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Abstract. We prove the following dichotomy. Given an analytic equivalence
relation E, either EN

0 ≤B E or else any Borel homomorphism from EN
0 to E is

“very far from a reduction”, specifically, it factors, on a comeager set, through the
projection map (2N)N → (2N)k for some k ∈ N. As a corollary, we prove that EN

0

is a prime equivalence relation, answering a question on Clemens.

1. Introduction
Let E and F be equivalence relations on Polish spaces X and Y respectively. A

map f : X → Y is said to be a reduction of E to F if for any x1, x2 ∈ X,

x1 E x2 ⇐⇒ f(x1) F f(x2).

We say that E is Borel reducible to F , denoted E ≤B F if there is a Borel
measurable function which is a reduction of E to F . Borel reducibility is the most
central concept in the study of equivalence relations on Polish spaces.

A map f : X → Y is a homomorphism from E to F , if for any x1, x2 ∈ X,

x1 E x2 =⇒ f(x1) F f(x2).

We write f : E →B F to denote that f is a Borel measurable homomorphism from
E to F . To prove an irreducibility result, say that some E is not Borel reducible
to F , many times the argument takes the following outline: take an arbitrary Borel
homomorphism from E to F , and prove that it cannot be a reduction.

This paper concerns the equivalence relation EN
0 , often denoted by E3, which plays

a central role in the theory of Borel equivalence relations. For more background the
reader is referred to [HK97, HK01, Kan08, Gao09]. For instance, the dichotomy
proved in [HK01] implies that EN

0 is an immediate successor of E0 with respect to
≤B.
Recall that E0 on 2N is defined as the eventual equality relation between binary

sequences. Equivalently, E0 is the orbit equivalence relation induced by the action⊕
n∈N Z2 ↷ 2N. For a setX, define EX

0 on (2N)X as the product equivalence relation.
Equivalently, EX

0 is the orbit equivalence relation induced by the point-wise action
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(
⊕

n∈N Z2)
X ↷ (2N)X , where (

⊕
n∈N Z2)

X is the (full support) product of X many
copies of

⊕
n∈N Z2.

For k ∈ N, let πk : (2
N)N → (2N)k be the projection map. Note that πk : E

N
0 →B Ek

0

is Borel homomorphism. For each k ∈ N, Ek
0 is Borel bireducible with E0. So

{πk : k ∈ N} is a family of Borel homomorphisms from EN
0 to a Borel equivalence

relation which does not reduce EN
0 . We prove that, generically, these are essentially

all the Borel homomorphisms from EN
0 to analytic equivalence relations which do

not reduce EN
0 .

Theorem 1.1. Let E be an analytic equivalence relation. Either

• EN
0 is Borel reducible to E, or

• for any Borel homomorphism f : EN
0 →B E there is k ∈ N so that f fac-

tors through πk on a comeager set, that is, there is a Borel homomor-
phism h : Ek

0 →B E, defined on a comeager set, so that for comeager many
x ∈ (2N)N,

h ◦ πk(x) E f(x).

EN
0

Ek
0

πk

E

f

h

Figure 1. (∀f : EN
0 →B E)(∃k ∈ N ∃h : Ek

0 →B E)

1.1. Primeness for equivalence relations. From the point of view of the study of
Borel reducibility as the study of definable cardinality of quotients of Polish spaces,
a Borel homomorphism corresponds to a definable map between two such quotients,
and a Borel reduction corresponds to an injective map.

Definition 1.2 (Clemens [Cle22]). Let E and F be Borel equivalence relations on
Polish spaces X and Y respectively. Say that E is prime to F if for any Borel
homomorphism f : E →B F , E retains its complexity on a fiber, that is, there is
y ∈ Y so that E is Borel reducible to E ↾ {x ∈ X : f(x) F y}.

Primeness is a strong form of Borel-irreducibility, which holds between many pairs
of benchmark equivalence relations (see [Cle22, Theorem 1]).

In the classical context of cardinality, primeness corresponds to a pigeonhole prin-
ciple: any function f : A → B has a fiber of cardinality |A|. This is true if and only
if the cardinality |B| is strictly smaller than the cofinality of |A|. Recall that the
cardinality |A| is regular if it is equal to its cofinality. This is true if and only if for
any |B| < |A|, any function from A to B has a fiber of size |A|.
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Following this analogy Clemens defined regular equivalence relation as follows.
In the context of definable cardinality, when not every two sizes are comparable, the
stronger notion of a prime equivalence relation is also of interest.

