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Mixed models can get very technical



RECAP: Zuur et al. (2007) used marine benthic data from nine inter-tidal areas along the Dutch coast 
collected by the RIKZ institute (summer of 2002).  

In each intertidal zone (zone where ocean meets land; denoted by ‘beach’), five samples were taken, and 
the macro-fauna and abiotic variables were measured. 

The FINAL goal is to model how species richness change as a function of NAP (Normal Amsterdam Level: 
the height of a sampling station compared to mean tidal level) and Exposure –- a nominal index for the 
entire beach (high/low) composed of the following elements: wave action, length of the surf zone, slope, 
grain size, and the depth of the anaerobic layer.

Zuur AF, Ieno EN, Smith GM (2007) 
Analysing Ecological Data. Springer.

102 5 Mixed Effects Modelling for Nested Data

As species richness is a count (number of different species), a generalised linear
model (GLM) with a Poisson distribution may be appropriate. However, we want
to keep things simple for now; so we begin with a linear regression model with the
Gaussian distribution and leave using Poisson GLMs until later. A first candidate
model for the data is

Rij = α + β1 × NAPij + β2 × Exposurei + εij εij ∼ N (0, σ 2) (5.1)

Rij is the species richness at site j on beach i, NAPij the corresponding NAP value,
Exposurei the exposure on beach i, and εij the unexplained information. Indeed,
this is the familiar linear regression model. The explanatory variable Exposure is
nominal and has two1 classes. However, as we have five sites per beach, the richness
values at these five sites are likely to be more related to each other than to the
richness values from sites on different beaches. The linear regression model does
not take this relatedness into account. The nested structure of the data is visualised
in Fig. 5.1.

Many books introduce mixed effects modelling by first presenting an easy to
understand technique called 2-stage analysis, conclude that it is not optimal, and
then present the underlying model for mixed effects modelling by combining the
2 stages into a single model (e.g. Fitzmaurice et al., 2004). This is a useful way
to introduce mixed effects modelling, and we also start with the 2-stage analysis
method before moving onto mixed effects modelling.
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Fig. 5.1 Set up of the RIKZ data. Measurements were taken on 9 beaches, and on each beach 5
sites were sampled. Richness values at sites on the same beach are likely to be more similar to each
other than to values from different beaches

1Originally, this variable had three classes, but because the lowest level was only observed on one
beach, we relabeled, and grouped the two lowest levels into one level called ‘a’. The highest level
is labeled ‘b’.
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As we will see, once we consider the hierarchical nature 
of data, different models can be set and made compete to describe 

the same set of data
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You may not be able to see it right now, but there are 10 or more possible 
linear models (covered in the tutorial) for these data; and one of them will
best describe the data (i.e., best at predicting Richness)



Let’s concentrate on NAP for now particularly because it changes from 
beach to beach whereas Exposure does not (i.e., NAP may have a 

hierarchical dependence and exposure not)
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Regression lines (models) of Richness on NAP:
they change from beach to beach (as we saw in the last lecture) 

𝑅!" = 𝑏# + 𝑏$×𝑁𝐴𝑃!" + 𝑒!"



Fixed effect model
(results are LESS likely to
apply to predict other
species)

Interpretation of fixed
versus mixed effect model



Mixed effect model
(results are MORE likely to
apply to predict other
species)

Interpretation of fixed
versus mixed effect model



RANDOM INTERCEPT MODEL: assumes a common slope and allow intercept to vary; 
IS THIS A GOOD MODEL for these data?

NAP is the fixed predictor of interest.

(1 | factor_Beach) is the random effect term, where the 1 denotes this is a random-
intercept model and the term on the right of  | is a factor to be used as the random 
effect.  The factor here is beach, i.e., we are nesting sites within beaches to form the 
random effect. 



RANDOM INTERCEPT MODEL: assumes a common slope and allow intercept to vary; 
IS THIS A GOOD MODEL for these data?

Random effect 
components: effect 
due to variation in 
Intercepts among 
beaches and residuals 
of the random 
component.

This mixed model have two sets of residuals (random and fixed).  The parameters 
(variance) in these two sets are called hyperparameters (i.e., set by by the way that the 
study was designed and not likely generalizable by the model to other similar systems).



RANDOM INTERCEPT MODEL: assumes a common slope and allow intercept to vary; 
IS THIS A GOOD MODEL for these data?

Fixed effect components: 
global (across all data) 
intercept and slope.

This part is more likely to 
be generalized to other 
systems as the design 
component (random 
effects) were used to 
estimate the fixed effect.



ICC = 7.507 / (7.507 + 9.111) = 0.45 (which is pretty high, does
indicating strong hierarchical structure in the data)

The intraclass correlation (ICC or Rho) here describes how strongly 
variation in predicted values within the same beach resemble each other.

