Tackling important statistical assumptions.
1) The issue of normality (last lecture):
2) The issue of homogeneity of variances (today):

- Standard (e.g., ANOVAs, regressions) assume
homoscedasticity.

- Robust approaches (Welch’s ANOVA, Weighted
least squares) are good to deal with
heteroscedasticity.

REMINDER: Classic non-parametric tests (ranked data,
permutation tests) are often considered those tests that
can handle non-normal data.

There is a common misunderstanding (however) in the
statistical literature, including many biostatistics books, that
non-parametric tests can also handle differences in
variances among samples (because the term “non-
parametric”, it is often assumed that they are completely
assumption free.

THIS IS NOT TRUE! They are also affected by variance
differences among groups (e.g., the Kruskal-Wallis,
ANOVAs on ranks).

Example: test variance differences in ranks (rarely done in
the literature but necessary)!

ANOVA design pipeline (also applies to regression; later on in the semester)

Can we assume that variables are normally
distributed within each combination of
treatment? (Residual Normal QQ Plot)

|NO|J—|YES|

Data Transformation
(rank, log, square root, etc)
I

Are variances equal among
all populations?

(Levene’s test)

o —Lves ]

Are variances equal among
all populations?
(Levene’s test)

transformation

squares

Welch's ANOVA
Weighted least
squares

Kruskal-Wallis

Welch’'s ANOVA ANOVA
Weighted least I—,
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ANOVA design pipeline — let’s use some normally distributed
homoscedastic simulated data to understand
the Weighted Least Squares approach (WLS)

30 Gi(n=1000 30 G (n=80) 30 G3 (n=120)
25 25 25
20 20 20
15 15 15
10 10 10

5 5 5

O Tt O ©

4 8 12 8 14 10 16

One-factorial design - 3 groups, normally distributed
homoscedastic data (o = o2 = 2= 4), varying in means
(12 =10,p2 = 12,42 = 14)

[1] — Can we assume that variables are normally distributed within each
combination of treatment? (Residual Normal Q-Q Plot)

% Normal Q-Q normal residual plot
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o0 16 = (normally distributed)

Y = Factor(G1, G2) + residuals

[2] — Can we assume that variances are equal among populations?

(Levene’s test)
YES
Can we assume that
- i al among
Can we assume that variables are normally panances a;e CoNElE
distributed in each combination of FepEReIER (ETErss )
o) :
treatment? (Residual Normal Q-Q Plot) | NO YES |
[ I
Welch’s ANOVA I ANOVA I
ANOVA design pipeline | Weighted least
squares
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[2] — Can we assume that variances are equal among populations?
(Levene’s test); well, we simulated data, so no big surprises

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 0.223 0.8003
297

YES

Can we assume that
variances are equal among
populations? (Levene’s test)

Can we assume that variables are normally
distributed in each combination of

treatment? (Residual Normal Q-Q Plot) |
NO |_|_| YES |
[ I
Welch’s ANOVA ANOVA
| ANOVA design pipeline | Weighted least Lavow J
squares

Can we assume that variances are equal among all populations?
(alternative to the Levene’s test and they way to understand WLS)

Gt 8 Gz

|
|

@ o

|residuals|
5

0.5

®o® comommEDaHED

T T - T
1 12 13 14
Predicted means per group

The plot between the square root of the absolute ANOVA residuals (i.e., deviations from the
predicted mean group) against predicted mean group (you will see this one in the tutorial)
should look like a straight line (constant variance). The Breusch-Pagan test can be
employed to determine whether a deviation from a straight line is significant (we will use
this test to assess homoscedasticiy in regressions).

ANOVA design pipeline — let’s use some normally distributed
heteroscedastic simulated data to understand Weighted Least Squares

G1(n=100) G2 (n=80) G3 (n=120)
35 35 35
30 30 30
25 25 25
20 20 20
15 15 15
10 10 10
5 5 5
0 0 0
0 15 30 0 15 30 0 15 30

One-factorial design - 3 groups, normally distributed
heteroscedastic data (o7 = 4,07 = 6.25, g2=9), varying in means
(12 =10,p2 = 12,42 = 14)
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combination of treatment? (Residual Normal Q-Q Plot)

[1] — Can we assume that variables are normally distributed within each

Normal Q-Q normal residual plot

Standardized residuals

Theoretical quantiles
(normally distributed)

10
Can we assume that variances are equal among populations?
(Levene'’s test)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 2 12.295 7.414e-06 ***
297
YES
Are variances equal among
ions?
Are variables normally distributed in each ?:{gf&i??;;j
combination of treatment?
(Residual Normal Q-Q Plot) | NO YES |
I I
Welch’s ANOVA ANOVA
| ANOVA design pipeline | Weighted least [awov |
squares (WLS)
11

Can we assume that variances are equal among populations?
(Levene’s test)

We can use the square of the residuals to assess that;
Note that the average of residuals is always zero.

