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General linear models (not Generalized linear model)

Linear Model Common name
Y=p+X Simple linear regression
Y=p+A One-factorial (one-way) ANOVA

Y=pu+A; +A, +A XA, Two-factorial (two-way) ANOVA
Y= p+A; +X(+A;1xX) Analysis of Covariance (ANCOVA)
Y=pu+X; +X;, +X3 Multiple regression
Y=pu+A +g+A;Xg Mixed model ANOVA
Y, +Y, = u+A; +A, + A XA, Multivariate ANOVA (MANOVA)
Y (response) is a continuous variable
X (predictor) is a continuous variable

A represents categorical predictors (factors)
g represents groups of data (more on this later)

(+A;x X) - step 1 on an ANCOVA, but not in the final analysis
Multiple factors A; + A, + etc (and their interactions)
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Understanding and dealing with
heterogeneity
Intermediary steps before
going fully mixed.....
........ model
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Let’s start with a problem

Seasonal patterns of investment in reproductive and somatic
tissues in the squid Loligo forbesi

Jennifer M. Smith'*, Graham J. Pierce!, Alain F. Zuur? and Peter R. Boyle'

Department of Zoology. School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
* Highland Statistics Ltd.. 6 Laverock Road, Newburgh, Aberdeenshire, AB41 6FN, UK

Goal: study seasonal variation (patterns) in reproductive and
somatic tissues (mating is aseasonal).
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Goal: study seasonal

patterns in reproductive
and somatic tissues.

o
month 1
g —
= month 2
In which month there is more =
investment (relative to g
individual size DML) in "
reproduction? 2
2}
dorsal mantle length (DML; mm)
Data structure
A B & D
1 Specimen MONTH DML Testisweight
2 1017 2 136 0.006
3 | 00 o W | oos Goal: study seasonal
4 1070 12 108 0.008 . .
s 107 1 B0 oo patterns in reproductive
6 1019 8 121 0.012 . .
7 100 10 1w oow and somatic tissues.
8 1001 5 133 0.013
9 1013 7 105 0.015
10 1002 7 109 0.017
1 1006 7 97 0.017
12 1020 9 144 0.022 —_
13 1002 6 141 0.023 on month 1
14 1039 9 125 0.024 E
15 1038 9 140 0.026 ~
16 1012 12 128 0.027 E month 2
17 1037 9 142 0.036 on
18 1001 6 139 0,036 g5}
19 1027 7 145 0043 3
20 1003 7 181 0.05 w
. B
172]
Q
. 2
° dorsal mantle length (DML; mm)
768 individuals
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Goal: study seasonal patterns in reproductive and somatic tissues.

Model of interest

TestisWeight = constant + ;DML + 8,Month + 3(DML X Mont) + e

) v v e~N(0,02%)
continuous continuous  categorical
variable variable variable
(factor)

month 1

seasonal variation
/ month 2| (environmental drivers)?
/

month 4 What component of the model
quantifies and test for the variation in

month 3 slopes across months?

testis weight (mg)

dorsal mantle length (DML; mm)

(proxy for somatic tissue)




testis weight

The assumption of constant residual variance
(homoscedasticity)

e ~N(0,0%)

Y= a+pX

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company
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Understanding e ~ N (0, %)
sampling variation in residual from the same population model
One possible sample
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Understanding e ~ N (0, c%)
sampling variation in residual from the same population model
Another possible sample and the first possible sample

=
.0

[}

2
0
g




testis weight

Understanding e ~ N(0, %)
sampling variation in residual from the same population model

Yet another possible sample and the first two possible samples
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Understanding e ~ N (0, %)
sampling variation in residual from the same population model
One possible sample
z
a0
[
2
g

AGAIN
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testis weight

Understanding e ~ N (0, c%)
sampling variation in residual from the same population model

Another possible sample and the first possible sample

DML For any fixed value of x the responses y
follow a Normal distribution with
variance o
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Understanding e ~ N(0, 6?)
sampling variation in residual from the same population model
Yet another possible sample and the first two possible samples
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e ~N(0,0%)~ N(0,%),i.e, HOMOscedasticity
homogeneity of variance (all variances . —
in the diagonal are equal) N

o> 0 0\ 2

N . le

T ) * N

yi=PBo+P1 xxi+¢& €~ N (0,677 =V =cov= 4o 3

L —4 N’ : 02 : %

Lincarity Normality 5 ]

