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PCA as a tool to Quantify and Visualise

Reading

1

Multivariate Analysis

Multiple Regression/two way-
ANOVA/mixed models /machine 
learning algorithms 

Ordination methods
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What is the difference between these two pairwise 
correlation matrices? 
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Ordination analyses

- Uncover, organize and summarize the main 
patterns of variation in a set of variables measured 
over multiple observations.

- Patterns of variation are structured in a reduced 
space with smaller number number of dimensions.

- Reduction is possible because often variables are 
associated (e.g., correlated).  Dimensions represent 
combinations (e.g., linear combinations of 
variables).  

5

Ordination analyses

A procedure for adapting a multidimensional 
swarm of data points in such a way that when it is 
projected onto a reduced number of dimensions any 
intrinsic pattern will become apparent.

Adapted from Connie Clark
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Ordination analyses – uncover and organize 
data; a quick example:
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Ordination methods

- Principal Component Analysis (PCA)
- Correspondence Analysis (CA)
- Principal Coordinate Analysis (PCoA)
- Discriminant Function Analysis (DFA)
- Principal Curve Analysis
- Etc, etc, etc…

Principal components analysis (PCA) is perhaps the most 
common technique used to summarize patterns among 
variables in multivariate datasets.

9



4/8/25

4

10

Contents xiii

8.3.3 Bagging and Random Forests . . . . . . . . . . . . . 328
8.3.4 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . 330

8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

9 Support Vector Machines 337
9.1 Maximal Margin Classifier . . . . . . . . . . . . . . . . . . . 338

9.1.1 What Is a Hyperplane? . . . . . . . . . . . . . . . . 338
9.1.2 Classification Using a Separating Hyperplane . . . . 339
9.1.3 The Maximal Margin Classifier . . . . . . . . . . . . 341
9.1.4 Construction of the Maximal Margin Classifier . . . 342
9.1.5 The Non-separable Case . . . . . . . . . . . . . . . . 343

9.2 Support Vector Classifiers . . . . . . . . . . . . . . . . . . . 344
9.2.1 Overview of the Support Vector Classifier . . . . . . 344
9.2.2 Details of the Support Vector Classifier . . . . . . . 345

9.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . 349
9.3.1 Classification with Non-linear Decision

Boundaries . . . . . . . . . . . . . . . . . . . . . . . 349
9.3.2 The Support Vector Machine . . . . . . . . . . . . . 350
9.3.3 An Application to the Heart Disease Data . . . . . . 354

9.4 SVMs with More than Two Classes . . . . . . . . . . . . . . 355
9.4.1 One-Versus-One Classification . . . . . . . . . . . . . 355
9.4.2 One-Versus-All Classification . . . . . . . . . . . . . 356

9.5 Relationship to Logistic Regression . . . . . . . . . . . . . . 356
9.6 Lab: Support Vector Machines . . . . . . . . . . . . . . . . 359

9.6.1 Support Vector Classifier . . . . . . . . . . . . . . . 359
9.6.2 Support Vector Machine . . . . . . . . . . . . . . . . 363
9.6.3 ROC Curves . . . . . . . . . . . . . . . . . . . . . . 365
9.6.4 SVM with Multiple Classes . . . . . . . . . . . . . . 366
9.6.5 Application to Gene Expression Data . . . . . . . . 366

9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

10 Unsupervised Learning 373
10.1 The Challenge of Unsupervised Learning . . . . . . . . . . . 373
10.2 Principal Components Analysis . . . . . . . . . . . . . . . . 374

10.2.1 What Are Principal Components? . . . . . . . . . . 375
10.2.2 Another Interpretation of Principal Components . . 379
10.2.3 More on PCA . . . . . . . . . . . . . . . . . . . . . . 380
10.2.4 Other Uses for Principal Components . . . . . . . . 385

10.3 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . 385
10.3.1 K-Means Clustering . . . . . . . . . . . . . . . . . . 386
10.3.2 Hierarchical Clustering . . . . . . . . . . . . . . . . . 390
10.3.3 Practical Issues in Clustering . . . . . . . . . . . . . 399

10.4 Lab 1: Principal Components Analysis . . . . . . . . . . . . 401

Some treat Principal Component Analysis (PCA) as 
an unsupervised learning method

(an exploratory technique such as k-means)
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- Techniques for unsupervised learning are fast growing in a 
number of fields, particularly biology. 