RANDOM INTERCEPT MODEL: assumes a common slope and allow intercept to vary; 
IS THIS A GOOD MODEL for these data?



The intraclass correlation:
 0.45 (which is pretty high)

Regression line 
considering all data

The RANDOM INTERCEPT MODEL
The intraclass correlation (ICC or Rho) here describes how strongly variation in 

predicted values within the same beach resemble each other 

(note how predicted values are more similar within than among beaches).



RANDOM INTERCEPT AND SLOPE MODEL: intercepts and slopes are allowed to vary
IS THIS A GOOD MODEL for these data?

NAP is the fixed predictor of interest.

(1 + NAP | factor_Beach) is the random effect term, where the 1 denotes that we 
should consider variation in intercepts and also variation in slopes of NAP among 
beaches, i.e., NAP | factor_Beach, i.e., we are nesting sites within beaches to form 
the random effect. 



RANDOM INTERCEPT AND SLOPE MODEL: intercepts and slopes are allowed to vary
IS THIS A GOOD MODEL for these data?

Random effect 
components: effect due to 
variation in Intercepts 
among beaches, variation 
in slopes among beaches 
and residuals of the 
random component.

Corr = correlation between 
slopes and intercepts of 
the separate models.



RANDOM INTERCEPT AND SLOPE MODEL: intercepts and slopes are allowed to vary
IS THIS A GOOD MODEL for these data?

Fixed effect 
components: global 
(across all data) 
intercept and slope.



ICC = (10.949+2.502) / (10.949+2.502+7.174)  = 0.65 

(even higher than the previous random intercept model)

RANDOM INTERCEPT AND SLOPE MODEL: intercepts and slopes are allowed to vary
IS THIS A GOOD MODEL for these data?

The intraclass correlation (ICC or Rho) here describes how strongly 
variation in predicted values within the same beach resemble each other.



The intraclass correlation:
 0.65 (which is pretty high)

Regression line considering all 
data versus different models

RANDOM INTERCEPT AND SLOPE MODEL

The intraclass correlation (ICC or Rho) here describes how strongly variation in 
predicted values within the same beach resemble each other 

(note how predicted values are more similar within than among beaches).



Which model to retain? The RANDOM INTERCEPT OR the RANDOM INTERCEPT 
AND SLOPE MODEL?

AIC is a widely used metric of goodness of fit and smaller AIC 
values indicate the model with the best fit.

AIC = 2k + n Log(RSS/n)
k = number of parameters in the model (intercept, slopes)
n = number of observations
RSS = Residual Sum-of-square



Next – “Go big or go home”:
Going complex!

wake up

@cjlortie



How do “competing” models compare with one 
another? Which model best fit the data?

Figure source: https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wics.1607



𝑅!" = 𝑏# + 𝑏$×𝑁𝐴𝑃!" + 𝑒!"

MODEL 1: No interaction or main effect of exposure, i.e., just NAP 
under a random intercept model (as seen earlier):

Let’s now consider different models, make them compete and 
select the one that best describe the same set of data (i.e., predict 
Richness).



𝑅!" = 𝑏# + 𝑏%×𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒" + 𝑒!"
MODEL 2: No interaction or main effect of NAP, i.e., just EXPOSURE 
under a random intercept model:

Competing models
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MODEL 3: Main effects (NAP and EXPOSURE) but no interaction 
under a random intercept model.

Competing models
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𝑏&×(𝑁𝐴𝑃!"×𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒") + 𝑒!"

MODEL 4: Main effects (NAP and EXPOSURE) and their interaction 
under a random intercept model.

Competing models



MODEL 5: Model with a fixed intercept and only random effects 
(i.e., the ”simplest” model) 

Competing models

𝑅!" = 𝑏# + 𝑒!"
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Competing models



NOTES:

1) We only considered the intercept only model.  We could have 
considered for each model the intercept and slope model (the 
Tutorial 10 does).

2) We could have also considered all the fixed effect only:
        Intercept only
        NAP only
        Exposure only
        NAP + Exposure
        NAP x Exposure (main effects + interaction).

3) And once all models are built, compare them using AIC.



𝑅!" = 𝑏# + 𝑏$×𝑁𝐴𝑃!" + 𝑏%×𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒"
𝑏&×(𝑁𝐴𝑃!"×𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒") + 𝑒!"

The best model (amongst the ones we compared in this lecture; but 
more models in the tutorial)!



Assumptions: Normality (after square root transformation of 
Richness) 



Assumptions: residual homoscedasticity (residuals against 
predicted values)



Assumptions: Recently shown that mixed-effects models are 
robust against normality and heteroscedastic assumptions