First, we estimate the residuals of the ANOVA:

Y = Factor(G1,G2) + residuals

Then, for each group, square their respective residuals

residuals \/[Fesiduals

-0.9723056 0.9860556

-0.7130241 0.8444075
0.1944611 0.4409774

1.3612278 1.1667167

-0.8426648 0.9179678 Group 1 var(residuals®)=0.005018537

09723056  0.9860556 Group 2 var(residuals?)=0.142741

Using here a “tiny” small number of
|Tresiduals]=square root of absolute values observations for demonstration purposes

12
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Can we assume that variances are equal among populations?
(alternative to the Levene’s test and they way to understand WLS)

(0% = 4,02 = 6.25,02=9) (u? = 10,p2 = 12,u% = 14)
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Predicted means per group (order of groups from small to large variance)

The plot between the square root of the absolute ANOVA residuals (i.e., deviations from
the predicted mean group) against predicted mean group (you will see this one in the
tutorial) should look like a straight line (constant variance). It doesn't here, so clearly
indicating heteroscedasticity in the data.

13

Can we assume that variances are equal among populations?
(alternative to the Levene’s test and they way to understand WLS)

(02 = 4,07 = 6.25,02=9) (u? = 10,u3 = 12,2 = 14)

|residuals|

Predicted means per group

The plot between the square root of the absolute ANOVA residuals (i.e., deviations from
the predicted mean group) against predicted mean group (you will see this one in the
tutorial) should look like a straight line (constant variance). It doesn’t here, so clearly
indicating heteroscedasticity in the data.

14

ANOVA is a regression model!

They differ in “design” but not in
calculations!

15
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The weighted least square (WLS) approach for dealing with heteroscedasticity

Welch’s ANOVA covered in Intro Stats and can only deal with
single factorial ANOVA designs

Today:

1) How does heteroscedasticity affect residual variation in
ANOVAs?

And
2) How can we use the weighted least squares (WLS) approach to

deal with heteroscedasticity in ANOVAs
(original data or ranked-based ANOVA)

16

The weighted least square (WLS) approach for dealing with heteroscedasticity

Welch’s ANOVA covered in Intro Stats and can only deal with
single factorial ANOVA designs

Today:

1) How does heteroscedasticity affect residual variation in
ANOVAs?

And
2) How can we use the weighted least squares (WLS) approach to

deal with heteroscedasticity in ANOVAs
(original data or ranked-based ANOVA)

But first we need to understand that:

ANOVA is a regression model

17
ANOVA is a regression model where the response variable is continuous and the
predictors are categorical; the categorical predictors are coded in such a way that
an ANOVA becomes a regression problem
Let’s use a tiny fictional example with 2 groups (control, Group_1)
Response Factor (predictor)
1.2 control
2.7 control
31 control
4.1 Group_1
53 Group_1
6.1 Group_1
18
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ANOVA is a regression model where the response variable is continuous and the

predictors are categorical.
Response Factor (predictor) Contrast
12 control 0
2.7 control 0
31 control 0
4.1 Group_1 1
53 Group_1 1
6.1 Group_1 1

Contrasts are numerical values that can be used directly into a regression model
so that ANOVA becomes estimating a regression model; The ANOVA of the
regression model has then exactly the same results as the standard ANOVA.

19

ANOVA is a regression model where the response variable is continuous and the
predictors are categorical.

Atiny example:

groups c ; 5 0
values C , , B , ,

Running ANOVA using the R function aov:

Df Sum Sq Mean Sq F value Pr(>F)

groups 112.042 12.042 11.94 0.0259 *
Residuals 4 4.033 1.008

20

ANOVA is a regression model where the response variable is continuous and the
predictors are categorical.