- A cancer researcher might assay gene expression levels in 100 
patients with breast cancer. They might then look for subgroups 
among the breast cancer samples, or among the genes, in order 
to obtain a better understanding of the disease. 

- A search engine might choose what search results to display to 
a particular individual based on the click histories of other 
individuals with similar search patterns. These statistical 
learning tasks, and many more, can be performed via 
unsupervised learning techniques.

Adapted from James et al. 2013

Supervised versus unsupervised learning techniques
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In contrast, unsupervised learning is often much more 
challenging. The exercise tends to be more subjective, and there is 
no simple goal for the analysis, such as prediction of a response. 

Unsupervised learning is often performed as part of an 
exploratory data analysis. 

Hard to assess the results obtained given that there is no 
universally accepted mechanism for performing cross-validation 
or validating results on an independent data set; there is no way 
to check how the models does because we don’t know the true 
answer—the problem is unsupervised.

Adapted from James et al. 2013

Supervised versus unsupervised learning techniques
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Examples of Principal Component Analysis
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Principal components analysis (PCA) - example 1 

Quantification and Visualisation

Articles

www.thelancet.com/oncology   Vol 10   February 2009  125

A subtype of childhood acute lymphoblastic leukaemia with 
poor treatment outcome: a genome-wide classifi cation study
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Laura J C M Van Zutven, H Berna Beverloo, Peter J Van der Spek, Gaby Escherich†, Martin A Horstmann†, Gritta E Janka-Schaub†, 
Willem A Kamps‡, William E Evans, Rob Pieters‡

Summary
Background Genetic subtypes of acute lymphoblastic leukaemia (ALL) are used to determine risk and treatment in 
children. 25% of precursor B-ALL cases are genetically unclassifi ed and have intermediate prognosis. We aimed to 
use a genome-wide study to improve prognostic classifi cation of ALL in children.

Methods We constructed a classifi er based on gene expression in 190 children with newly diagnosed ALL (German 
Cooperative ALL [COALL] discovery cohort) by use of double-loop cross-validation and validated this in an 
independent cohort of 107 newly diagnosed patients (Dutch Childhood Oncology Group [DCOG] independent 
validation cohort). Hierarchical cluster analysis with classifying gene-probe sets revealed a new ALL subtype, the 
underlying genetic abnormalities of which were characterised by comparative genomic hybridisation-arrays and 
molecular cytogenetics.

Findings Our classifi er predicted ALL subtype with a median accuracy of 90·0% (IQR 88·3–91·7) in the discovery 
cohort and correctly identifi ed 94 of 107 patients (accuracy 87·9%) in the independent validation cohort. Without our 
classifi er, 44 children in the COALL cohort and 33 children in the DCOG cohort would have been classifi ed as B-other. 
However, hierarchical clustering showed that many of these genetically unclassifi ed cases clustered with BCR–ABL1-
positive cases: 30 (19%) of 154 children with precursor B-ALL in the COALL cohort and 14 (15%) of 92 children with 
precursor B-ALL in the DCOG cohort had this BCR–ABL1-like disease. In the COALL cohort, these patients had 
unfavourable outcome (5-year disease-free survival 59·5%, 95% CI 37·1–81·9) compared with patients with other 
precursor B-ALL (84·4%, 76·8–92·1%; p=0·012), a prognosis similar to that of patients with BCR–ABL1-positive ALL 
(51·9%, 23·1–80·6%). In the DCOG cohort, the prognosis of BCR–ABL1-like disease (57·1%, 31·2–83·1%) was worse 
than that of other precursor B-ALL (79·2%, 70·2–88·3%; p=0.026), and similar to that of BCR–ABL1-positive ALL 
(32·5%, 2·3–62·7%). 36 (82%) of the patients with BCR–ABL1-like disease had deletions in genes involved in B-cell 
development, including IKZF1, TCF3, EBF1, PAX5, and VPREB1; only nine (36%) of 25 patients with B-other ALL had 
deletions in these genes (p=0·0002). Compared with other precursor B-ALL cells, BCR–ABL1-like cells were 73 times 
more resistant to L-asparaginase (p=0·001) and 1·6 times more resistant to daunorubicin (p=0·017), but toxicity of 
prednisolone and vincristine did not diff er.

