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What is principal component analysis?

Markus Ringnérl
Principal component analysis is often incorporated into

genome-wide expression studies, but what is it and how can it be
used to explore high-dimensional data?

PCA as a tool to Quantify and Visualise

Multivariate Analysis

Multiple Regression/two way-
ANOVA /mixed models /machine
learning algorithms

Ordination methods

What is the difference between these two pairwise

correlation matrices?

X1 X, X3 Xa Xs
X[ .00 0.80 0.90 0.78 0.87
X2 | 0.80 1.00 0.76 0.87 0.78
X | 0.90 0.76 1.00 0.78 0.89
X | 0.78 0.87 078 1.00 0.95
xs| 0.87 0.78 0.89 0.95 1.00

X1 X2 X3 Xq Xs
X 1.00 0.87 0.96 0.04 0.05
X | 0.87 1.00 095 0.03 0.07
X 0.96 0.95 1.00 0.04 0.05
Xa|0.04 0.03 0.04 1.00 0.84
Xs 0.05 0.07 0.05 0.84 1.00
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X1

X3
Xa
Xs

What is the difference between these two pairwise

correlation matrices?
X1 X X3 Xa Xs
1.00 0.80 0.90 0.78 0.87
0.80 1.00 0.76 0.87 078 One
0.90 0.76 1.00 0.78 0.89 . .
0.78 0.87 0.78 1.00 0.95 dimension
0.87 0.78 0.89 0.95 1.00
X1 X2 X3 Xa Xs
1.00 0.87 0.96 0.04 0.05
0.87 1.00 0.95 0.03 0.07 Two
0.96 0.95 1.00 0.04 0.05 di .
0.04 0.03 0.04 1,00 0.84 1mensions
0.05 0.07 0.05 0.84 1.00

Ordination analyses

- Uncover, organize and summarize the main
patterns of variation in a set of variables measured
over multiple observations.

- Patterns of variation are structured in a reduced
space with smaller number number of dimensions.

- Reduction is possible because often variables are
associated (e.g., correlated). Dimensions represent
combinations (e.g., linear combinations of
variables).

Ordination analyses

A procedure for adapting a multidimensional
swarm of data points in such a way that when it is
projected onto a reduced number of dimensions any
intrinsic pattern will become apparent.

Adapted from Connie Clark
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Ordination analyses — uncover and organize

data; a quick example:

Species

sie BI DAHEGC
47T 0100 00 1
1/000 1 00 00
710000 1 1 10
80 100 1 010
61001 00 1 10
s{oo 1 00 1 01
1[0 1 000000
2100 100 00
90 1 00 1 00 0
3100 1 00 01
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Ordination analyses — uncover and organize

data; a quick example:
Species Species
sie BI DAHEGC sts A B C D E G H I
47T 0100 00 1 1IN0 0 0 0 0 0 o0
1/000 1 00 0 0 2 {1 N0 0 0 0 0 0
710000 1 1 10 301 INO 0 0 0 o0
g0 100 1010 a0\ 1 N0 0 0 0
600 1 00 1 1 0f__ sfooNg 1 NO 00
s[o0 1 00 1 0 1|7 6 o0 ONg 1 DNO 0
1[0 1 000000 7000 0 ONU 1 DO
2100 100 00 g {00 0 0 Ny 1 1
90 1 00 1 00 0 9 o 0 0 0 0 ONJ I
3100 1 00 01 00 0 0 0 0 0 ON\I
8
Ordination methods

- Principal Component Analysis (PCA)

- Correspondence Analysis (CA)

- Principal Coordinate Analysis (PCoA)

- Discriminant Function Analysis (DFA)

- Principal Curve Analysis

- Etc, etc, etc...

