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With so much hinging on statistics - national and international 
policy, funding, corporate decision making, government 
commitment and research - demand for statisticians and data 
analysts is expected to grow around 34% between 2014 and 
2024. This vastly outstrips the average across all jobs. 

source - https://www.environmentalscience.org/career/environmental-data-analyst

Job trends in statistics and data analysis
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One common feature here is that species may differ in the way they are structured by environmental and/or trait 
variation. This can be well described by the Simpson’s paradox (Simpson 1951), which is defined “as a phenomenon 
in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the 
groups are combined.”

Important enough to have its own Wikipedia page: 
https://en.wikipedia.org/wiki/Simpson%27s_paradox

3

Fixed effect model
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Mixed effect model
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General linear models (not Generalized linear model)

Y (response) is a continuous variable
X (predictor) is a continuous variable
A represents categorical predictors (factors)
g represents groups of data (more on this later)
(+A!× X) - step 1 on an ANCOVA, but not in the final analysis
Multiple factors A! +A" + etc (and their interactions) 

Linear Model Common name
Y = µ+ X Simple linear regression
Y = µ+A! One-factorial (one-way) ANOVA

Y = µ+A! +A" +A!×A" Two-factorial (two-way) ANOVA
Y = µ+A! +X (+A!× X) Analysis of Covariance (ANCOVA)
Y = µ+ X! +X" +X# Multiple regression
Y = µ+A! + g+A!× g Mixed model ANOVA

Y! +Y" = µ+A! +A" +A!×A" Multivariate ANOVA (MANOVA)
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Fixed effect factor: Data have been gathered from all the levels of the factor that are 
of interest.

Example: Contrasting the effects of three specific dosages of a drug on the response. 
"Dosage" is the factor; the three specific dosages in the experiment are the levels; 
there is no intent to say anything about other dosages. 

(source: https://www.ma.utexas.edu/users/mks/statmistakes/fixedvsrandom.html)

Drug A Drug B

D1

Drug
(fixed factor)

Dose
(fixed factor) D2 D3 D4 D1 D2 D3 D4

each different dose is tested for (across) each 
drug (i.e., factors are crossed)

Fixed effects are often crossed in relation to other fixed effects
(e.g., typical two-way ANOVA)
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Random effect factor (sometime referred as a variance component model): The factor has 
many possible levels. Although there is interest in all possible levels, only a random sample of 
levels can be included in the data (either due to lack of knowledge all all possible levels, or costs, 
or both, or other issues).

Example: In an animal breeding experiment conducted to estimate the breeding value of sires 
(male parents) from a certain breed, several sires were randomly selected from a population 
and each sire was mated with several dams (mother). The weights of all the newborn animals 
were recorded. 

Random versus fixed effects – a hierarchical view
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The factor is “sire” (male gamete). The analysis will not estimate the effect of each of 
the sires in the sample; instead, it will estimate the variability attributable to the 
factor “sire” (male parents).  

Random versus fixed effects – a hierarchical view

It is a type of hierarchical linear model, which assumes that the data being analysed 
are drawn from a hierarchy of different populations whose differences relate to that 
hierarchy. 

Breed A Breed B

S1

Breed
(fixed factor)

Sire 
(random factor) S2 S3 S4 S5 S6 S7 S8

different sires are used across different breeds
and sires are more related within than between 

breeds (pedigree is a hierarchical structure)
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Here, sires are a random variable (factor) that will change 
from study to study.  In contrast (based on another 
example), drug levels are of true interest that won’t 
change from study to study.  

Random effects are often hierarchical in relation to fixed effects

11

Breed 
A

S1

In a one-way (factor) random effect ANOVA, the goal is to estimate the 
variance of a breed (variation among sires). The sires are merely a 
sample from which inferences are to be made concerning the single 
population (here Breed A). 

Random effects – let’s focus on a single breed

𝜇

S2 S4S3

weights of all the newborn animals (1 per dam – female parent) were recorded for each siren 

Do sirens vary in their newborn weights? This can be answered by assessing 
whether there is more variation between sirens than within sirens.
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𝑌

variance within groups and 
variance within level
(LOW VARIATION)
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𝑌

variance within groups and 
variance within level
(HIGH VARIATION)
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STUDY: Suppose five cuts of meat are taken from each of three 
pigs, all from the same breed, and the fat content is measured in 
each cut. 