Interpretation New treatment strategies are needed to improve outcome for this newly identifi ed high-risk subtype 
of ALL.

Funding Dutch Cancer Society, Sophia Foundation for Medical Research, Paediatric Oncology Foundation Rotterdam, 
Centre of Medical Systems Biology of the Netherlands Genomics Initiative/Netherlands Organisation for Scientifi c 
Research, American National Institute of Health, American National Cancer Institute, and American Lebanese Syrian 
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Introduction
Several subgroups of childhood acute lymphoblastic 
leukaemia (ALL) have unfavourable prognosis: T-lineage 
ALL (about 15% of all cases) and the precursor B-lineage 
subtypes with chromosomal translocations creating 
MLL-rearrangements or the BCR–ABL1 gene fusion, 
each found in less than 5% of cases.1–3 Prognostically 
favourable pre cursor B-subtypes are TEL–AML1 
(ETV6–RUNX1)-positive ALL (20–25% of cases), 
hyperdiploid ALL (>50 chromosomes; about 25% of 
cases), and TCF3 (E2A)-rearranged ALL (often 
E2A–PBX1-positive; about 5% of cases). About 25% of 
patients have genetically unclassifi ed disease (B-other);2–4 

relapses are common in these patients, indicating the 
need for new biological insights and treatment options 
for ALL.5

Genome-wide analyses that quantify gene expression 
(mRNA) in cells has provided new insights into genetic 
subtypes of ALL and the biological basis of drug 
resistance.6,7 In two studies, patients with newly diagnosed 
paediatric ALL could be assigned to lineage and genetic 
subtypes by use of gene-expression signatures with an 
accuracy of more than 95%.8,9 Once these fi ndings are 
validated in independent cohorts of patients, they will 
provide new approaches to the classifi cation of ALL and 
guide treatment decisions.
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Each letter is a patient. 
Labels stand for 
different lymphoblastic 
leukaemia (ALL) types.  

Data matrix: 190 
observations by 22283 
columns.
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Franc Janžekovič and Tone Novak 
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Department of Biology, Maribor 
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1. Introduction 
Principal Component Analysis, PCA, is a multivariate statistical technique that uses 
orthogonal transformation to convert a set of correlated variables into a set of orthogonal, 
uncorrelated axes called principal components (James & McCulloch 1990; Robertson et al., 
2001; Legendre & Legendre 1998; Gotelli & Ellison 2004). Ecologists are most frequently 
dealing with multivariate datasets. This is especially true in field ecology, and this is why 
PCA is an attractive and frequently used method of data ordination in ecology. PCA enables 
condensation of data on a multivariate phenomenon into its main, representative features by 
projection of the data into a two-dimensional presentation. The two created resource axes 
are independent, and although they reduce the number of dimensions–i.e. the original data 
complexity–they maintain much of the original relationship between the variables: i.e., 
information or explained variance (Litvak & Hansell 1990). This is helpful in focusing 
attention on the main characteristics of the phenomenon under study. It is convenient that, if 
the first few principal components (PCs) explain a high percentage of variance, 
environmental variables that are not correlated with the first few PCs can be disregarded in 
the analysis (Toepfer et al., 1998). In addition, applying PCA has become relatively user-
friendly because of the numerous programs that assist in carrying out the computational 
procedure with ease (Dolédec et al., 2000; Guisan & Zimmerman 2000; Robertson et al., 2001; 
Rissler & Apodaca 2007; Marmion et al., 2009). 