Atiny example:

groups c s , s ’ ’
values (d

Running ANOVA using the R function aov:

Df Sum Sq Mean Sq F value Pr(>F)
112.042 12.042 11.94 0.0259 *
4 4.033 1.008

Running ANOVA using the R function /m (linear model = regression) setting group as a factor:

Analysis of Variance Table

Response: values

Df Sum Sq Mean Sq F value Pr(>F)
factor(groups) 1 12.0417 12.0417
Residuals 4 4.0333 1.0083

2/5/25
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Let's (quickly) revisit a simple regression model (as seen in Intro Stats). More on
regressions later in our Multiple Regression module

Y = ﬁo + ﬁlX +e - e represents the vector of
LA L

residual values.

ﬁ — (XTX)—l XTY - Slope and intercept estimated by
one single operation via Ordinary
Least Squares (OLS).

22

Simple regression model

Y = ﬂO + ﬂlX +e - e represents the vector of
I L A

residual values.

ﬁ — (XTX)—l XTY - Slope and intercept estimated by
one single operation via Ordinary
Least Squares (OLS).

Y = ,80 + ,31X - ¥ is called Y-hat and is a vector
 S— containing predicted values.

23

Simple regression model

Y = + X+e -e represents the vector of
ﬁo ﬁl residual values.

ﬁ — (XTX)—l XTY - Slope and intercept estimated by
one single operation via Ordinary
Least Squares (OLS).

Y = ﬁO + ﬁlX - ¥ is called Y-hat and is a vector
containing predicted values.

e=Y-Y - e represents the vector of
residual values.

24
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ANOVA as a regression model

Y = [)’0+[)71X+€

Y = Bo+BX
B = (XTX)—l XTy back to our tiny example
ﬁo = 2.333 S ﬁ]_: 2.833 p 1 \
Response (Y) Constant (8,) Predictor ()
12 1 0
27 1 0
31 1 0
41 1 1
53 1 1
6.1 1 1
25
ANOVA as a regression model
Y=PB,+pX+e 7 = 2333 + 2.833X;
Y= By +BX e=Y-Y
T 1 T - ¥ is called Y-hat and represents the
— - f predicted values.
=" XTY e e
values.
Bo = 2.333 - B, =2.833
Response (Y) Constant (£,) Predictor Xu (;) ? e
1.2 1 0 233 -1.13
2.7 1 0 233 0.37
31 1 0 233 0.77
4.1 1 1 5.17 -1.07
53 1 1 5.17 0.13
6.1 1 1 5.17 0.93
26
ANOVA as a regression model
Response (Y) Constant (5,) Predictor (f;) 7 e
12 a 1 0 233 -1.13
27 X 1 0 233 037
31 1 0 233 0.77
4.1 _ 1 1 5.17 -1.07
53k X 1 1 517 0.13
6.1 1 1 5.17 0.93

In ANOVAs, predicted values are the predicted mean
values per group

27
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ANOVA as a regression model

Response (Y) Constant (5,) Predictor (f;) 7 e
12] _ 1 0 233 113
27 X 1 0 233 037
31 1 0 233 0.77
41 _ 1 1 5.17 -1.07
53k X 1 1 517 0.13
6.1 1 1 5.17 0.93

es=6.10-5.17 = 0.93

In ANOVASs, predicted values are the predicted mean values per group, and
residuals (e) represent variation around the observed group mean not
explained by the regression model (or ANOVA).

28

Plot between the square root of the absolute ANOVA residuals (i.e., deviations
from the predicted mean group) against predicted mean per group

Response (Y) Constant (8o) Predictor () 7 e
12 E g 239011 Variance of residuals looks ok,
27 1 o 233 om ° -
& a o e o particularly given the small
41 1 1 s 07 number of replicates per
53 1 1 517 on
61 1 1 5.17 093 gl’OUpA
© o
1 | o
i : o
g |
S 0.8
3 °
£ 0.6
0.4 °

T T T

T T T
25 35 45

Predicted mean per group (¥)

29

Plot of residuals on predicted values (ANOVA as a regression model) versus
standard Levene’s test for testing for homoscedasticity among groups

Response (Y)  Constant (fg)  Predictor () 14 e
12 1 o 233 113
27 o 23 o
31 o 23 o7 F value
a1 1 517 107 gold il .0034 0.

