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What is principal component analysis?

Markus Ringnérl

Principal component analysis is often incorporated into
genome-wide expression studies, but what is it and how can it be
used to explore high-dimensional data?

PCA as a tool to Quantify and Visualise



Multivariate Analysis

Multiple Regression/two way-
ANOVA /mixed models /machine
learning algorithms

Ordination methods



What is the difference between these two pairwise
correlation matrices?

X, X, X5 X, X
X1 1.00 0.80 0.90 0.78 0.87
X, | 0.80 1.00 0.76 0.87 0.78
X, | 0.90 0.76 1.00 0.78 0.89
X, | 0.78 0.87 0.78 1.00 0.95
X, | 0.87 0.78 0.89 0.95 1.00
X, X, X5 X, X
11 1.00 0.87 0.96 0.04 0.05
X, | 0.87 1.00 0.95 0.03 0.07
X, | 0.96 0.95 1.00 0.04 0.05
X, | 0.04 0.03 0.04 1.00 0.84
. |0.05 0.07 0.05 0.84 1.00




What is the difference between these two pairwise

correlation matrices?

X, X, X X, X
1.00 0.80 0.90 0.78 0.87
0.80 1.00 0.76 0.87 0.78
0.90 0.76 1.00 0.78 0.89
0.78 0.87 0.78 1.00 0.95
0.87 0.78 0.89 0.95 1.00
X, X, X X, X

1.00 0.87 0.96 0.04 0.05

0.87 1.00 0.95 0.03 0.07

0.96 0.95 1.00 0.04 0.05

0.04 0.03 0.04 1.00 0.84

0.05 0.07 0.05 0.84 1.00

One
dimension

Two
dimensions



Ordination analyses

- Uncover, organize and summarize the main
patterns of variation in a set of variables measured
over multiple observations.

- Patterns of variation are structured in a reduced
space with smaller number number of dimensions.

- Reduction is possible because often variables are
associated (e.g., correlated). Dimensions represent
combinations (e.g., linear combinations of
variables).



Ordination analyses

A procedure for adapting a multidimensional
swarm of data points in such a way that when it is
projected onto a reduced number of dimensions any
intrinsic pattern will become apparent.

Adapted from Connie Clark
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Ordination methods

- Principal Component Analysis (PCA)
- Correspondence Analysis (CA)

- Principal Coordinate Analysis (PCoA)

- Discriminant Function Analysis (DFA)

- Principal Curve Analysis

- Etc, etc, etc...

Principal components analysis (PCA) is perhaps the most
common technique used to summarize patterns among
variables in multivariate datasets.
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Some treat Principal Component Analysis (PCA) as
an unsupervised learning method
(an exploratory technique such as k-means)

10 Unsupervised Learning 373
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Supervised versus unsupervised learning techniques

- Techniques for unsupervised learning are fast growing in a
number of fields, particularly biology.

- A cancer researcher might assay gene expression levels in 100
patients with breast cancer. They might then look for subgroups
among the breast cancer samples, or among the genes, in order
to obtain a better understanding of the disease.

- A search engine might choose what search results to display to
a particular individual based on the click histories of other
individuals with similar search patterns. These statistical
learning tasks, and many more, can be performed via
unsupervised learning techniques.

Adapted from James et al. 2013



Supervised versus unsupervised learning techniques

In contrast, unsupervised learning is often much more
challenging. The exercise tends to be more subjective, and there is
no simple goal for the analysis, such as prediction of a response.

Unsupervised learning is often performed as part of an
exploratory data analysis.

Hard to assess the results obtained given that there is no
universally accepted mechanism for performing cross-validation
or validating results on an independent data set; there is no way
to check how the models does because we don’t know the true
answer—the problem is unsupervised.