PCA has been widely used in various fields of investigation and for different tasks. Many 
authors have used PCA for its main purpose: i.e., to reduce strongly correlated data groups 
or layers. These studies concern either environmental variation (e.g., Kelt et al., 1999; 
Johnson et al., 2006; Rissler & Apodaca 2007; Glor & Warren 2010; Novak et al., 2010a; 
Faucon et al., 2011; Grenouillet et al., 2011), the investigated species or community 
characteristics (e.g., Kingston et al., 2000; Pearman 2002; Youlatos 2004; Kitahara & Fujii 
2005), or both, sometimes in combination with detrended correspondence analysis, DCA, 
canonical correspondence analysis, CCA, and other ordination methods (e.g., Warner et al., 
2007; González-Cabello & Bellwood 2009; Marmion et al., 2009; Mezger & Pfeiffer 2011). The 
application of PCA has helped in various fields of ecological research, e.g., in determination 
of enterotypes of the human gut microbiome on the basis of specialization of their trophic 
niches (Arumugam et al. 2011). In aquatic habitat studies, it has been applied for evaluation 
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to both groups. The Grinnellian class of niches is based on consideration of their non-
interactive variables, such as average temperature, precipitation and solar radiation, and 
environmental conditions on a broad scale. These variables are relevant to understanding 
coarse-scale ecological and geographic properties of species. The Eltonian class niches, in 
contrast, focus on bionomic variables, such as biotic interactions and resource–consumer 
dynamics, which can be measured principally on a local scale. Whereas datasets of variables of 
the Grinnellian niche group have been rapidly compiled in the World, very little theory has 
been developed explicitly about this. On the other hand, variables for considering much more 
dynamic and complex Eltonian niches have never been available (Soberón 2007). Both classes 
of niches are relevant to understanding the distribution of individuals of a species, but the 
Eltonian class is easier to measure at the high spatial resolutions characteristic of most 
ecological studies, whereas the Grinnellian class is suited to the low spatial resolution at which 
distributions are typically defined (Soberón 2007). Applying the modelling of species 
distribution to the distribution constraints is strongly encouraged to provide better insight in 
species distributions (Kearney & Porter 2009; Bellier et al., 2010).  It is important to understand 
that a niche is not a conservative concept, but a consequence of the complexity of the subject, 
which may refer to very different features of the fundamental niche, with different ecological 
and evolutionary properties (Soberón & Nakamura 2009). It has been demonstrated that, on 
the one hand, inconsistent adaptive pressures may give rise to a whole palette of niche 
diversification (e.g., Romero 2011), while, on the other hand, convergent evolution in various 
combinations takes place within the multidimensional niche space (e.g., Hormon et al., 2005). 

1.2 Ordination and the PCA concept 

Ordination is a method in multivariate analysis used in exploratory data analysis. 
Exploratory data analysis is an approach to analyzing data sets to summarize their main 
characteristics in an easy-to-understand form, often in graphs. In this procedure no 
statistical modelling is used. The order of objects in ordinations is characterized by values of 
multiple variables. Similar objects are ordinated near each other and vice versa. Many 
ordination techniques exist, including principal components analysis (PCA), non-metric 
multidimensional scaling (NMDS), correspondence analysis (CA) and its derivatives, like 
detrended CA (DCA), canonical CA (CCA), Bray–Curtis ordination, and redundancy 
analysis (RDA), among others (Legendre & Legendre 1998; Gotelli & Ellison 2004). 

