
CLASSIFYING INVARIANTS FOR E1:
A TAIL OF A GENERIC REAL

ASSAF SHANI

Abstract. Let E be an analytic equivalence relation on a Polish space. We intro-
duce a framework for studying the possible “reasonable” complete classifications
and the complexity of possible classifying invariants for E, such that: (1) the
standard results and intuitions regarding classifications by countable structures
are preserved in this framework; (2) this framework respects Borel reducibility;
(3) this framework allows for a precise study of the possible invariants of certain
equivalence relations which are not classifiable by countable structures, such as
E1.

In this framework we show that E1 can be classified, with classifying invariants
which are κ-sequences of E0-classes where κ = b, and it cannot be classified in
such a manner if κ < add(B).

These results depend on analyzing the following sub-model of a Cohen real ex-
tension, introduced in [KSZ13] and [LZ20]. Let 〈cn : n < ω〉 be a generic sequence
of Cohen reals, and define the tail intersection model

M =
⋂
n<ω

V [〈cm : m ≥ n〉].

An analysis of reals in M will provide lower bounds for the possible invariants for
E1.

We also extend the characterization of turbulence from [LZ20] in terms of in-
tersection models.

1. Introduction

Let E be an equivalence relation on X. A complete classification of E is a
map c : X → I satisfying

x E y ⇐⇒ c(x) = c(y).

The members of I are said to be classifying invariants for E. Given an equivalence
relation E, one would like to classify it using the simplest possible invariants.

What constitutes a “reasonable” classification depends on the field and objects of
study. One famous example is the classification of compact orientable surfaces, up
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to homeomorphism, by their genus. The reader is referred to [Hjo00, Preface] for
more examples and a thorough discussion.

We view the following requirement as a key property of a “reasonable” classifica-
tion:

(?) given x ∈ X, its invariant c(x) is simple to define, and compute, using x.

This should exclude the following two, not useful, “bad”, complete classifications:

• Appealing to the axiom of choice, there is a map choosing one element out
of each equivalence class. This choice map is a complete classification.
• The map sending x to its equivalence class [x]E = {y ∈ X : x E y}, is a

complete classification.

In the first example, the map is not definable in any reasonable way. In particular,
the invariant of a given object cannot be computed from it. In the second, the
issue is that the classifying objects are not simple to describe. For example, given a
compact orientable surface, one cannot quite simply describe all the surfaces which
are homeomorphic to it (this is an enormous collection of objects), but its genus, a
natural number, is simple to describe and can be directly computed.

Our focus here is on equivalence relations defined on Polish spaces. This generally
captures the situation when studying mathematical structures with some inherent
separability assumption (see [Kec95,Kec02]). Let E and F be equivalence relations
on Polish spaces X and Y respectively. A map f : X → Y is a reduction of E to
F if

x E x′ ⇐⇒ f(x) F f(x′), for any x, x′ ∈ X,

that is, f reduces the problem of determining E-relation to that of F -relation. If
f : X → Y is a reduction from E to F and c : Y → I is a complete classification
of F , then the composition c ◦ f : X → I is a complete classification of E, using
the same set of invariants. So if there is a “sufficiently definable” reduction f from
E to F , the invariants necessary to classify E are no more complicated than those
necessary to classify F .
E is Borel reducible to F , denoted E ≤B F , if there is a Borel map f : X → Y

reducing E to F . Borel reducibility is the most common notion for comparing the
complexity of equivalence relations on Polish spaces, especially when the equivalence
relations are Borel or analytic. In particular, Borel reducibility respects the intuitive
idea of complete classification.