’ ’ 0 - 067/ 0

"/ Obsérvation

Zero covariance (=independence) «——

For ary fixed value of x the responses y
follow a Normal distribution with

VARIANCES OF RESIDUALS variance o

ARE ASSUMED NOT TO VARY
ACROSS OBSERVATIONS IN ’ ’ '

THE STANDARD REGRESSION
MODEL
(called fixed variance structure)
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VARIANCES OF RESIDUALS VARY
ACROSS OBSERVATIONS IN THE MODEL

(called variable [non-fixed] variance structure)
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e # N(0,0%) # N(0,%),i.e, HETEROscedasticity

Heteroscedasticity (variances in the
diagonal are not equal)

a2 0 - 0\2
2 L]
) . 0 o k]
i = Po+B1 x x;+¢& g ~ N (0,67 WV = cov ’ 2 %
1_,_« Ny tf : o _§
ines Normal
incarity rmality 0 sen mee ‘7‘% o]
Observation

Zero covariance (=independence) —

VARIANCES OF RESIDUALS VARY
ACROSS OBSERVATIONS IN THE MODEL
(called variable [non-fixed] variance structure)
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e # N(0,0%) # N(0,Y),i. e, HETEROscedasticity

sampling variation in residual from the same population model

One possible sample

testis weight

variance increasing with predictor (DML)

17

e # N(0,0%) # N(0,%),i.e, HETEROscedasticity

sampling variation in residual from the same population model

Another possible sample and the first possible sample

testis weight
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e # N(0,0%) # N(0,%),i.e, HETEROscedasticity
sampling variation in residual from the same population model
Yet another possible sample and the first two possible samples
1 [ ]
Eﬂ 1 .0 o : 2.° ° °
[}
2
g
T T T T
DML
19

testis weight
20 40 60 80 100 120

0

e # N(0,0%) # N(0,Y),i. e, HETEROscedasticity

sampling variation in residual from the same population model

Yet another possible sample and the first two possible samples

e 4
o

JIStandardized residuals|

0 5 10 15 20 25 30
DML

Fitted values

Im(Y ~ X)

20

21
22
23
24
25

e # N(0,0%) # N(0,%),i.e, HETEROscedasticity

How was variance heterogeneity generated in these examples?

n=30

X =1:n

rnorm(n,@,X)

constant + slopeX * X + e

< @
o
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21
22
23
24
2

e # N(0,0%) # N(0,%),i.e, HETEROscedasticity

How was variance heterogeneity generated in these examples?

1sn
rnorm(n,OZX)

= constant + slopeX * X + e

plot(X,Y)
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Goal: study seasonal patterns in reproductive and somatic tissues

Going back to the model of interest

7680

TestisWeight = constant + ;DML + §,Month + f3(DML X Mont) + e

0
& . .
Residuals are highly
z S heteroscedastic
H
g o |
i
2
k<l
g e > bptest(M1)
& °
2 . i 8 studentized Breusch-Pagan test
=
data: M1
24 BP = 160.08, df = 23, p-value < 2.2e-16
T T T T T
0 5 10 15 20
Fitted values
Im(Testisweight ~ DML * fMONTH)

+IStandardized residuals|

Goal: study seasonal patterns in reproductive and somatic tissues.

Going back to the model of interest

7680

Fitted values
Im(Testisweight ~ DML * fMONTH)

TestisWeight = constant + ;DML + 8,Month + 3(DML X Mont) + e

What are the origins
(or proxies) of variation in
residual variance?

> bptest(M1)
studentized Breusch-Pagan test

data: M1
BP = 160.08, df = 23, p-value < 2.2e-16

24



Goal: study seasonal patterns in reproductive and somatic tissues.
Variance changes as a function of DML

TestisWeight = constant + ;DML + 8, Month + 3(DML X Month) + e
© 4 What are the origins

(or proxies) of variation in
residual variance?