Definition 1.3 (Clemens [Cle22]). Let E be a Borel equivalence relation.

• E is prime if for any Borel equivalence relation F , either E ≤B F or E is
prime to F .

• E is regular if for any Borel equivalence relation F , if F <B E then E is
prime to F .

For example, it follows from the celebrated E0-dichotomy [HKL90] that E0 is
prime. The EN

0 dichotomy proved by Hjorth and Kechris [HK01] implies that EN
0

is regular. (See [Cle22, Section 4].) Clemens [Cle22, Question 4.2] asked if EN
0 is in

fact prime.

Theorem 1.4. For any analytic equivalence relation E, either EN
0 ≤B E or EN

0 is
prime to E. In particular, EN

0 is prime.

Proof. Fix an analytic equivalence relation E which does not Borel reduce EN
0 , and

fix a Borel homomorphism f : EN
0 → E. By Theorem 1.1, there is k ∈ N and a

comeager set C ⊆ (2N)N so that f factors through πk on C. We identify (2N)N with
(2N)k× (2N)N\k. By the Kuratowski-Ulam theorem [Kec95, Theorem 8.41 (iii)] there
is y ∈ (2N)k so that Cy =

{
z ∈ (2N)N\k : (y, z) ∈ C

}
is comeager in (2N)N\k. Note

that {y} × Cy is contained in a fiber of f . We conclude the proof by showing that
EN

0 ≤B EN
0 ↾ {y} × Cy.

Since EN
0 ↾ {y} × (2N)N\k is isomorphic, via a homeomorphism, to EN

0 , it suffices
to show that EN

0 ≤B EN
0 ↾ C for any comeager set C in the domain of EN

0 . We will
give a proof of this fact in Section 3.5 below. Here we mention that it follows from
the EN

0 dichotomy of Hjorth and Kechris [HK01], as EN
0 ↾ C is not Borel reducible

to E0, for any comeager set C. □

2. A generic dichotomy for homomorphisms for E0

In this section we note that the primeness dichotomy of E0 is also true for all
analytic equivalence relations. This follows from the following generic dichotomy
for Borel homomorphisms.

Theorem 2.1. Let E be an analytic equivalence relation. Then either

• E0 ≤B E or
• any Borel homomorphism f : E0 →B E sends a comeager subset of 2N into
a single E-class.

Remark 2.2. The theorem follows from the Ulm-invariants dichotomy of Hjorth
and Kechrish [HK95], since if E is Ulm classifiable then the second bullet holds.
The dichotomy in [HK95] is proved assuming the existence of sharps for reals.
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We include a direct proof below (not using any set theoretic assumptions). The
dichotomy for homomorphisms is much easier to prove than the E0-dichotomies. In
fact, these ideas can be found as part of the proof of any E0-dichotomy.

This is one of the motivations to study such generic dichotomies for homomor-
phisms. While, beyond E0, there are no more dichotomies quite like the E0-
dichotomy (see [KL97, Theorem 5.1]), a generic analysis of all Borel homomorphisms
is one aspect of the E0-dichotomy which we can be generalized beyond E0.

Given two equivalence relations F and E on the same domain, say that E extends
F if F ⊆ E. Let F and E be equivalence relations on domains X and Y respectively.
Given a function f : X → Y , define the pullback of E as the equivalence relation E∗

on X defined by x E∗ y ⇐⇒ f(x) E f(y). Note that f is a Borel homomorphism
from E to F if and only if E∗ extends E. Furthermore, f sends a comeager subset
of X to a single E class if and only if E∗ has a comeager class. Theorem 2.1 is
equivalent to the following.

Theorem 2.3. Let E be an analytic equivalence relation on 2N which extends E0.
Then either

• E0 ≤B E or
• E has a comeager class.

Fact 2.4. Let C ⊆ 2N×2N be comeager. There is a Borel homomorphism f : E0 →B

E0 so that if x ̸E0 y then (f(x), f(y)) ∈ C.

This fact is commonly used when building reductions from E0. For example, the
map α1 defined in Section 3.3, using the set D0,1 = C ⊆ (2N)2 in that construction,
satisfies the conclusion in Fact 2.4.