FIXED EFFECT QUESTION – Do the different cuts differ in their fat 
content? One-way (fixed) ANOVA with five treatment levels (cuts) 
and three replicates (observations) per cut (pigs).

Fixed versus random effects may depend on the question 
and not always the data

15
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STUDY: Suppose five cuts of meat are taken from each of three 
pigs, all from the same breed, and the fat content is measured in 
each cut. 

FIXED EFFECT QUESTION – Do the different cuts differ in their fat 
content? One-way (fixed) ANOVA with five treatment levels (cuts) 
and three replicates per cut (pigs).

RANDOM EFFECT QUESTION - Is there more variation in fat 
content among or within pigs  (i.e., animal-to-animal and within-
animal variation)? A fat pig could have their cuts fatter (i.e., 
hierarchical variation).

In this case, the three pigs selected are not of interest. This would be 
a one-way random effects ANOVA.

Fixed versus random effects may depend on the question 
and not always the data
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Note that there is more variation within pigs 
(i.e., among cuts within pigs) than between pigs 

Rho refers to intraclass
(here pig) correlation

A negative or low ICC suggests that 
there is more variability within 
subjects (here pigs) than between 
subjects.
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Now, these data have more variation between pigs 
(i.e., among cuts within pigs) than within pigs

Rho refers to intraclass
(here pig) correlation

A high positive ICC suggests that there 
is less variability within subjects (here 
pigs) than between subjects.
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More on the hierarchical nature of data
wake up

@cjlortie
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The advantages of mixed models - increase statistical power and estimation 
accuracy through dependent replication and design convenience (particularly 
in observational studies).

Effects of temperature on fish growth 
(difference in growth begin/end of study)

Low temperature

Intermediate 
temperature

High temperature

Do we need a random effect here?

22
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The advantages of mixed models - increase statistical power and estimation 
accuracy through dependent replication and design convenience (particularly 
in observational studies).

Effects of temperature on fish growth 
(difference in growth begin/end of study)

Low temperature

Intermediate 
temperature

High temperature

Do we need a random effect here?
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The advantages of mixed models - increase statistical power and estimation 
accuracy through dependent replication and design convenience (particularly 
in observational studies).

Effects of temperature on fish growth 
(difference in growth begin/end of study)

Low temperature

Tank

Gr
ow

th

Do we need a random effect here?

low rho (ICC)

A positive or low ICC suggests that 
there is less variability within subjects 
(here aquaria) than between subjects.
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The advantages of mixed models - increase statistical power and estimation 
accuracy through dependent replication and design convenience (particularly 
in observational studies).

Effects of temperature on fish growth 
(difference in growth begin/end of study)

Low temperature

Tank

Gr
ow

th

Tank

Gr
ow

th

versus

Do we need a random effect here?

low rho (ICC) high rho (ICC)

A highICC suggests that 
there is more variability 
within subjects (here 
aquaria) than between 
subjects.
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Low temperature

Intermediate 
temperature

High temperature

TankTank

Gr
ow

th
Gr

ow
th

Gr
ow

th
Average 
within 
treatment =
20g

Average 
within 
treatment =
30g

Average 
within 
treatment =
40g

Fixed factor = 
temperature

Random factor = 
aquarium

Compare the two 
“experiments”. 
Which one has the 
strongest main 
versus random 
effect?

Do we need a random effect here? Which experimental results should we trust the most?
(note that scales of the response are about the same)
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Hierarchical (clustered) sampling is extremely common, rather than simple 
random sampling, mainly as a means of saving resources when, for example, 
the population is spread out, and the researcher cannot sample from 
everywhere. However, observations in the same cluster are likely to be 
somewhat more similar to one another.

adapted from Gene Shackman

Hierarchical (clustered) sampling 

Hierarchical (random)

Non-hierarchical random
sample (fixed)
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As a result, in a clustered sample selecting, an additional observation from the 
same cluster adds less new information than would a completely independent 
selection. As such, the sample is not as variable a random sample would be, so 
that the effective sample size is reduced. The loss of effective sample size by 
using clustered sampling, instead of simple random sampling, is called design 
effect. 