Residuals
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Goal: study seasonal patterns in reproductive and somatic tissues.
Variance changes as a function of DML x Month (interaction)

TestisWeight = constant + 8, DML + 8,Month + B3(DML X Month) + e

Residuals

Residuals

IS D

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month
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Goal: study seasonal patterns in reproductive and somatic tissues.
Variance changes as a function of DML x Month (interaction)

TestisWeight = constant + ;DML + 8, Month + 3(DML X Month) + e

7680
w
o

IStandardized residuals

Fitted values
Im(Testisweight ~ DML:fMONTH)
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Variance changes as a function of Month

TestisWeight = constant + 8; DML + 8, Month + S3(DML X Month) + e

e~ N(O, 0'2) mm) This assumption does not hold

If the DML by Month interaction is significant, we know that the
slopes of DML change as a function of Month (i.e., ANCOVA).

If the slopes for DML vary across months, assuming a single
slope for all data will introduce
heteroscedasticity. That is, residuals
may be homoscedastic but only within
models specific to each month.

{estis weight
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Variance changes as a function of Month
2 .
eij ~NO.o}) j=1,...12
\e)
10
L e
Sl ”
Specimen 1 €ij 0 0
0 ¢y :
E ces ej E
Specimen 768 0 N 17
\ 7
v
Variance-covariance matrix
I e
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Variance changes as a function of Month
eijj ~N©O,0)) j=1,....12
How is this variance structure included in the model?
Ordinary Least Square GLS (fixed variance):
g =X"X)"1xTy
Generalized Least Square GLS (variable variance):

g =X"wWx)"txTwy

30
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How to account for variance differences?
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Variance changes as

B =XTWx)"t XTwy

a function of Month

How is this variance structure included in the model?

Generalized Least Square GLS (variable variance):

W~1/f(Z)

kS 16
o e®
o et
Specimen 1 €ij 0 0
3y = 0 ey
& Bl
Specimen 768 0 (7] -

Variance-covariance matrix

W is the reciprocal of a function of the variance-covariance matrix, but this
function can take different forms (e.g., square root of residuals) or more
complex structures. Using the reciprocal, specimens (within months here) with
large residual will influence less the regression.

32
Variance changes as a function of Month &
Weights are set inversely (reciprocal) to that variance
0 B =XTWX)" L XTWy ,
. Weights
e 4 o =
° T° 2 o
© 8 2 [ é’ ° ] - -
folpese Bl |2l T -
8 Loor T TieMmA T 8 T --
P2 <] -
OfHéHE@QQEHHB‘ S
TS R T Jan Apr Jul Oct
P - + - : 3 t o Month
s °° ! 8o ° | Theweight of each individual
L is reciprocal to the residual
T T T T T T T T T T T variance of the month in which
123 456 7 8 910 12 it was sampled.
Month
33
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Goal: study seasonal patterns in reproductive and somatic tissues.
Contrasting OLS and GLS residual versus predicted plots

2025-03-06

original model (OLS) GLS Model

- Te0 o

N &
@
4
2
¢
b1
g
g
z

Fitted values predicted values
Im(Testisweight ~ DML * fMONTH)

Goal: study seasonal patterns in reproductive and somatic tissues.
Q-Q normal residual plots

original model (OLS)

7680

Standardized residuals

Theoretical Quantiles
Im(Testisweight ~ DML * fMONTH)
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Q-Q normal residual plots

original model (OLS) GLS Model

7680

-

Standardized residuals
E 2
L

Quantles of standard normal

Theoretical Quantiles ‘Standardized residuals
__ Im(Testisweight ~ DML * MONTH)

Goal: study seasonal patterns in reproductive and somatic tissues.

36
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somatic tissues.

In which month there is more
investment (proportionally to
amount of somatic tissues) in
reproduction?