PCA is widely useful in considering species; it is appropriate for the analysis of community 
composition data or as gradient analysis. Gradient analysis is an analytical method used in 
plant community ecology to relate the abundance of various species within a plant 
community to various environmental gradients by ordination or by weighted averaging. 
These gradients are usually important in plant species distribution, and include 
temperature, water availability, light, and soil nutrients, or their closely correlated 
surrogates (Lepš & Šmilauer 2003). 

2.1 Environmental niche of three hymenopteran and two spider species 
Between 1977 and 2004, 63 caves and artificial tunnels were ecologically investigated in 
Slovenia; the three most abundant Hymenoptera species found in these studies have been 
ecologically evaluated (details in Novak et al. 2010a). In the caves, many environmental data 
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were collected, as follows. The following abbreviations of the environmental variables are 
used: Dist-E = distance from entrance; Dist-S = distance from surface; Illum = illumination; 
PCS = passage cross-section; Tair =air temperature; RH = relative air humidity; Tgr = ground 
temperature; HY = substrate moisture. The hymenopteran spatial niche breadth was originally 
represented by nine variables. The variation was subjected to PCA, and differences in niche 
overlap were tested using One-way ANOVA. In the following, we demonstrate the analysis of 
occupied physical space in the three species: Amblyteles armatorius, n=16, Diphyus 
quadripunctorius, n=42, and Exallonyx longicornis, n=44. These variables refer to the 
environmental conditions for the individual placements within the caves. 

PCA requires normal data distribution. This is often not the case with the environmental data 
provided by field investigations, as in our case. In variables presented as proportions or ratios, 
e.g., humidity, this problem can be overcome with the arc-sin transformation. In those 
variables stretched over a large scale of values, e.g., illumination and passage cross section, this 
can be achieved by transformation in the logarithmic scale. In our study, we used the 
Kolmogorov-Smirnov test, K-S, to check the data for normality. To normalize distribution, we 
transformed air humidity and substrate moisture data (arcsin) (Fig. 1), and passage cross 
section and illumination data (log) (Fig. 2). PCA is sensitive to the relative scaling of the 
original variables. We therefore z-standardized the data. Here we demonstrate relations 
between nine environmental variables with Pearson correlation coefficients (Table 1). 

 
Fig. 1. Distribution of row relative air humidity data (a) and the data after arc-sin 
transformation (b) with normal distribution curve.  

To obtain detailed information on the pattern of variation, the sets of nine environmental 
variables were subjected to PCA. In this way, we obtained nine PCs. These new values are 
called principal component scores. The Eigenvalue and ratios of explained variances are 
presented in Table 2, where PC variance is in progressive decline. The last four components 
represent such a small ratio of the total variance that it is reasonable to ask whether they 
describe any biotic response or not. A common rule is to interpret only those components 
that contribute more than 5% of the total variance. In this study case on Hymenoptera, PCs1 
to PCs5 meet this criterion in the total account of 92.5% of the variance explained, while 
7.5% of the variance remains unexplained. The explained contribution of variances to the 
total variance is shown in a scree plot (Fig. 3). The large differences between the variances of 
the first three PCs and much smaller ones of the other scores are clearly evident.  
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Fig. 2. Distribution of row cross section data (a) and the data after logarithmic 
transformation (b) with normal distribution curve.  

 