To prove Theorem 2.3, let E be an analytic equivalence relation which extends
E0 and does not have a comeager class. It follows that C = 2N×2N \E is comeager.
Then f as above is a reduction of E0 to E.

3. A generic dichotomy for homomorphisms for EN
0

Towards the proof of Theorem 1.1, we begin with some technical lemmas.

3.1. Symmetries of EN
0 . In this section we prove a lemma regarding Vaught trans-

forms for the action (
⊕

n∈N Z2)
N ↷ (2N)N.

Let X and Y be infinite sets and consider the space (2X)Y with the product
topology. Let G = (

⊕
x∈X Z2)

Y , acting on (2X)Y in the natural way. We consider
G as a topological group with the product topology, where

⊕
x∈X Z2 is taken with

the discrete topology. Let Γ be the subgroup of G of all finite support sequences.
That is, g ∈ Γ if g(y) is the identity for all but finitely many y ∈ Y .
Given a subset Y0 ⊆ Y , identify (2X)Y with (2X)Y0 × (2X)Y \Y0 . For a ∈ (2X)Y0

and D ⊆ (2X)Y , define Da =
{
b ∈ (2X)Y \Y0 : (a, b) ∈ D

}
⊆ (2X)Y \Y0 .
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Lemma 3.1. Fix a dense open D ⊆ (2X)Y and ζ ∈ (2X)Y . Assume that for any
finite Y0 ⊆ Y and for any γ ∈ Γ,

Dγ·ζ↾Y0 ⊆ (2X)Y \Y0

is not empty. Then
{g ∈ G : g · ζ ∈ D}

is dense open in G.
In particular, ifD is assumed to be comeager, then we conclude that {g ∈ G : g · ζ ∈ D}

is comeager.

Proof. First, as the mapG → (2X)Y , g 7→ g·ζ, is continuous, then {g ∈ G : g · ζ ∈ D}
is open as the pre-image of D. To show that {g ∈ G : g · ζ ∈ D} is dense, fix a finite
set Y0 ⊆ Y and some π ∈ (

⊕
x∈X Z2)

Y0 . We need to find some g ∈ G extending π
so that g · ζ ∈ D.

By assumption, Dπ·ζ↾Y0 ⊆ (2X)Y \Y0 is a non-empty open set. As all orbits of the
action (

⊕
x∈X Z2)

Y \Y0 ↷ (2X)Y \Y0 are dense, we may find some g ∈ G extending π
so that (g ↾ Y \ Y0) · (ζ ↾ Y \ Y0) ∈ Dπ·ζ↾Y0 , and therefore g · ζ ∈ D. □

3.2. A reformulation. For k ∈ N, we can view Ek
0 as an equivalence relation on

(2N)N, defined by x Ek
0 y ⇐⇒ x ↾ k Ek

0 y ↾ k. That is, by identifying Ek
0 with its

pullback via the homomorphism πk : E
N
0 →B Ek

0 . We therefore view

E0 ⊇ E2
0 ⊇ E3

0 ⊇ · · · ⊇ EN
0

as a descending sequence of equivalence relations on (2N)N.
We will prove Theorem 1.1 in the following equivalent form.

Theorem 3.2. Let E be an analytic equivalence relation on (2N)N which extends
EN

0 . Then either

• EN
0 ≤B E or

• there is k ∈ N so that E extends Ek
0 on a comeager set.

Proof of Theorem 1.1 from Theorem 3.2. Let E be an analytic equivalence relation
and f : EN

0 →B E a Borel homomorphism, and assume that EN
0 is not Borel reducible

to E. Let E∗ on (2N)N be the pullback of E. Then E∗ extends EN
0 , and EN

0 is
not Borel reducible to E∗. By Theorem 3.2 there is some k ∈ N and a comeager
C ⊆ (2N)N so that for x, y ∈ C,

x ↾ k Ek
0 y ↾ k =⇒ x E∗ y.

Let Ck be the set of all ξ ∈ (2N)k so that the fiber Cξ ⊆ (2N)N\k is comeager. Fix
a Borel map g : Ck → C so that g(ξ) ↾ k = ξ. Then g is a homomorphism from
Ek

0 to E∗, and therefore h = f ◦ g is a homomorphism from Ek
0 to E, defined on a

comeager set. Now for any x ∈ C, h ◦ πk(x) E f(x), as required. □

Towards the proof of Theorem 3.2, fix an analytic equivalence relation E on (2N)N

which extends EN
0 . Assume that for every k ∈ N, E does not extend Ek

0 on a
comeager set. We need to prove that EN

0 is Borel reducible to E.
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Lemma 3.3. For every k, there is a comeager set Ck ⊆ (2N)k × (2N)N\k × (2N)N\k

so that (x, y) ̸E (x, z) for any (x, y, z) ∈ Ck.