1
1

Levene’s test

53 517 013 4
61 517 093

Variance of residuals are ok!

|

o

1.0
0.8

|residuals|

0.6

0.4 - T T T ™
2.5 3.5 4.5

Predicted means per group

30
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Coding for predictors with 3 groups (more groups and more factors, more predictors)

Response Factor Constant (8,)  Predictor (8,) Predictor (83,)
12 control 1 0 0
27 control 1 0 0
31 control 1 0 0
4.1 Group_1 1 1 0
53 Group_1 1 1 0
6.1 Group_1 1 1 0
81 Group_2 1 0 1
9.4 Group_2 1 0 1
10.1 Group_2 1 0 1

Y= Bo+ B1X1+BX, +e

Multifactorial ANOVAs become then multiple regression models

31
How does heteroscedasticity affect
variance of residual variation in
ANOVAs?
32

Here we will understand:

i> 1) How heteroscedasticity affects variance of residual
variation in ANOVAs

And

2) How weighted least squares (WLS) approach can be used to
deal with heteroscedasticity in ANOVAs

33
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GOING BACK TO the simulated normally distributed
homoscedastic simulated data

30 Gi(n=1000 30 G (n=80) 30 G3 (n=120)
25 25 25
20 20 20
15 15 15
10 10 10
5 5 5
O Tt O ©
4 8 12 8 14 10 16

One-factorial design - 3 groups, normally distributed
homoscedastic data (o = o = 2= 4), varying in means
(12 =10,p2 = 12,42 = 14)

34

One-factorial design - 3 groups, normally distributed homoscedastic
data (0f = o7 = 0%=4),
varying in means (u? = 10,42 = 12,42 = 14)

5 simulated data sets

T T T T
1 12 13 14

Predicted means per group

35

One-factorial design - 3 groups, normally distributed
homoscedastic data (o7 = o2 = = 4), varying in means
(M2 =10,pu3 = 12,42 = 14)
1000 simulated data sets
1.2 - Sample variation from
' homoscedastic
_ 11 populations -
2 1.0
§ 0.9 Ho for population mean (x)
g 0.8 differences is set to
% 0.7 FALSE.
0.6 ) .
Ho for population variance
0.5 - ) )
! T T T T differences (o) is set to
10 11 12 13 14 TRUE
Predicted means per group
36
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heteroscedastic data (o}

One-factorial design - 3 groups, normally distributed

= 4,07 = 6.25,0%=9),

varying in means (u? = 10,43 = 12,2 = 14)

1000 simulated data sets

Sample variation from

:]] % heteroscedastic
= 4 populations -
=10
S
g 82 Ho for population mean (u)
o 0'7 differences is set to
= 2 FALSE.
0.6
0.5 T T T T T Ho for population variance
10 11 12 13 14 differences (o) is set to
Predicted means per group FALSE.
37

One-factorial design - 3 groups, normally distributed
homoscedastic data (o6 = o = 2= 4) and heteroscedastic data
(02 = 4,07 = 6.25,02=9),

varying in means (u? = 10,u2 = 12,2 = 14)

1000 simulated data sets

Homoscedastic population Heteroscedastic population
- 121 1.2
2 11 1.1
3
S 1.0 1.0
= 00 0.9
&
S 08 0.8
= 07 0.7
0.6 | 8-2
05 B T T T T T !
10 11 12 13 14 10 11 12 13 14
Predicted means per group Predicted means per group
120 8 1000 simulated For the same mean differences
_ a data sets among populations, the F-statistic
.g 100 X (based on samples) is much smaller
;.U:) 80 - ! for heteroscedastic populations,
E 9 i.e., smaller statistical power in
] 60 - - 4?* contrast to the F-statistic for
[T | homoscedastic populations.
404 | e
.
! w=10,u =125 =14
20 — ’ ’
T T
Homoscedastic Heteroscedastic
population population
- 12 1.2
N 1.1
g 1.0 1.0
= 09 09
% o] 07
Y 0.6
= o5 0.5
ot 1zo13 14 10 11 12 13 14
2 = g2 =0g2=4 2 _ 2 _ 2_
0f =05 =03 of =4,07 = 6.25,05=9
Predicted means per group
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On the other hand, when samples are taken from populations with the same
means, but their variances vary (heteroscedastic) then Type | error can increase!