 1 2 3 4 5 6 7 8 9 

1 Air 
temperature 

1.00 
---         

2 arc-sin 
relative  

air humidity  

0.15 
0.133 

1.00 
---        

3 Ground  
temperature  

0.94 
<0.001 

0.18 
0.079 

1.00 
---       

4 arc-sin 
substrate  
moisture  

0.388 
<0.001 

0.59 
<0.001 

0.37 
<0.001 

1.00 
---      

5 Airflow -0.48 
<0.001 

-0.36 
<0.001 

-0.43 
<0.001 

-0.55 
<0.001 

1.00 
---     

6 Distance 
from  

entrance 

-0.34 
<0.001 

0.14 
0.153 

-0.41 
<0.001 

0.10 
0.312 

0.04 
0.712 

1.00 
---    

7 Distance 
from  

surface 

-0.02 
0.837 

0.24 
0.017 

-0.04 
0.683 

0.46 
<0.001 

-0.11 
0.275 

0.67 
<0.001 

1.00 
---   

8 Passage  
cross-section 

0.35 
<0.001 

0.17 
0.089 

0.23 
0.025 

0.39 
<0.001 

-0.40 
<0.001 

-0.11 
0.274 

0.05 
0.656 

1.00 
---  

9 log 
illumination 

0.45 
<0.001 

-0.18 
0.077 

0.46 
<0.001 

-0.04 
0.690 

-0.07 
0.494 

-0.821 
<0.001 

-0.679 
<0.001 

0.37 
<0.001 

1.00 
--- 

Table 1. Pearson correlations coefficient among nine environmental variables. Significant 
correlations in bold. (Upper row r, lower row p). 
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Moreover, PCs enable the testing of differences between environmental niches. For this 
purpose, in the test hypothesis, the PCs defining niches were subjected to variance analysis 
for differences between the three species. One-way ANOVA was used to test differences 
between species in the 1st and 2nd principal components (F and p values in Table 3). In this 
way, PCA allows testing of differences between niches. 

 
Fig. 5. Ordination of the nine environmental variables in 1st and 2nd PC axes. Ellipses (95% 
confidence) represent spatial niches in the three hymenopteran species.  

The same analyses of the spatial niches were carried out on two co-existing spider species, 
Meta menardi and Metellina meriannae (Novak et al. 2010b). In this case, the variations in 
temperature, humidity, airflow and illumination were subjected to PCA. The 1st and the 2nd 
PCs together explained 70.4% of variation (Figs. 6 and 7). In this way, we presented the 
course of temporal changes in the spatial niches of the two spiders. 

3. Discussion 
Since computer techniques and technologies have enabled efficacious computation of PCA, 
it has become one of the most useful tools in ecology in various fields of use. Still, one can 
readily notice that many problems appear when its applicability for different purposes is to 
be estimated. On the one hand, reservations occur because of the credibility or 
interpretability of the data. Yet Austin (1985), e.g., stated that animal ecologists often use 
PCA without discussion of the ecological implications of its linear model, although the PCA 
axes are not necessarily ecologically independent, and there is no necessary ecological 
interpretation of components. Besides, it is particularly notable that two- and three-
dimensional data using Gauss species response curves can produce complex flask-like 
distortions in which the underlying gradient structure is impossible to recognize without 
prior knowledge. In this sense, some authors (e.g., Hendrickx et al., 2007), in a specific 
context, decided not to rely on the obtained PCA axes, since they obscured additive and  
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Principal Component Analysis (PCA): A geometric 
interpretation
PCA finds the coordinate system (called principal components) that best represents the internal 
variability in the data, essentially re-projecting the data on these coordinate system.  As such, PCA 
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.  

Source https://wilkelab.org/SDS375/slides/dimension-reduction-1.html#9

Original data
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23

Principal Component Analysis (PCA): A geometric 
interpretation
PCA finds the coordinate system (called principal components) that best represents the internal 
variability in the data, essentially re-projecting the data on these coordinate system.  As such, PCA 
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.  

Source https://wilkelab.org/SDS375/slides/dimension-reduction-1.html#9

Original data Standardization and PCA fitting Rotation

PCA aligns their axes with directions of maximum variation in the data

24
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Principal Component Analysis (PCA): A geometric 
interpretation

- PCA constructs a new coordinate system (new 
variables, PCs) which are linear combinations of 
the original data and which are defined to align 
the samples along their major axes of variation 
(assuming linearity).

- Thus, PCA determines the coordinate system that 
best represents the internal variability in the data, 
essentially re-projecting the data.

25

The association among variables need to 
be measured by either (in most cases):

Correlation Matrix (for variables that have 
different units or scales, e.g., ph, temperature).