An equivalence relation E on a Polish space X is said to be concretely classifi-
able (or smooth) if there is a Polish space Y and a Borel map c : X → Y which is
a complete classification of E; equivalently, if E is Borel reducible to =R, the equal-
ity relation on the reals. That is, E admits real numbers as classifying invariants.
(See [Gao09, Section 5.4].)
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Recall the equivalence relation E0 on 2ω, identifying two binary sequences x, y ∈
2ω if ∃n∀m ≥ n(x(m) = y(m)). E0 is the canonical obstruction for concrete clas-
sifications, according to the dichotomy theorem of Harrington, Kechris, and Lou-
veau [HKL90]: for any Borel equivalence relation E, either E is concretely classifiable
or E0 ≤B E.

Hjorth and Kechris [HK95] extended the notion of concrete classifications to Ulm
classifications, where the classifying invariants are in 2<ω1 , countable subsets of ω1.
They also extended the Harrington-Kechris-Louveau dichotomy: for any analytic
equivalence relation E, either E is Ulm classifiable or E0 ≤B E (assuming the
existence of sharps for reals).

Given a countable first order language L, let XL be the Polish space of all count-
able L-structures on the set ω = {0, 1, 2, ...}, and let ∼=L be the isomorphism equiv-
alence relation on XL (see [Gao09, Chapter 11]). An equivalence relation E on a
Polish space X is classifiable by countable structures if it is Borel reducible
to ∼=L for some L (see [HK96, Kec02, Hjo00]). In this case, the E-classes can be
classified using countable structures, such as countable groups or graphs, up to
isomorphism. Moreover, for the isomorphism relation, the Scott analysis provides
a complete classification with hereditarily countable sets as classifying invariants
(see [Gao09, Chapter 12]).

For an equivalence relation E on X, its Friedman-Stanley jump, E+, is defined
on XN by x E+ y ⇐⇒ ∀n∃m(x(n) E y(m)) and ∀n∃m(y(n) E x(m)). For
example, the map sending x ∈ RN to {x(n) : n ∈ N} is a complete classification of
=+

R . An equivalence relation E is considered “classifiable by countable sets of reals”
if it is Borel reducible to =+

R . Similarly, E is considered “classifiable by hereditarily
countable sets of sets of reals” if it is Borel reducible to (=+

R)+, and so on. This
approach is taken in [HK96, Introduction (E)].

Given a continuous action a : G y X of a Polish group G on a Polish space X,
let Ea be the induced orbit equivalence relation, x Ea y ⇐⇒ ∃g ∈ G(g ·x = y).
Hjorth’s turbulence property provides a condition on the action so that Ea is not
classifiable by countable structures (see [Hjo00, Kec02]). Among orbit equivalence
relations, Hjorth [Hjo02] showed that turbulence is the canonical obstruction: for a
Borel orbit equivalence relation Ea, either Ea is classifiable by countable structures
or there is a turbulent action a′ such that Ea′ ≤B Ea.

There are interesting non-orbit Borel equivalence relations. These are referred to
as “the dark side” in [Hjo00, Chapter 8]. The equivalence relation E1 is defined
on RN by x E1 y ⇐⇒ ∃n∀m > n(x(m) = y(m)). Kechris and Louveau [KL97],
extending [Kec92], proved that E1 is not Borel reducible to any orbit equivalence
relation induced by a Polish group action. (In particular, E1 is not classifiable by
countable structures.)

Some natural classification problems in mathematics lie in “the dark side”. Solecki
[Sol02] showed that for a hereditarily indecomposable continuum, the equivalence
relation partitioning it into its composants is Borel bireducible with E1. Thomas
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showed that E1 is Borel bireducible with the quasi-equality relation on finitely gen-
erated groups [Tho08, Theorem 5.6], and that the equivalence relation of virtual
isomorphism on finitely generated groups, ≈VI, is Borel reducible to E+

1 [Tho08, The-
orem 6.8].

This paper suggests a framework of generically absolute classifications, Def-
inition 1.5, in which equivalence relations such as E1 and E+

1 admit “reasonable
classifying invariants”.