Principal components analysis (PCA) is perhaps the most

common technique used to summarize patterns among

variables in multivariate datasets.
9
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Some treat Principal Component Analysis (PCA) as
an unsupervised learning method

(an exploratory technique such as k-means)

Springer Texts in Statisties

10 Unsupervised Learning 373 Gareth James
10.1 The Challenge of Unsupervised Learning 373
10.2 Principal Components Analysis . . . .o

10.2.1 What Are Principal Components? o 375
10.2.2 Another Interpretation of Principal Components . . 379 Robert Tibshirani
10.2.3 More on PCA 380
10.2.4 Other Uses for Principal Components 385
10.3 Clustering Methods 385

s Clustering 386

rehical Clustering . . . . . 390

10.3.3 Practical Issues in Clustering . . . o 399

with Applications in R
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Supervised versus unsupervised learning techniques

- Techniques for unsupervised learning are fast growing in a
number of fields, particularly biology.

- A cancer researcher might assay gene expression levels in 100
patients with breast cancer. They might then look for subgroups
among the breast cancer samples, or among the genes, in order
to obtain a better understanding of the disease.

- A search engine might choose what search results to display to
a particular individual based on the click histories of other
individuals with similar search patterns. These statistical
learning tasks, and many more, can be performed via
unsupervised learning techniques.

Adapted from James et al. 2013
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Supervised versus unsupervised learning techniques

In contrast, unsupervised learning is often much more
challenging. The exercise tends to be more subjective, and there is
no simple goal for the analysis, such as prediction of a response.

Unsupervised learning is often performed as part of an
exploratory data analysis.

Hard to assess the results obtained given that there is no
universally accepted mechanism for performing cross-validation
or validating results on an independent data set; there is no way
to check how the models does because we don’t know the true
answer—the problem is unsupervised.

Adapted from James et al. 2013
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Examples of Principal Component Analysis
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Principal components analysis (PCA) - example 1

A subtype of childhood acute lymphoblastic leuvkaemiawith > @
poor treatment outcome: a genome-wide classification study

Monique . Den Boer, *,Renée X De Menezes, Meyling H Cheok, Jessica G CA laddines,SusanT CJ M Peters,
Laura) CMVan Zuty PeterVan der Spek, , Martn A Hrstmannt, Gritta E Janka-Schaub,
Wilem A Kamps?, Willam € Evans, Rob Petest

Summary
Background Genetic sublypes of acute lymphoblastic leukaemia (ALL) are used to determine risk and treatment in
children. 25% of precursor B-ALL cases are genetically unclassified and have intermediate prognosis. We aimed to .
use a genome-wide study to improve prognostic classification of AL in children.

0120087101253

Jauay,2009
DOHOI016/51470

Quantification and Visualisation

15
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Principal components analysis (PCA) - example 1

A subtype of childhood acute lymphoblastic leuk jawith > @ %
poor treatment outcome: a genome-wide classification study

Sumi

Back: acute ympl
children. 25% of pr ALL cases are genetcall

Data matrix: 190 observations by 22283 columns

Gene expression (22283 genes)

Gene expression
(190 patients)

16

Principal components analysis (PCA) - example 1

PCA; Den Boor (2009); 190 samples * 22283 genes

Each letter is a patient.
Labels stand for
different lymphoblastic
leukaemia (ALL) types.

Data matrix: 190
observations by 22283
columns.

17

Principal components analysis (PCA) - example 2

PRINCIPAL
COMPONENT
ANALYSIS

PCA - A Powerful Method
for Analyze Ecological Niches

Franc Janzekovi¢ and Tone Novak

University of Maribor, Faculty of Natural Sciences and Mathematics,
Department of Biology, Maribor

Slovenia

18
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Principal components analysis (PCA) - example 2

2.1 Environmental niche of three hymenopteran and two spider species

Between 1977 and 2004, 63 caves and artificial tunnels were ecologically investigated in
Slovenia; the three most abundant Hymenoptera species found in these studies have been
ecologically evaluated (details in Novak et al. 2010a). In the caves, many environmental data
were collected, as follows. The following abbreviations of the environmental variables are
used: Dist-E = distance from entrance; Dist-S = distance from surface; Illum = illumination;
PCS = passage cross-section; Tair =air temperature; RH = relative air humidity; Tgr = ground
temperature; HY = substrate moisture. The hymenopteran spatial niche breadth was originally
represented by nine variables.

