y ~ X1 + I(X2A2))

Coefficients: /

(Intercept) X1 I(X2A2)
42.17 2.20

L J

L 10.98

Y =42+ 2.2X; + 11X2

51
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250

Y =42+ 2.2X; + 11X2 +e

linear regression non-linear regression
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8 200 200
2
(0] 150 -
[2)
8 100
50 -
20 60100 140 5 100 150 200 250
predicted predicted
Effects of non-linear data on regression
52
More on multiple regressions and
assumptions - Lecture 12
53
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