Covariance Matrix (variables have the same 
units, e.g., body length & body width in cm). 

Raw data when variables are in the same units 
(more difficult to interpret) and calculations 
differ (very rare to find applications in the 
literature); rarely used.

26

𝐶𝑂𝑉!" =
∑#$%& (𝑋# − )𝑋)(𝑌# − )𝑌)

𝑛 − 1

𝐶𝑂𝑅!" =
𝐶𝑂𝑉!"
𝑠!𝑠"

𝑋 = 0 & 𝑌 = 0 ∴ 𝑠! = 𝑠! & 𝑠" = 𝑠"

𝑋 = 0 & 𝑌 = 0 ∴ 𝑠! = 1& 𝑠" = 1

Correlation versus covariance

27
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Original data
Correlation or

covariance matrix 

eigenvalues

eigenvectors

Scores of 
observations

The “mathematics” of 
Principal Component 
Analysis (PCA)

28

The mathematics of Principal Component 
Analysis (PCA):
Eigen-analysis is a mathematical operation on a 
square symmetric matrix (e.g., pairwise correlation 
matrix, pairwise covariance matrix). 
A square matrix has the same number of rows as 
columns. 
A symmetric matrix is the same if you switch rows 
and columns. 

29

square and symmetric matrix 
(e.g., pairwise correlation matrix) 

!"## #"$# #"%# #"&$ #"$&
#"$# !"## #"&' #"$& #"&$
#"%# #"&' !"## #"&$ #"$%
#"&$ #"$& #"&$ !"## #"%(
#"$& #"&$ #"$% #"%( !"##

X1 X2 X3 X4 X5

X1

X2

X3

X4

X5
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The important components of Principal 
Component Analysis (pun intended)

wake up

@cjlortie
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Principal component analysis presents three 
important structures:

1 – Eigenvalues: represent the amount of 
variation in the original data summarized by 
each principal component. The first principal 
component (PC-1) presents the largest 
amount, PC-2 presents the second largest 
amount, and so on.  

32

“one 
dimension”

Eigenvalues:

PC eigenvalues %
1 4.354 0.871
2 0.326 0.065
3 0.225 0.045
4 0.093 0.019
5 0.002 0.000

sum 5.000 1.000

“Lower” 
dimensionality 
because it kept a 
large proportion of 
the variation in the 
data in the first PC.

Eigenvalues

33
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PC eigenvalues %
1 4.354 0.871
2 0.326 0.065
3 0.225 0.045
4 0.093 0.019
5 0.002 0.000

sum 5.000 1.000

Plot of eigenvalue contributions 

34

1.00 0.87 0.96 0.04 0.05
0.87 1.00 0.95 0.03 0.07
0.96 0.95 1.00 0.04 0.05
0.04 0.03 0.04 1.00 0.84
0.05 0.07 0.05 0.84 1.00

“two 
dimensions”

Eigenvalues:
PC eigenvalues %
1 2.867 0.573
2 1.827 0.365
3 0.167 0.033
4 0.124 0.025
5 0.015 0.003

sum 5.000 1.000

Eigenvalues

“Higher” dimensionality 
because two components 
are needed to summarize 
variation.

35

Plot of eigenvalues 

PC eigenvalues %
1 2.867 0.573
2 1.827 0.365
3 0.167 0.033
4 0.124 0.025
5 0.015 0.003

sum 5.000 1.000
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Principal component analysis presents three 
important structures:

2 - Eigenvectors: Each principal component is 
a linear function with coefficients for each 
variable.

- Eigenvectors contain these coefficients. High 
values, positive or negative, represents high 
association with the component.  

37

PC
var 1 2 3 4 5
1 0.447 -0.436 0.330 -0.687 0.170
2 0.432 0.533 0.644 0.181 -0.288
3 0.445 -0.534 0.035 0.692 0.192
4 0.450 0.489 -0.413 -0.063 0.619
5 0.462 -0.039 -0.552 -0.109 -0.684

“one 
dimension”

Associated eigenvectors

Correlation matrix

38

Eigenvectors can be seen as regression coefficients, where 
the component is the dependent variable. A “one 
dimension” matrix has only one interpretable principal 
component.  