Data matrix: 63 observations (caves) by 9 columns

Environmental variables (9)

63 caves

PCA - A Powerful Method
for Analyze Ecological Niches

19

Principal components analysis (PCA) - example 2
(pairwise correlation among environmental variables)

1Air| 1.00
T o | 1
air humidity 0133 -

3Ground| 094 | 018 | 100
temperature | <0.001 | 0079 | —

Sarc-sin
substrate
moisture

0388 | 059 | 037 | 100
<0.001 | <0.001 | <0.001 | —

s o] 38 | 036 | 410 | 05 | 10
> ATIOW! 0,001 | <0.001 | <0.001 | <0.001
obistance| o34 | 014 | 041 | 010 | 004 1.00
elom | a00n | 0153 | <aon | 0312 | 072 | -
7 Distance
arel 02 | 021 | 00t | oas | omn | 07 | 10
surface 0.837 | 0.017 | 0.683 | <0.001 | 0275 | <0.001 | —
S Posoge| 038 | 017 | 03 | 0% | 4m0 | 411 | 005 | 100

cross-section | <0.001 | 0.089 | 0.025 | <0.001 | <0001 | 0.274 | 0656

9log| 045 | -018 | 046 | -004 | 007 [-0821 [ 0679 [ 037 [ 100
illumination | <0.001 | 0.077 | <0.001 | 0.690 | 0494 | <0.001 | <0.001 | <0001 | —
Table 1. Pearson correl among bles. Significant
correlations in bold. (Upper row , lower row p). PCA - A Powerful Method

for Analyze Ecological Niches
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Principal components analysis (PCA) - example 2
(niche differences — dots represent different caves ellipsoids are

confidence intervals for where species is found)

4
Each dot
3 ® . . | represents
E. longicornis | B2
2

PC 2 (29.5%)
o

D. quadripunctorius .

PC 1 (37.6%)

Fig. 5. Ordination of the nine environmental variables in 1st and 2nd PC axes. Ellipses (95%
confidence) represent spatial niches in the three hymenopteran species.
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head length (mm)

Principal Component Analysis (PCA): A geometric
interpretation

PCA finds the coordinate system (called principal components) that best represents the internal
variability in the data, essentially re-projecting the data on these coordinate system. As such, PCA
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.

Original data

© female birds @ male birds

60
N .
56
54
52 .
% 28 30 =2 36
skull size (mm)
Source https rg/SDS3 iimension-red Lhtmi#o
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head length (mm)

Principal Component Analysis (PCA): A geometric
interpretation

PCA finds the coordinate system (called principal components) that best represents the internal
variability in the data, essentially re-projecting the data on these coordinate system. As such, PCA
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.

Original data Standardization and PCA fitting
o fomale birds @ male birds
40
. g 20
§
£ 0o
2
8
B
b
220
40
% 2 o @ 36 40 20 00 40
skull size (mm) skull size (scaled)
Source hitps g/SDS3 imension-reduction-1 htmi#9
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head length (mm)

Principal Component Analysis (PCA): A geometric
interpretation

PCA finds the coordinate system (called principal components) that best represents the internal
variability in the data, essentially re-projecting the data on these coordinate system. As such, PCA
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.

Original data Standardization and PCA fitting Rotation

 female birds @ male birds

40
B g 20
§
£ 00
§
®
820
: 4.0 50 25 00 25 50
26 28 30 32 36 -4.0 20 0.0 4.0 PG1
skull size (mm) skull size (scaled)
PCA aligns their axes with directions of maximum variation in the data
Source http: rg/SDS3 limension-red 1 html#9

24
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Principal Component Analysis (PCA): A geometric
interpretation

- PCA constructs a new coordinate system (new
variables, PCs) which are linear combinations of
the original data and which are defined to align
the samples along their major axes of variation
(assuming linearity).

- Thus, PCA determines the coordinate system that
best represents the internal variability in the data,

essentially re-projecting the data.