Adapted from James et al. 2013



Examples of Principal Component Analysis




Principal components analysis (PCA) - example 1

A subtype of childhood acute lymphoblastic leukaemiawith 2 @ ™
poor treatment outcome: a genome-wide classification study

Monique L Den Boer*, Marjon van Slegtenhorst*, Renée X De Menezes, Meyling H Cheok, Jessica G C A M Buijs-Gladdines, Susan T CJ M Peters,
LauraJ C M Van Zutven, H Berna Beverloo, Peter | Van der Spek, Gaby Eschericht, Martin A Horstmannt, Gritta E Janka-Schaubt,
Willem A Kampst, William E Evans, Rob Pieterst

Summary
Background Genetic subtypes of acute lymphoblastic leukaemia (ALL) are used to determine risk and treatment in Lancet Oncol 2009; 10: 125-34
children. 25% of precursor B-ALL cases are genetically unclassified and have intermediate prognosis. We aimed to  published online

use a genome-wide study to improve prognostic classification of ALL in children. January 9, 2009
DOI:10.1016/51470-

Quantification and Visualisation



Principal components analysis (PCA) - example 1

A subtype of childhood acute lymphoblastic leukaemiawith > @ &
poor treatment outcome: a genome-wide classification study

Monique L Den Boer*, Marjon van Slegtenhorst*, Renée X De Menezes, Meyling H Cheok, Jessica G C A M Buijs-Gladdines, Susan T CJ M Peters,
LauraJ C M Van Zutven, H Berna Beverloo, Peter | Van der Spek, Gaby Eschericht, Martin A Horstmannt, Gritta E Janka-Schaubft,
Willem A Kamps#, William E Evans, Rob Pieters

Summary
Background Genetic subtypes of acute lymphoblastic leukaemia (ALL) are used to determine risk and treatment in  Lancet Oncol 2009; 10: 125-34
children. 25% of precursor B-ALL cases are genetically unclassified and have intermediate prognosis. We aimed to  published Online

use a genome-wide study to improve prognostic classification of ALL in children. January 9, 2009
DO0I:10.1016/51470-

Data matrix: 190 observations by 22283 columns

Gene expression (22283 genes)

Gene expression
(190 patients)
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Principal components analysis (PCA) - example 1

PCA; Den Boer (2009); 190 samples * 22283 genes
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Each letter is a patient.
Labels stand for
different lymphoblastic
leukaemia (ALL) types.

Data matrix: 190
observations by 22283
columns.



Principal components analysis (PCA) - example 2

PRINCIPAL
COMPONENT
ANALYSIS

MULTIDISCIPLINARY APPLICATIONS

PCA - A Powerful Method
for Analyze Ecological Niches

Franc Janzekovi¢ and Tone Novak

University of Maribor, Faculty of Natural Sciences and Mathematics,
Department of Biology, Maribor

Slovenia




Principal components analysis (PCA) - example 2

2.1 Environmental niche of three hymenopteran and two spider species

Between 1977 and 2004, 63 caves and artificial tunnels were ecologically investigated in
Slovenia; the three most abundant Hymenoptera species found in these studies have been
ecologically evaluated (details in Novak et al. 2010a). In the caves, many environmental data
were collected, as follows. The following abbreviations of the environmental variables are
used: Dist-E = distance from entrance; Dist-S = distance from surface; Illum = illumination;
PCS = passage cross-section; Tair =air temperature; RH = relative air humidity; Tgr = ground
temperature; HY = substrate moisture. The hymenopteran spatial niche breadth was originally
represented by nine variables.

Data matrix: 63 observations (caves) by 9 columns

Environmental variables (9)

63 caves

PCA - A Powerful Method
for Analyze Ecological Niches

Franc Janzekovi¢ and Tone Novak

University of Maribor, Faculty of Natural Sciences and Mathematics,
Department of Biology, Maribor

Slovenia



Principal components analysis (PCA) - example 2
(pairwise correlation among environmental variables)

