Multiple regression — the “models of all models™!
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The properties of a regression model -

[1] Properties of errors in response Y and
predictors X



Properties of errors
multiple regression assumes measurement errors in Y but not X

A regression model aims at predicting the average Y based on X, i.e., predict the
average Y based on X.

e s BX Values of X (predictor)
are measured without
error (hard to assess,
often assumed).

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company



Properties of errors: Values of X (predictor) are measured
without measurement error
(hard to assess, often assumed)

multiple regression assumes vertical offsets (residuals)

vertical offsets perpendicular offsets

Residuals for Type | regression Residuals for Type |l regression
Error in Y but not in X Error in both Y and X

Type | and lll sum-of-squares Type Il sum-of-squares



Properties of errors (assumption): values of X (predictor) is
measured without measurement error
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If we assume here that bacterial and viral abundance have the same measurement errors,
then we can’t use the regular regression model (the authors used a type II regression
that 1s appropriate for this issue).

Corinaldesi et al. (2003); APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May: 2664—2673.



slopes

Properties of errors (assumption): values of X (predictor) is
measured without measurement

But first we need to revisit understand that the regression model
based on samples are an unbiased estimate of the true intercepts
and slopes. Let’s assume the following population regression model:

Y =0.879 + 1.300X
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Properties of errors (assumption): values of X (predictor) is
measured without error (hard to assess, often assumed)

SMALL MEASUREMENT ERROR
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Red dots are X values “measured”
without error, whereas the smaller
black dots are X values “measured”

with error.
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2 1 0 5 2 In this case there is little
consequence because the error is
small (0.1).



Properties of errors (assumption): values of X (predictor) is
measured without error (hard to assess, often assumed)

°o Y = 0.929 4+ 1.23X withouterrorin X
Y =0.977 + 0.498X witherrorinX
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BLUE line = Regression model
without error in X.

Red dots are X values “measured” without
error, whereas the smaller black does are X

. , _ values “measured” with error.
BLACK line = Regression model with

error in X. The consequence here is much bigger for

estimating the regression model because

ERROR IN X REDUCES SLOPES. the error is large (1.0).



Properties of errors (assumption): values of X (predictor) is
measured without error (hard to assess, often assumed)

Y =0.879 4+ 1.300X True population model

rnormf
e rnormil

Fit Lm(Y

slopes|i] Lm. fit$coefficients

rnormi




Properties of errors (assumption): values of X (predictor) is
measured without error (hard to assess, often assumed)

Y =0.879 4+ 1.300X True population model

1.6 T —

1.4 -
12+

1.0 4 —

0.8 - |
0.6 - —

0.4 - ——

No measurement Measurement
error in X error in X

slopes




W

The properties of a regression model -

[2] Properties of estimators of coefficients and
residual variance



Properties of estimators of coefficients
(sampling variation of coefficients; 10000 samples)

True population model:

Y =42cm + 2.3X; + 11X, +e
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Note that there is much more relative sampling error around constant than the slopes.



Properties of estimators of residual variance

mean of residuals is always zero

/
g2 = E(Sz) — 7iAL=1(ei _ 0)2
n —(k+1)
number of slopes 1 degree of freedom is

lost because of the mean
of residuals, which is
always zero here

e; = residual of the ith observation



Properties of estimators of residual variance and the roles
of degrees of freedom

(sampling variation of residual variance; B —

10 000 samples) o
19 § 8 150 — T
20 n = 30 O é%
21 constant = 42 $ cg
22 X1 = rnorm(n,1000,10) =
23 X2 = rnorm(n,40,4)
24 error = rnorm(n,0,10) < > 100

25
26 Y = constant + 2.3*X1 + 11*X2 + error
27
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K=2 (2 predictors)
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To be properly estimated, the 0% = E(s?) == — kT D)
variance of residuals needs to
take into account the number of , , n (Y —0)?
predictors in the model 0° =E(s%) = -



The properties of a regression model

[3] The influence of missing predictors that correlate with measured
predictors (e.g., measuring the effect of bacteria without sun light);
e.g., extreme cases are called multicollinearity

sun light
exposure
bacteria
amount
bacteria sun light
amount exposure
residual variation residual variation

versus



84

> cor(X1,X2)