25

The association among variables need to
be measured by either (in most cases):

Correlation Matrix (for variables that have
different units or scales, e.g., ph, temperature).

Covariance Matrix (variables have the same
units, e.g., body length & body width in cm).

Raw data when variables are in the same units
(more difficult to interpret) and calculations
differ (very rare to find applications in the
literature); rarely used.

26

Correlation versus covariance

=X - X -1

COVey = n—1

X=08&Y =0 ~5y =5y &Sy =5y

cov,
CORyy =—=

SxSy

X=0&Y =0 v~s,=1&s,=1

27
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Correlation or

Original data | ey | covariance matrix

=

eigenvectors

The “mathematics” of
Principal Component Scores of
Analysis (PCA observations

28

The mathematics of Principal Component
Analysis (PCA):
Eigen-analysis is a mathematical operation on a

square symmetric matrix (e.g., pairwise correlation
matrix, pairwise covariance matrix).

A square matrix has the same number of rows as
columns.

A symmetric matrix is the same if you switch rows
and columns.

29

square and symmetric matrix

(e.g., pairwise correlation matrix)

X1

X2 | 0.80 1.00 0.76 0.87 0.78
Xs | 0.90 0.76 1.00 0.78 0.89

x| 0.87 078 0.89 0.95 1.00

30
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The important components of Principal
Component Analysis (pun intended)

31

Principal component analysis presents three
important structures:

1 - Eigenvalues: represent the amount of
variation in the original data summarized by
each principal component. The first principal
component
amount, PC-2 presents the second largest
amount, and so on.

(PC-1) presents the largest

32
Eigenvalues
Xl XZ X3 X4 XS
X1 | 1.00 0.80 0.90 0.78 0.87
X, | 0.80 1.00 0.76 0.87 0.78 “one
X5 | 0.90 0.76 1.00 0.78 0.89
X, | 0.78 0.87 0.78 1.00 0.95 i ion”
Xs 0.87 0.78 0.89 0.95 1.00 dlmenSIon
Eigenvalues:
PC _ eigenvalues %
1 4.354 0.871
2 0.326 0.065 | “Lower”
’ ' dimensionality
3 0.225 0.045 .
because it kept a
4 0.093 0.019 large proportion of
5 0.002 0.000 8 P. p .
the variation in the
sum 5.000 1,000 data in the first PC.
33
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Percent total variance

80

60

40

20

Plot of eigenvalue contributions

PC eigenvalues
4.354
0.326
0.225
0.093
0.002

a B~ W N =

sum 5.000

N s

0/0
0.871
0.065
0.045
0.019
0.000

1.000

34
Eigenvalues
1.00 0.87 0.96 0.04 0.05
0.87 1.00 0.95 0.03 0.07 «“
0.96 0.95 1.00 0.04 0.05 tWO
0.04 0.03 0.04 1.00 0.84 dimensions”
0.05 0.07 0.05 084 1.00
Eigenvalues:
PC _ eigenvalues %
1 2.867 0.573
2 1.827 0365| “Higher” dimensionality
3 0.167 0033 because two components
4 0.124 0025 are needed to summarize
5 0.015 0.003  variation.
sum 5.000 1.000
35
Plot of eigenvalues
3 - PC eigenvalues %
1 2.867 0.573
< 2 1.827 0.365
3 0.167  0.033
: 8- 4 0.124 0.025
z 5 0.015 0.003
sum 5.000 1.000
o —
Component
36
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Principal component analysis presents three

important structures:

2 - Eigenvectors: Each principal component is
a linear function with coefficients for each

variable.

- Eigenvectors contain these coefficients. High
values, positive or negative, represents high
association with the component.