(this will be demonstrated in TUTORIAL 5)
Sample variation from heteroscedastic populations:
Ho for population mean (i) differences is set to TRUE.

Ho for population variance differences (o) is set to FALSE.
AUSTRIAN JOURNAL OF STATISTICS
Volume 36 (2007), Number 3, 179-188

How to keep the Type I Error Rate in ANOVA
if Variances are Heteroscedastic

Karl Moder
Institute of Applied Statistics and Computing,
University of Natural Resources and Applied Life Sciences, Vienna

Abstract: One essential prerequisite to ANOVA is homogeneity of variances
inunderlying populations. Violating this assumption may lead to an increased
type Lerror rate. The reason for this undesirable effect is due to the caleulation
of the corresponding F- keeps the
level a. The underlying distribution of Hotelling’s
T elling’s 7 can be approximated by a Fisher's F-distribution, this
alternative test is very similar o an ordinary analysis of variance.

40

Here we will understand:

1) How heteroscedasticity affects variance of residual variation in

ANOVAs @

And

i> 2) How weighted least squares (WLS) approach
can be used to deal with heteroscedasticity in ANOVAs

41

The weighted least squares (WLS) approach

f=XTX)"tXTy (OLS)
f=X"WXx)"* XTwy (WLS)

OLS and WLS are equal

when W is an identity
matrix in which all
(main) diagonal
elements equal to 1,
i.e., all observations
have the same weight
in the regression
estimates.

S

1
el ele|le| el
© ©o o o r O
© o o » o o
o O » O O O
o r O o o o
» O 0o o o o

42
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The weighted least squares (WLS) approach
Let’s understand how weights change statistical estimates
(the case of the weighted mean)

1X24+2X3+3X4+4X5 Weighted mean
=2.86 Weights = 2,3,4,5
14
wz 2.5 regular mean
4
1X54+2X4+3X3+4X2 Weighted mean
14 =2.14 Weights = 5,4,3,2 ﬂ

43

The weighted least squares (WLS) approach
Let’s understand how weights change statistical estimates
(the case of the weighted mean)

1X2+2X3+3X4+4X5 Weighted mean
12 =2.86 Weights = 2,3,4,5

14+1+2+24+2+3+3+3+3+4+4+4+4+4 40
14 14

2.86

44

The weighted least squares (WLS) approach

f=XTX)"tXTy (OLS)
f=X"Wx)"* XTwy (WLS)

Variance of
Response (Y) Constant (8,) Predictor (8;) 7 e residuals
per group
12 1 0 233 -1.13
2.7 1 0 233 0.37 1.003333
31 1 0 233 0.77
4.1 1 1 5.17 -1.07
53 1 1 5.17 0.13 1.013333
6.1 1 1 5.17 0.93

45
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The weighted least squares (WLS) approach —
more variance, less influence in the regression estimation

f=XTX)"tXTy (OLS)
f=X"WXx)"* XTwy (WLS)
/ /

W=1/8%roup

In OLS, each observation has the same weight (inform the model
in the same way. In WLS, we treat each observation as more
(smaller group residual variance) or less (larger groups residual
variance) informative about the underlying relationship between
XandY.

46

The weighted least squares (WLS) approach —
more variance, less influence in the regression estimation

B = (XTX) 1 XTY (OLS)
ﬂ = (XTWX)_l XTWY (WLS) 1/ Variance of

residuals
per group
0997 0 0 0 0 0
/ 0 0997 0 0 0 0 1/1.003333
W= 1/ 0 0 0997 0 0 0
0 0 0 09% 0 0
0 0 0 0 099 0 1/1.013333
0 0 0 0 0 099

L

The influence of each observation is the inverse of its
group residuals variance (i.e., reciprocal, 1/variance)

For the same mean differences among populations, the F-statistic (based on samples)
is much smaller for heteroscedastic populations, i.e., smaller statistical power in
contrast to the F-statistic for homoscedastic populations. The WLS makes it more
powerful (larger F-values) and much closer to what is expected for homoscedastic
populations.
w =10, =124 =14
120 %
oLs oLs WLS
100 1
I
R | £
g 80 | . :
= o
T 60 -
L _ ! i
40 ' ‘ .
20 L
T T T
Homoscedastic Heteroscedastic
population population
02 =0}=0}=4 o =4,0}=6250%=9
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