. 18, 341351 (2005)
REMER, IRD 2005
8

Seasonal patterns of investment in reproductive and somatic
tissues in the squid Loligo forbesi

Jennifer M. Smith'*, Graham J. Pierce', Alain F. Zuur® and Peter R. Boyle'

! Department of Zoology, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
? Highland Statistics Ltd., 6 Laverock Road, Newburgh, Aberdeenshire, AB41 6FN, UK

Goal: study seasonal patterns in reproductive and

month 1

/ month 2

testis weight (mg)

dorsal mantle length (DML; mm)
(proxy for somatic tissue)

2025-03-06

> anova(M.gls)
Denom. DF: 744

(Intercept)
DML

fMONTH

DML : fMONTH

Goal: study seasonal patterns in reproductive and somatic tissues.
ANOVA results for GLS model

numDF F-value p-value
1 3615.591 <.0001
1 1648.534 <.0001
11
11

76.560 <.0001
28.592 <.0001

TestisWeight = constant + 8, DML + 8,Month + B3(DML X Month) + e

38

Interaction between dorsal mantle length (DML) and month indicating
clear differences in reproductive investment among months (seasons)

testis weight

In which month
there is more
investment in
reproduction?

500 > anova(M.gls)
Denom. DF: 744

numDF  F-value p-value

(Intercept) 1 3615.591 <.0001

DML 1 1648.534 <.0001

FMONTH 11 76.560 <.0001

m—pp OML:fMONTH 11  28.592 <.0001

39
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Interaction between dorsal mantle length (DML) and month indicating
clear differences in reproductive investment among months (seasons)
- How does investment change as a
5’ function of time?
2 ° s T
2 g | u
o =
8 [
DML g -
Q3 |
o S u u
7’ o
- am =
8 || |
u
T T T T T T
2 4 6 8 10 12
——) Month
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Important points

There are many reasons and ways in which residual variance
can change, as well as different types of functions (e.g., square
root or more complex transformations) that can describe these
changes.

We can apply various structures and select the one that best fits
the data (to be covered in the next lecture).

GLS, by itself, is not a mixed model—we will discuss this
distinction in detail later. However, GLS is crucial for
understanding variance heterogeneity and is often used within
mixed-model frameworks.

The example explored here also allows understanding multiple
slope variation (or parameter variation) which is essential to
understand mixed models.
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Important enough to have its own Wikipedia page:
https://en.wikipedia.org/wiki/Simpson%27s_paradox

Next: a quick look into the general goals of a mixed model

using Simpson’s paradox — more on mixed models in the
next lectures.

“A phenomenon in

probability and statistics in
which a trend appears in

several groups of data but
disappears or reverses when
the groups are combined.”

42
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One feature in ecology is that species often differ in the way they respond to environmental variability. This can be
well described by the Simpson’s paradox (Simpson 1951), which is defined “as a phenomenon in probability and
statistics in which a trend appears in several groups of data but disappears or reverses when the groups are
combined.”

4 A

Species

log (Abundance)

3 0 3
Temperature

Important enough to have its own Wikipedia page:
https://en.wikipedia.org/wiki/Simpson%27s_paradox
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Fixed effect model

i
o2
8 Species
£° "5
g
3 < - e
S <5
8. E

B

5 ]
Temperature

## MODEL INFO:
## Observations: 1

## Dependent Variable: abundance
## Type: OLS Linear regression
#

## MODEL FIT:
## F(1,98)
## RZ = 0.13
## Adj. R? = 0.12
#

15.13, p = 0.00

## Standard errors: OLS

## (Intercept) -0.08 0.18 -0.48 0.63
## scale(tenperature) =) 0.69 0.18  3.89 0.00
o

## Continuous predictors are mean-centered and scaled by 1 s.d.
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Mixed effect model

4
oms 2
8 Species
3. -c
< ~D
8.4 £

6

[
Temperature

Un.mod. intercept <- lner(abundance ~ temperature + (1|species),data=data.Sinpson)
sunn(n.nod. intercept, scale = TRUE)

#4 MODEL INF
## Observations: 100
@2 Dependent Variable: abundance
# Type: Mixed effects linear regression
w

## MODEL FIT:

# AIC = 343.74, BIC = 354.16

#4 Pseudo-R® (fixed effects) = 0.3

# Pseudo-R® (total) = 0.95

#

## FIXED EFFECTS:

s
"
## (Intercept) -0.08 188 -0.04 377 0.97
# tenperature  mmmp -2.84 ©0.34  -8.22 97.68 0.08
o

s
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