1 2 3 4 5 6 7 8 9
1 Air| 1.00
temperature | ---
air humidity 0.133 o

3 Ground| 0.94 0.18 1.00
temperature | <0.001 | 0.079 —

4575'51” 0388 | 059 | 037 | 1.00
Substrate | .4 001 | <0.001 | <0.001 | -
moisture
5 Airflow | 048 | 036 | 043 | 055 | 100
W1 <0.001 | <0.001 | <0.001 | <0.001 | -
6D15tfance 034 | 014 | -041 | 010 | 004 | 1.00
TOM I <0001 | 0.153 | <0.001 | 0312 | 0712 | -
entrance
7D15tfance 002 | 024 | 004 | 046 | -011 | 067 | 1.00
YoM 0837 | 0.017 | 0.683 | <0.001 | 0275 | <0.001 | -
surface

8 Passage| 0.35 | 0.17 | 0.23 039 | -040 | -0.11 0.05 1.00
cross-section | <0.001 | 0.089 | 0.025 | <0.001 | <0.001 | 0.274 | 0.656 —

9log| 045 | -0.18 0.46 -0.04 | -0.07 | -0.821 | -0.679 | 0.37 | 1.00
illumination | <0.001 | 0.077 | <0.001 | 0.690 | 0.494 | <0.001 | <0.001 | <0.001 | ---

Table 1. Pearson correlations coefficient among nine environmental variables. Significant
correlations in bold. (Upper row r, lower row p). PCA — A Powerful Method
for Analyze Ecological Niches

Franc Janzekovi¢ and Tone Novak

University of Maribor, Faculty of Natural Sciences and Mathematics,
Department of Biology, Maribor

Slovenia



Principal components analysis (PCA) - example 2
(niche differences — dots represent different caves ellipsoids are
confidence intervals for where species is found)

4
Each dot
3} A. armatorius e ' . | represents
E, longicorniy
a cave
2|

PC 2 (29.5%)
o

5. 4 . X o 0 1 2 3 4
PC 1 (37.6%)

Fig. 5. Ordination of the nine environmental variables in 1st and 2nd PC axes. Ellipses (95%
confidence) represent spatial niches in the three hymenopteran species.
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Principal Component Analysis (PCA): A geometric
interpretation

PCA finds the coordinate system (called principal components) that best represents the internal
variability in the data, essentially re-projecting the data on these coordinate system. As such, PCA
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.

Original data

® female birds ® male birds

26 28 30 32 34 36
skull size (mm)

Source https://wilkelab.org/SDS375/slides/dimension-reduction-1.html#9
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Principal Component Analysis (PCA): A geometric
interpretation

PCA finds the coordinate system (called principal components) that best represents the internal
variability in the data, essentially re-projecting the data on these coordinate system. As such, PCA
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.

Original data Standardization and PCA fitting
® female birds ® male birds
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Source https://wilkelab.org/SDS375/slides/dimension-reduction-1.html#9
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Principal Component Analysis (PCA): A geometric
interpretation

PCA finds the coordinate system (called principal components) that best represents the internal
variability in the data, essentially re-projecting the data on these coordinate system. As such, PCA
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.

Original data Standardization and PCA fitting Rotation
® female birds ® male birds
4.0
. ™ PC 1 5.0
° . PC2
T 2.0
os® Qo 25
° °.o.o 8
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e ¥ 2ol = N
Sy =
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.a ....
o
° -5.0
-4.0 5.0 25 0.0 2.5 5.0
26 28 30 32 34 36 4.0 2.0 0.0 20 4.0 PC1
skull size (mm) skull size (scaled)

PCA aligns their axes with directions of maximum variation in the data

Source https://wilkelab.org/SDS375/slides/dimension-reduction-1.html#9



Principal Component Analysis (PCA): A geometric
interpretation

- PCA constructs a new coordinate system (new
variables, PCs) which are linear combinations of
the original data and which are defined to align
the samples along their major axes of variation
(assuming linearity).

- Thus, PCA determines the coordinate system that
best represents the internal variability in the data,
essentially re-projecting the data.



The association among variables need to
be measured by either (in most cases):

Correlation Matrix (for variables that have
different units or scales, e.g., ph, temperature).

Covariance Matrix (variables have the same
units, e.g., body length & body width in cm).