Hierarchical (clustered) sampling 

28
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Design effect under the lenses of a common
ecological problem – phylogenetic variation 

How many independent data points do we have?
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The loss of effective sample size by using clustered sampling, instead of 
simple random sampling, is called design effect. Perhaps of 23 species we 
may have only “3 independent observations” (i.e., design effect = 3).

29

The loss of effective sample size by using clustered sampling, instead of 
simple random sampling, is called design effect. Perhaps of 23 species we 
may have only “3 independent observations”.

INCREASED TYPE I ERROR IF KEPT AT 23 species (i.e., wrongly 
considering too many independent observations) AND LOSS OF POWER 
if only “3 species” is used. 

30

Low temperature

Intermediate 
temperature

High temperature

TankTank

Gr
ow

th
Gr

ow
th

Gr
ow

th

Average 
within 
treatment =
20g

Average 
within 
treatment =
30g

Average 
within 
treatment =
40g

In which case is the design effect larger? Left or right column?
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The design effect is a correction factor that is 
used to adjust the sample size based on clustered 
sampling. This accounts for the loss of information 
inherent in the clustered design and is used when 
estimating random effects.

Once the design effect is calculated, the sample 
size calculated for a standard design can be 
adjusted accordingly (i.e., degrees of freedom are 
corrected). As such, the statistical power may 
change according to the design effect. 

Hierarchical (clustered) sampling 
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Low temperature

Intermediate 
temperature

High temperature

TankTank

Gr
ow

th
Gr

ow
th

Gr
ow

th

Average 
within 
treatment =
20g

Average 
within 
treatment =
30g

Average 
within 
treatment =
40g

In which case is the statistical power greater? Left or right column?
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Hierarchical (clustered) sampling is extremely common, rather than simple 
random sampling, mainly as a means of saving resources when, for example, 
the population is spread out, and the researcher cannot sample from 
everywhere. However, observations in the same cluster are likely to be 
somewhat more similar to one another, decreasing effect size.

adapted from Gene Shackman

Hierarchical (clustered) sampling 

Hierarchical (random)

Non-hierarchical random
sample (fixed)

Which design is statistically more
powerful? It depends on the design
effect of the data.
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Intraclass correlation as a way to understand why 
to use a random effect and how much “random” 

has an “effect”

wake up

@cjlortie
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• Consider a study that wants to estimate fish size between two 
regions in Quebec (Laurentians and Eastern Townships).

• Draw a random sample of 50 lakes in each region.
• Randomly sample 10 individuals in each lake (n = 10).

One fixed factor = region (these two regions cannot change).
One random factor = lakes (because they are more likely to be 

similar within regions and they are not crossed between 
regions, i.e., different lakes are used).

Hierarchical (clustered) sampling – intraclass correlation 
& design effect (one extreme example)

36

• Consider a study that wants to estimate fish size between two regions in 
Quebec (Laurentians and Eastern Townships).

• Draw a random sample of 50 lakes in each region.
• Randomly sample 10 individuals in each lake (n = 10).

fis
h 

siz
e

Lakes (Laurentians) Lakes (Eastern Townships)

Each confidence interval 
represents variation is size 
of 10 fish

Very high (~1) intraclass correlation here because individuals are very similar 
within lakes than among lakes; so, a random effect would be important.
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• Consider a study that wishes to estimate fish size between two regions in 
Quebec (Laurentians and Eastern Townships).

• Draw a random sample of 50 lakes in each region.
• Randomly sample 10 individuals in each lake (n = 10).

• Assume for the sake of discussion that all individuals within each lake had the 
exact same size but size differed between each of the lakes, then 

    intraclass correlation = 1 and a design effect = 1 + 1(50 -1) = 50.