PC-1=0.447X1+0.432X2+0.445X3+0.450X4+0.462X5

PC
var 1 2 3 4 5
1 0.447 0.436 0.330 -0.687 0.170
2 0.432 -0.533 0.644 0.181 -0.288
3 0.445 0.534 0.035 0.692 0.192
4 0.450 -0.489 -0.413 -0.063 0.619
5 0.462 0.039 -0.552 -0.109 -0.684

Unlike the numbers after =, this is not a subtraction but a
hyphen stating that this is the first and second Principal Components (PC).

39
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Inferential Results

Component 1 variance: 85.258%, p=0.01
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Eigenvectors (simulated data with 1 dimension): only first axis 
(PC-1) should be interpreted

variable 1
1 0.447
2 0.432
3 0.445
4 0.450
5 0.462

PC axis

40

PC
var 1 2 3 4 5
1 0.569 -0.064 0.249 -0.642 0.445
2 0.567 -0.060 -0.298 0.661 0.386
3 0.585 -0.067 0.061 -0.010 -0.806
4 0.072 0.704 0.651 0.273 0.039
5 0.085 0.702 -0.650 -0.277 -0.043

“two 
dimensions”

Associated eigenvectors (only interpret the first two components (PC)

Correlation matrix
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var 1 2
1 0.569 -0.064
2 0.567 -0.060
3 0.585 -0.067
4 0.072 0.704
5 0.085 0.702

PC axisInferential Results

Component 1 variance: 57.703%, p=0.01
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axis (PC-1 & PC-2) should be interpreted
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Principal component analysis presents three 
important structures:

3 – Multivariate scores: Since each component is a linear 
function of the variables, when multiplying the 
standardized variables (in the case of correlation matrices) 
by the eigenvector structure, a matrix containing the 
position of each observation in each principal component 
is produced.  

The plot of these scores in the first few dimensions, 
represents the main patterns of variation among the 
original observations (more in the empirical example).

PC-1=0.569X1+0.567X2+0.585X3+0.072X4+0.085X5

PC-2=-0.064X1-0.060X2-0.067X3+0.704X4+0.702X5
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PCA Scores: one versus two dimensions
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Original data
Correlation or

covariance matrix 

eigenvalues

eigenvectors

Scores of 
observations

The “mathematics” of 
Principal Component 
Analysis (PCA)
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Next lecture: How many PCA dimensions? 
Inferential frameworks for determining number 
of axes to interpret and the significance of each 
variable on each axis (lots of work on this area).

1st) determine how many axes to interpret (i.e., 
how many PCs capture correlated variation in the 
data?).
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How many principal components? stopping rules for
determining the number of non-trivial axes revisited
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Abstract

Principal component analysis is one of the most widely applied tools in order to summarize com-
mon patterns of variation among variables. Several studies have investigated the ability of individual
methods, or compared the performance of a number of methods, in determining the number of com-
ponents describing common variance of simulated data sets. We identify a number of shortcomings
related to these studies and conduct an extensive simulation study where we compare a larger number
of rules available and develop some new methods. In total we compare 20 stopping rules and pro-
pose a two-step approach that appears to be highly effective. First, a Bartlett’s test is used to test the
significance of the first principal component, indicating whether or not at least two variables share
common variation in the entire data set. If significant, a number of different rules can be applied to
estimate the number of non-trivial components to be retained. However, the relative merits of these
methods depend on whether data contain strongly correlated or uncorrelated variables. We also esti-
mate the number of non-trivial components for a number of field data sets so that we can evaluate the
applicability of our conclusions based on simulated data.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Principal component analysis (PCA) is one of the most common methods used by data
analysts to provide a condensed description and describe patterns of variation in multi-
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