Raw data when variables are in the same units
(more difficult to interpret) and calculations
differ (very rare to find applications in the
literature); rarely used.



Correlation versus covariance
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Original data | w————)

Correlation or
covariance matrix

/' \

eigenvalues

eigenvectors

The “mathematics” of

Principal Component
Analysis (PCA)

Scores of
observations




The mathematics of Principal Component
Analysis (PCA):

Eigen-analysis is a mathematical operation on a
square symmetric matrix (e.g., pairwise correlation
matrix, pairwise covariance matrix).

A square matrix has the same number of rows as
columns.

A symmetric matrix is the same if you switch rows
and columns.



(e.g., pairwise correlation matrix)

square and symmetric matrix

X, X, X X, X
1.00 0.80 0.90 0.78 0.87
0.80 1.00 0.76 0.87 0.78
0.90 0.76 1.00 0.78 0.89
0.78 0.87 0.78 1.00 0.95
0.87 0.78 0.89 0.95 1.00




The important components of Principal
Component Analysis (pun intended)




Principal component analysis presents three
important structures:

1 — Eigenvalues: represent the amount of
variation in the original data summarized by
each principal component. The first principal
component (PC-1) presents the largest
amount, PC-2 presents the second largest
amount, and so on.



Eigenvalues

X, X, X;3 X, Xs
X1 | 1.00 0.80 0.90 0.78 0.87 "
X, | 0.80 1.00 0.76 0.87 0.78
X, | 0.90 0.76 1.00  0.78 0.89 one
X, 0.78 0.87 0.78 1.00 0.95 1 : ”
X 0.87 0.78 0.89 0.95 1.00 d Imension
Eigenvalues:
PC eigenvalues %
1 4.354 0.871 T ower”
2 0.326 0.065 . : .
dimensionality
> 0229 0-045 because it kept a
4 0.093 0.019 | F f
5 0.002 0.000 arge proportion o
the variation in the
sum 5 000 1000 data in the first PC.



Percent total variance

80

60

40

20

Plot of eigenvalue contributions

PC

A B WODN -

sum

eigenvalues

4.354
0.326
0.225
0.093
0.002

5.000

%
0.871
0.065
0.045
0.019
0.000

1.000



Eigenvalues

1.00 0.87 0.96 0.04 0.05
0.87 1.00 0.95 0.03 0.07
0.96 0.95 1.00 0.04 0.05
0.04 0.03 0.04 1.00 0.84
0.05 0.07 0.05 0.84 1.00

Eigenvalues:

PC eigenvalues %

1 2.867 0.573

2 1.827 0.365

3 0.167 0.033

4 0.124 0.025

5 0.015 0.003 variation.
sum 5.000 1.000

“two
dimensions”

“Higher” dimensionality

because two components
are needed to summarize



Percent total variance

50

40

30

20
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Plot of eigenvalues

PC
1

g B~ WODN

sum

Component

eigenvalues

2.867
1.827
0.167
0.124
0.015

5.000

%
0.573
0.365
0.033
0.025
0.003

1.000



Principal component analysis presents three
important structures:

2 - Eigenvectors: Each principal component is
a linear function with coefficients for each
variable.

- Eigenvectors contain these coefficients. High

values, positive or negative, represents high
association with the component.



var

g b WON -

Correlation matrix

X, X, X, X, Xe

1.00 0.80 0.90 0.78 0.87
0.80 1.00 0.76 0.87 0.78
0.90 0.76 1.00 0.78 0.89
0.78 0.87 0.78 1.00 0.95
0.87 0.78 0.89 0.95 1.00

Associated eigenvectors

2

PC
3

4

5

0.447
0.432
0.445
0.450
0.462

-0.436 0.330
0.533 0.644 0.181
-0.534 0.035 0.692 0.192
-0.413 -0.063 0.619
-0.552 -0.109

0.489
-0.039

-0.687 0.170
-0.288

-0.684

£/

one
dimension”




Eigenvectors can be seen as regression coefficients, where
the component is the dependent variable. A “one
dimension” matrix has only one interpretable principal
component.