1.1. Abstract complete classification. Let E be an analytic equivalence rela-
tion on a Polish space X. (More generally, we just need that E has an absolute
definition.) We consider the following three conditions as the key properties mak-
ing a complete classification c “reasonable”, ensuring the informal requirement (?)
above. A good example to keep in mind is =+

R , with the “reasonable” classifying
map RN → Pℵ0(R) defined by x 7→ {x(i) : i ∈ N}, and the “bad” classifying map
x 7→ [x]=+ .

(1) [Definability] There is a set theoretic formula ψ and a parameter b such that
c(x) = A ⇐⇒ ψ(x,A, b).

(2) [Locality] If V ⊆ N ⊆ W are ZF models, x,A ∈ N and ψN(x,A, b), then
ψW (x,A, b).

(3) [Absoluteness] If W is a ZF extension of V then c (defined using ψ) is a
complete classification of E in W as well.

In this case, say that c is an absolute complete classification. We consider
Locality to be the most fundamental necessary property. It tells us that given x one
can actually calculate/construct the invariant c(x) in a concrete way. For example,
it prohibits the classification x 7→ [x]E, when E is a not-countable Borel equivalence
relation.

These three properties seem to capture the key features of classification by count-
able structures.

Example 1.1. For an isomorphism relation, the Scott analysis satisfies these prop-
erties. This is precisely the point of view taken in [Fri00] and [URL17].

Example 1.2. The Ulm-type classifications of Hjorth and Kechris [HK95] are ab-
solute. Moreover, for the specific case of I = 2<ω1 , and when the parameter b is a
member of a Polish space, absolute classifications are essentially the same as Ulm
classifications.

Example 1.3. More generally, if I = HC, the space of hereditarily countable sets,
and the parameter b is a member of a Polish space, then the notion of absolute
classification essentially agrees with the ∆1

2-absolute classification of [Hjo00, Chapter
9].

Remark 1.4. Some sort of Absoluteness is necessary for a reasonable notion of
classification. For example, in the constructible universe L, any equivalence relation
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E admits a definable classification x 7→ ([x]E)L satisfying (1) and (2), but fails (3)
whenever new E-classes are added.

To extend this notion beyond classifications by countable structures, we relax the
Absoluteness requirement (3), to only some forcing extensions. In the context of
equivalence relations defined on Polish spaces, the most natural structure provided
is the topology, so it is natural to require absoluteness for Cohen forcing. That is,
to require the classification “respects Baire-category arguments”.

Definition 1.5. Let E be an analytic equivalence relation on a Polish space X. Say
that a complete classification c : X → I is a generically absolute classification
if

(1) [Definability] There is a set theoretic formula ψ and a parameter b such that
c(x) = A ⇐⇒ ψ(x,A, b).

(2) [Locality] If V ⊆ W are ZF models and x,A ∈ V with ψV (x,A, b), then
ψW (x,A, b).

(3) (a) [Invariance absoluteness] If W is a ZF extension of V then ψ defines an
E-invariant map in W . (That is, the map c defined from ψ is a well
defined function and is E-invariant: x E y =⇒ c(x) = c(y).)

(b) [Generic absoluteness] If W is a generic extension of V by a single Cohen
real, then ψ defines a complete classification of E in W .

If such a complete classification exists, say that E is generically classifiable.

Before going further, let us stress that this notion respects and extends the usual
intuitions regarding classification.

Remark 1.6. If E ≤B F and F admits a generically absolute classification with
classifying invariants in I, then so does E (Proposition 7.2).

Example 1.7. The equality relation =R does not admit a generically absolute clas-
sification with ordinal invariants (Proposition 7.5). It then follows from Burgess’
theorem [Kec95, 35.21 (ii)] that for an analytic equivalence relation E, the following
are equivalent: E is absolutely classifiable with countable ordinal invariants; E is
generically classifiable with ordinal invariants; =R 6≤B E.