37

X
X;
X3

Xs

Xy

X,

X3

X4

Correlation matrix

Xs

1.00
0.80
0.90
0.78
0.87

0.80
1.00
0.76
0.87
0.78

0.90
0.76
1.00
0.78
0.89

0.78
0.87
0.78
1.00
0.95

0.87
0.78
0.89
0.95
1.00

“

one
dimension”

Associated eigenvectors

2

PC
3

4

5

a B~ W N =

0.447
0.432
0.445
0.450
0.462

-0.436
0.533
-0.534
0.489
-0.039

0.330
0.644
0.035
-0.413
-0.552

-0.687 0.170
-0.288
0.692 0.192
-0.063 0.619
-0.109

0.181

-0.684

38

Eigenvectors can be seen as regression coefficients, where
the component is the dependent variable. A “one
dimension” matrix has only one interpretable principal
component.

PC-1=0.447X1+0.432X,+0.445X3+0.450X4+0.462Xs

Unlike the numbers after =, this is not a subtraction but a
hyphen stating that this is the first and second Principal Components (PC).

2

PC
3

4

5

a B W N =

0.447
0.432
0.445
0.450
0.462

6
-0.533
0.534
-0.489
039

0.330
644

0.03
413

-0.552

-0.687 0,

0.1

-0.0

-0.109

-0.288
.692 0.192
0.619

-0

4

39
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Eigenvectors (simulated data with 1 dimension): only first axis
(PC-1) should be interpreted

PC axis
variable 1
£ 1 0.447
% 2 0.432
3 | 0445
4 0.450
s 5 | 0462
Gomponert 1 variance:85.258%,p-0.01
40
Correlation matrix
Xl XZ X3 X4 XS
% 1.00 0.87 0.96 0.04 0.05 Iltwo
X lo.87 1.00 0.95 0.03 0.07 . . ”
Xs [0.96 0.95 1.00 0.04 0.05 dimensions
X, [0.04 003 004 700 084
X, [0.05 007 005 0.84 1.00
Associated eigenvectors (only interpret the first two components (PC)
PC
var 1 2 3 4 5
1 10.569 |[-0.064 49 -0.642 0.
2 |0.567 [|-0.060 [-0.298\_0.661 .386
3 |0.585(-0.067 | 0.061 - 0 -0.806 ‘ ;
4 10.072 /[ 0.704 | 0.654” 0.273\0.039 | |,
5 |0.085| 0.702 650 -0.277 -0.
[
41
Eigenvectors (simulated data with 2 dimensions): only first two
axis (PC-1 & PC-2) should be interpreted
PC axis
var 1 2
1 (0.569 -0.064
g 2 |0.567 -0.060
$ 3 |0.585 -0.067
g 4 |0.072 0.704
5 |0.085 0.702
% .
© '
e —
Component 1 variance: 57.703%, p=0.01
42
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Principal component analysis presents three
important structures:

3 — Multivariate scores: Since each component is a linear
function of the variables, when multiplying the
standardized variables (in the case of correlation matrices)
by the eigenvector structure, a matrix containing the
position of each observation in each principal component
is produced.

The plot of these scores in the first few dimensions,
represents the main patterns of variation among the
original observations (more in the empirical example).

PC-1=0.569X1+0.567X,+0.585X3+0.072X4+0.085Xs
PC-2=-0.064X1-0.060X,-0.067X3+0.704X4+0.702Xs

43

PCA Scores: one versus two dimensions

o et 245 mtaExPosin Dot 1

44

eigenvalues

eigenvectors

. Correlation or
Original data | ey | covariance matrix

The “mathematics” of
Principal Component Scores of
Analysis (PCA observations

45
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Next lecture: How many PCA dimensions?
Inferential frameworks for determining number
of axes to interpret and the significance of each
variable on each axis (lots of work on this area).

1%) determine how many axes to interpret (i.e.,
how many PCs capture correlated variation in the
data?).

o COMPUTATIONAL

scimncs (pinser ATIONAL

&DATA ANALYSIS

Computational Statistics & Data Analysis 49 (2005) 974-997 e

www.elsevier.comvlocatefesda

How many principal components? stopping rules for
determining the number of non-trivial axes revisited

Pedro R. Peres-Neto*, Donald A. Jackson, Keith M. Somers
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