Proof. Otherwise, since the actions (
⊕

n∈N Z2)
k ↷ (2N)k and (

⊕
n∈N Z2)

N\k ↷
(2N)N\k have dense orbits, we would get a comeager set C ⊆ (2N)k×(2N)N\k×(2N)N\k,
which we may assume is invariant, so that (x, y) E (x, z) for all (x, y, z) ∈ C.
Now E extends Ek

0 on the comeager set of all (x, y) ∈ (2N)k × (2N)N\k for which{
z ∈ (2N)N\k : (x, y, z) ∈ C

}
is comeager, contradicting our assumption. □

We identify each Ck as a subset of

Ck ⊆ (2N)k × (2N)2×(N\k).

For each k ∈ N, m ≥ k, and γ ∈ (
⊕

n∈N Z2)
k × (

⊕
n∈N Z2)

2×(m\k), consider the set

{(η0, . . . , ηk−1, ξk, ζk, . . . , ξm−1, ζm−1) ∈ (2N)k × (2N)2×(m\k) :

(Ck)γ·(η0,...,ηk−1,ξk,ζk,...,ξm−1,ζm−1) ⊆ (2N)2×N\m is comeager},

a comeager subset of (2N)k × (2N)2×(m\k). Let

Dk,m ⊆ (2N)k × (2N)2×(m\k)

be the intersection of all (countably many) such sets. Write

Dk,m =
⋂
l∈N

Dl
k,m,

an intersection of dense open sets. We may assume that, for k < m < l < h,

Dl
k,m × (2N)2×(l\m) ⊇ Dl

k,l ⊇ Dh
k,l.

We will identify members of (2<N)k × (2<N)2×(m\k) with the basic open subsets of
(2N)k × (2N)2×(m\k) which they define.

3.3. A construction. We want to find a Borel homomorphism f : EN
0 →B EN

0

which is a reduction from EN
0 to E. Roughly speaking, we hope to construct such

f so that, given x ̸EN
0 y, then f(x) and f(y) can be written as (a, b), (a, c) ∈

(2N)k × (2N)N\k respectively, so that (a, b, c) ∈ Ck. Instead we will ensure that
(a, b, c) satisfies the assumptions in Lemma 3.1, with respect to the comeager set
Ck.

We will construct f so that f(x)(n) will depend on x ↾ n+1. We view x ↾ n ∈ (2N)n

which we identify as (2n)N. The equivalence relation En
0 , identified on (2n)N, is still

“eventual equality”, between sequences of members of 2n. The point here is that
given x, y ∈ (2N)N, k, l ∈ N, for which x(k)(l) ̸= y(k)(l), then (x ↾ n)(k)(l) ̸= (y ↾
n)(k)(l) for all n ≥ k + 1, where (x ↾ n)(k)(l) ∈ 2n.

First, we define maps αn : (2
n)N → 2N as follows. We define recursively maps

αn : (2
n)r → 2<N which cohere, that is, for r1 < r2, t1 ∈ (2n)r1 , and t2 ∈ (2n)r2

extending t1, αn(t2) extends αn(t1). Then αn : (2
n)N → 2N will be defined as the

limit.



GENERIC DICHOTOMY FOR HOMOMORPHISMS FOR EN
0 7

At stage r, assume that we have defined

αn : (2
n)r → 2<N, n ≤ r.

For each k < m ≤ r, since Dr+1
k,r+1 ⊆ (2N)k× (2N)2×(r+1\k) is dense open, any member

of (2<N)k×(2<N)2×(r+1\k) can be extended to define a subset of Dr+1
k,r+1. By extending

finitely many times, we may find

anξ ∈ 2<N, for ξ ∈ 2n, n ≤ r + 1,

so that for any k < r + 1, for any

(tn ∈ (2n)r : n < k) , (tn, sn ∈ (2n)r : k ≤ n ≤ r) , and any

(ξn ∈ 2n : n < k) , (ξn ̸= ζn ∈ 2n : k ≤ n ≤ r + 1) ,((
αn(tn) ⌢ anξn : n < k

)
,
(
αn(tn) ⌢ anξn , αn(sn) ⌢ anζn : k ≤ n ≤ r

)
, (ar+1

ξr+1
, ar+1

ζr+1
)
)
∈ Dr+1

k,r+1.