PC-1=0.447X,+0.432X,+0.445X5+0.450X,+0.462X,

\ Unlike the numbers after =, this is not a subtraction but a
hyphen stating that this is the first and second Principal Components (PC).

PC
var 1 2 3 4 5
0.447| 0436 0.330 -0.687 O,
0.432]| -0.533 ™.644 0.1 -0.288
0.445| 0.534 0.035><0.692 0.192
0.450| -0.489_~<0.413 -0.0 0.619
0.462| 0039 -0.552 -0.109 -0.684

g b WODN -




Eigenvectors (simulated data with 1 dimension): only first axis
(PC-1) should be interpreted

PC axis
variable 1
1 0.447
2 | 0432
P e ——— 3 | 0.445
4 | 0450
5 | 0.462

Component 1 variance: 85.258%, p=0.01




Correlation matrix

X, X, X, X, Xe

1.00 0.87 0.96 0.04 0.05
0.87 1.00 0.95 0.03 0.07
0.96 0.95 1.00 0.04 0.05
0.04 0.03 0.04 1.00 0.84
0.05 0.07 0.05 0.84 1.00

“two
dimensions”

Associated eigenvectors (only interpret the first two components (PC)

var

g B WO N -

PC
1 2 3 4 5
0.569 [|-0.064 49 -0.642 0.
0.567 [|-0.060 | -0.2938\_0.661_~0.386
0.585 [|-0.067 | 0.061 0 -0.806
0.072 | 0.704 | 0.65F¥ 0.273 N0.039
0.085 || 0.702 | >0.650 -0.277 -0.0

nnnnnnnnn



=0.01

Component 2 variance: 36.974%, p

Eigenvectors (simulated data with 2 dimensions): only first two
axis (PC-1 & PC-2) should be interpreted

Component 1 variance: 57.703%, p=0.01

PC axis

var 1 2
1 10.569 -0.064
2 |0.567 -0.060
3 [0.585 -0.067
4 (0.072 0.704
5 [0.085 0.702
[ —

nnnnnnnnn



Principal component analysis presents three
important structures:

3 — Multivariate scores: Since each component is a linear
function of the variables, when multiplying the
standardized variables (in the case of correlation matrices)
by the eigenvector structure, a matrix containing the
position of each observation in each principal component
is produced.

The plot of these scores in the first few dimensions,
represents the main patterns of variation among the
original observations (more in the empirical example).

PC-1=0.569X,+0.567X,+0.585X5+0.072X,+0.085X:
PC-2=-0.064X,-0.060X,-0.067X5+0.704X,+0.702Xs



pca.restult.1d$Fixed.Data$ExPosition.Data$fi[,2]

PCA Scores: one versus two dimensions

pca.restult.2d$Fixed.Data$ExPosition.Data$fi[,2]

6 -4 2 0 2 4 6
-6 -4 -2 0 2 4

pca.restult.1d$Fixed.Data$ExPosition.Data$fi[,1] .
pca.restult.2d$Fixed.Data$ExPosition.Data$fi[,1]



Original data | w————)

Correlation or
covariance matrix

/' \

eigenvalues

eigenvectors

The “mathematics” of

Principal Component
Analysis (PCA)

Scores of
observations




Next lecture: How many PCA dimensions?
Inferential frameworks for determining number
of axes to interpret and the significance of each
variable on each axis (lots of work on this area).

15t) determine how many axes to interpret (i.e.,

how many PCs capture correlated variation in the
data?).

Available online at www.sciencedirect.com

SClENCE@DlRECTE COMPUTATIONAL

, STATISTICS

"2 s & DATA ANALYSIS
ELSEVIER Computational Statistics & Data Analysis 49 (2005) 974—997

www.elsevier.com/locate/csda

How many principal components? stopping rules for
determining the number of non-trivial axes revisited

Pedro R. Peres-Neto*, Donald A. Jackson, Keith M. Somers