• In this case, we have started our sample with 500 individuals across lakes, 
but the “design” can only “use” 50 values (“observations”) in the analysis 
because all individuals were too similar within lakes!  So, to increase the 
degrees of freedom, we would need to sample now 500 lakes per region 
instead! So, this design effect reduced the statistical power of the ANOVA. 

38

• Consider now these data (two other regions): If variation in size within each 
lake is the same for all lakes, then 

    intraclass correlation = 0  and what we call design effect = 1 + 0(50 -1) = 1.
• In this extreme case, each additional lake adds no new information about the 

fish size in each region.
• Only surveying one lake would give us the same information (with the same 

standard error) about fish size as we get from surveying 50 lakes. So, to get 
the same degrees of freedom we only need to sample now 500 fish in a 
single lake per region instead of 10 individuals across 50 lakes!

fis
h 

siz
e

Lakes (Outaouais) Lakes (Abitibi)
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Schematic demonstrating intraclass correlation coefficient (ICC) as a measure of reproducibility. 4 patients each 
have measurements made 4 times (small dots) with each patient also summarised by an individual average (large 
dot). In the top panel, there is little within-patient scatter, and therefore the ratio of variance of mean (large dots) 
to the variance of the raw data (small dots) is almost 1, so ICC≈1. In the middle panel, the ICC is lower. In the 
bottom panel, within-patient scatter is large, and the means much less varied than the raw data, so ICC is low.

Extracted from Moraldo et al. (2013); International Journal of Cardiology, 166:688-695.

intraclass correlation 
coefficient (ICC) or rho
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Mixed models mix random and 
fixed effects and allows estimating 
conducting statistical testing 
(inference) via proper estimation of 
design effects for hierarchical 
(clustered) sampling! It also affects 
parameter estimation (e.g., 
Simpson’s paradox)
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(i) Models using random effects are important for inference when 
analyzing data that exhibit non-independence (hierarchical 
structure).

(ii) Random effects provide a unifying statistical framework for 
models that might otherwise seem unrelated, for example, 
time-series models for populations, spatial models, genetics 
models, and models for variation among individuals;

(iii) Models that include random effects are increasingly easy to 
build and customize for specific problems using publicly 
available modelling tools and software.

adapted from Thorson and Minto

Why consider a mixed-model?  
Some factors you may be able to control (fixed) and 

others you won’t (random)

42

Time for reading

A brief introduction to mixed effects
modelling and multi-model inference
in ecology

Xavier A. Harrison1, Lynda Donaldson2,3, Maria Eugenia Correa-Cano2,
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ABSTRACT
The use of linear mixed effects models (LMMs) is increasingly common in the

analysis of biological data. Whilst LMMs offer a flexible approach to modelling a

broad range of data types, ecological data are often complex and require complex

model structures, and the fitting and interpretation of such models is not always

straightforward. The ability to achieve robust biological inference requires that

practitioners know how and when to apply these tools. Here, we provide a general

overview of current methods for the application of LMMs to biological data, and

highlight the typical pitfalls that can be encountered in the statistical modelling

process. We tackle several issues regarding methods of model selection, with

particular reference to the use of information theory and multi-model inference in

ecology. We offer practical solutions and direct the reader to key references that

provide further technical detail for those seeking a deeper understanding. This

overview should serve as a widely accessible code of best practice for applying LMMs

to complex biological problems and model structures, and in doing so improve the

robustness of conclusions drawn from studies investigating ecological and

evolutionary questions.

Subjects Ecology, Evolutionary Studies, Statistics

Keywords GLMM, Mixed effects models, Model selection, AIC, Multi-model inference,
Overdispersion, Model averaging, Random effects, Collinearity, Type I error

INTRODUCTION
In recent years, the suite of statistical tools available to biologists and the complexity of

biological data analyses have grown in tandem (Low-Décarie, Chivers & Granados, 2014;

Zuur & Ieno, 2016; Kass et al., 2016). The availability of novel and sophisticated

statistical techniques means we are better equipped than ever to extract signal from

noisy biological data, but it remains challenging to know how to apply these tools,

and which statistical technique(s) might be best suited to answering specific questions
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Mixed models mixes random and 
fixed effects!

(next lecture)
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