This concludes the definition of the maps αn, n ∈ N. Note that for each n ∈ N,
αn : E

n
0 →B E0 is a Borel homomorphism.

Remark 3.4. We may assume that D0,n ⊆ (2N)2×n \ En
0 , and so αn is a reduction

of En
0 to E0.

Claim 3.5. Suppose x, y ∈ (2N)N are such that x ↾ k = y ↾ k and x(k) ̸E0 y(k).
Then for any k < m,

((αn(x ↾ n+ 1) : n < k) , (αn(x ↾ n+ 1), αn(y ↾ n+ 1) : k ≤ n < m)) ∈ Dk,m

Proof. It suffices to prove membership in Dr
k,m for infinitely many r ∈ N, since

Dr
k,m is decreasing in r. For each r so that x(k)(r) ̸= y(k)(r), we have that (x ↾

n + 1)(r) ̸= (y ↾ n + 1)(r), as members of 2n+1, for all k ≤ n. Therefore at stage r
of the construction we ensure that

((αn(x ↾ n+ 1) : n < k) , (αn(x ↾ n+ 1), αn(y ↾ n+ 1) : k ≤ n < m)) ∈ Dr
k,m,

since Dr
k,m × (2N)2×(r\m) ⊇ Dr

k,r. □

Finally, define f : (2N)N → (2N)N by

f(x)(n) = αn(x ↾ n+ 1).

Then f : EN
0 →B EN

0 is Borel homomorphism. To conclude the proof of the main
theorem, we prove that f is a reduction of EN

0 to E.

3.4. Concluding the proof. Since E extends EN
0 , it remains to prove that if x ̸EN

0 y
then f(x) ̸E f(y). Since f : EN

0 →B E is a homomorphism, it suffices to prove the
following.

Claim 3.6. Suppose x, y ∈ (2N)N, x ↾ k = y ↾ k and x(k) ̸E0 y(k). Then f(x) ̸E
f(y).
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Proof. By the definition of f , Claim 3.5, and the choice of the sets Dk,m, we may
write f(x) = (a, b) and f(y) = (a, c) where a ∈ (2N)k, b, c ∈ (2N)N\k, so that the
triplet (a, b, c) satisfies the conditions in Lemma 3.1 with respect to the comeager
set Ck ⊆ (2N)Y , where Y = k ⊔ (N \ k) ⊔ (N \ k). It follows from Lemma 3.1 that
there is some

(g, h1, h2) ∈ (
⊕
n∈N

Z2)
k × (

⊕
n∈N

Z2)
N\k × (

⊕
n∈N

Z2)
N\k

so that

(g · a, h1 · b, h2 · c) ∈ Ck,

and so

(g · a, h1 · b) ̸E (g · a, h2 · b).
Since E extends EN

0 , it is invariant under the action, and so

f(x) = (a, b) ̸E (a, c) = f(y),

as required. □

3.5. Complexity on comeager sets. In the proof of Theorem 1.4 we used the
fact that for any comeager C ⊆ (2N)N, EN

0 ≤B EN
0 ↾ C. We sketch a proof of this

using the construction above.
Let C ⊆ (2N)N be comeager. Similar to the above, define Dm ⊆ (2N)m as the

intersection of all sets of the form{
(η0, . . . , ηm−1) ∈ (2N)m : Cγ·(η0,...,ηm−1) ⊆ (2N)N\m is comeager

}
,

for γ ∈ (
⊕

n∈N Z2)
m. Define f : EN

0 →B EN
0 as above, so that for any x ∈ (2N)N and

anym ∈ N, f(x) ↾ m ∈ Dm. It follows from Lemma 3.1 that
{
g ∈ (

⊕
n∈N Z2)

N : g · f(x) ∈ C
}

is comeager. It follows from [Kec95, Theorem 18.6] that there is a Borel map
h : (2N)N → (

⊕
n∈N Z2)

N so that h(x) · f(x) ∈ C for all x ∈ (2N)N. We conclude
that x 7→ h(x) · f(x) is a Borel reduction of EN

0 to EN
0 ↾ C.
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