85 n = 1000 [1] -0.009406406

86 constant = 42

87 X1 = rnorm(n,1000,10) /

88 X2 = rnorm(n,40,4)

89 error = rnorm(n,0,10)

99 Y = constant + 2.3*X1 + 11*X2 + error

91

> Im(Y~X1) > Im(Y~X1+X2)

Call: Call:

ImCformula = Y ~ X1) Im(formula = Y ~ X1 + X2)

Coefficients: Coefficients:

(Intercept) X1 (Intercept) X1 X2
561.39 2.22 83.941 2.262 10.919

Compare the two models — both slopes for X1 are very similar



The properties of a regression model

Small influence of missing predictors that do not
correlate strongly with measured predictors

bacteria sun light

amount exposure > COI"(Xl,XZ)
[1] -0.0094064006

residual variation
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102
103
104
105
106
107
108

> CortXl,X2)
n = 1000 [1] 0.9366205

constant = 42

X1 = rnorm(n,l@@@,l@?}///////

X2 = X1+rnorm(n,40,4)
error = rnorm(n,9,10)
Y = constant + 2.3*X1 + 11*X2 + error



101

> CortXl,X2)
[1] 0.9366205

X1 = rnorm(n,l@@@,l@?}///////

Y = constant + 2.3*X1 + 11*X2 + error

> Im(Y~X1+X2)

102 n = 1000

103 constant = 42

104

105 X2 = X1+rnorm(n,40,4)
106 error = rnorm(n,0,10)
107

108

> Im(Y~X1)

Call:

Im(formula = Y ~ X1)

Coefficients:
(Intercept) X1
293.89 13.49

Call:
Im(formula = Y ~ X1 + X2)

Coefficients:
(Intercept) X1 X2
9.267 2.252 11.077

Compare the two models — slopes are now very different, i.e., the missing predictor X2 in the first model affected
the true estimation of X1.



The properties of a regression model

Strong influence of missing predictors that
correlate strongly with measured predictors

sun light
exposure

bacteria
amount

> cori{Xl,X2)
[1] 0.9366205

residual variation




Experimental (likely close to orthogonal) versus observational
(likely non-orthogonal) approaches.

Manipulative Experiment Observational study

(balanced = orthogonal) (non-balanced)
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‘ Optimal combination of the two variables
for fish growth.
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The properties of a regression model
(now let’s use a small simulation)

Properties of estimators
[4] sampling variation of coefficients

low versus high correlation among predictors



101 > cor(X1,X2)
102 n = 1000 [1] 0.9366205

103 constant = 42

104 X1 = rnorm(n,1000,10) /

105 X2 = X1+rnorm(n,40,4)

106 error = rnorm(n,0,10)

107 Y = constant + 2.3*X1 + 11*X2 + error
108

> 1m(Y~X1) > Im(Y~X1+X2)
Call: Call:

Im(formula = Y ~ X1) Im(formula = Y ~ X1 + X2)
Coefficients: Coefficients:
a8 T e e

But even when we consider the « correct » predictors, the error estimation (sampling
error) of slopes is affected when they are very correlated.



Level of correlation between predictors affects estimation accuracy (Variation
Inflation) — we can trust less the slopes of predictors that are correlated

Y =42cm + 2.3X; + 11X, +e

low correlation high correlation
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[5] Homoscedasticity of residuals

(the assumption of constant variance)

e residual error assumed to be N (0, 0?%)

Y =42cm + 2.3X; + 11X, +e



e residual error assumed to be N(0,52)
The assumption of constant residual variance
(homoscedasticity)

| | | | | [
Predicted values



e residual error assumed to be N (0, 5%)
The assumption of constant residual variance
(this one is not constant)

Predicted values



e residual error assumed to be N(0, 5%)
The assumption of constant residual variance
(this one is not constant)
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Another example of residual
heteroscedasticity
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e residual error assumed to be N(0, 5%)
The assumption of constant residual variance
(this one is not constant)
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Another example of residual
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non constant residual variance affects estimation

Y =42cm + 2.3X; + 11X, +e

constant variance
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non constant residual variance affects estimation
accuracy

Y =42cm + 2.3X; + 11X, +e

non-constant variance
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non constant residual variance affects estimation
precision BUT not accuracy

Y =42cm + 2.3X; + 11X, +e

constant variance non-constant variance
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