Example 1.8. E0 does not admit a generically absolute classification with invari-
ants in 2α for any ordinal α (Proposition 7.7). It then follows from the dichotomy
of Hjorth and Kechris [HK95, Theorem 1] that (assuming the existence of sharps
for reals) for an analytic equivalence relation E, the following are equivalent: E
is absolutely classifiable with invariants in 2<ω1 ; E is generically classifiable with
invariants in 2α for some ordinal α; E0 6≤B E.

Example 1.9. If E is generically turbulent, then E does not admit a generically
absolute classification, with any set of invariants. This follows from the characteri-
zation of generic turbulence in [LZ20, Theorem 3.2.2], see Section 4. It then follows
from Hjorth’s dichotomy [Hjo00, Theorem 9.7] that for an orbit equivalence relation
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Ea, the following are equivalent: Ea admits a generically absolute classification; Ea
admits an absolute classification with hereditarily countable invariants; there is no
turbulent action a′ with Ea′ ≤B Ea.

The following is the main result of this paper. First, E1 admits “reasonable”
invariants. More importantly, we prove lower bounds, suggesting this is a non trivial
notion.

Theorem 1.10. (1) There is a generic classification of E1 with classifying in-
variants that are sequences of E0-classes of length b;

(2) there is no generic classification of E1 using classifying invariants which are
sequences of E0-classes of length < add(B);

(3) there is no complete classification of E1 which is absolute for all forcings.

Here b is the bounding number, and add(B) is the additivity number of the meager
ideal. The reader is referred to [Bla10] for their definitions and more background.

Question 1.11. What is the minimal κ such that E1 admits a generic classification
with invariants which are κ-sequences of E0-classes?

By the above theorem, add(B) ≤ κ ≤ b. We note that the gap between b and
add(B) is related to the result of Cichon and Pawlikowsky [CP86], that adding a
single Cohen real collapses the bounding number b in the generic extension to be
add(B)V , the additivity number as computed in the ground model.

If E can be generically classified with invariants in I, then its Friedman-Stanley
jump E+ can be generically classified, with countable subsets of I as classifying
invariants (Proposition 7.4). In particular, E+

1 is generically classifiable. By the
above mentioned result of Thomas, ≈VI ≤BE+

1 , and therefore ≈VI is generically
classifiable. (It is not classifiable by countable structures, as E1≤B ≈VI.)

Question 1.12. What are the optimal classifying invariants for a generic classifi-
cation of ≈VI, the virtual isomorphism relation on finitely generated groups?

We conclude with an ambitious conjecture: when replacing “classification by
countable structures” with “generic classification”, Hjorth’s dichotomy for turbu-
lence [Hjo02] can be extended to non-orbit equivalence relations. We state this
conjecture with a generalized definition of turbulence, for non-orbit equivalence
relations (Definition 4.5). This definition is motivated by the characterization of
turbulence of Larson and Zapletal [LZ20, Theorem 3.2.2], and an extension of this
characterization, Theorem 4.3 below.

Conjecture 1.13. Let E be an analytic equivalence relation. Then exactly one of
the following hold.

• A turbulent equivalence relation (Definition 4.5) is Borel reducible to E.
• E admits a generically absolute classification.
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1.2. An intersection model. Let P be Cohen forcing on Rω. Fix x = 〈x(n) : n < ω〉
a P-generic over V , and let xm = 0m _ 〈x(n) : n > m〉, a sequence whose first m val-
ues is the number 0 ∈ R, followed by a tail of x. Define the intersection model

M =
⋂
n<ω

V [xn].

In a sense, M sees all “generic tail events”. Its relationship with the equivalence
relation E1 is immediate: each xm is E1-related to x. This model and its relationship
with E1 was introduced in [KSZ13, 4.4] and [LZ20, 4.1]. In both cases, interesting
properties of E1 were deduced from simple properties of this intersection model:
essentially that each x(n) is not in M . It follows from [KSZ13, 3.1.1 (i)], or [LZ20,
4.2.9], that M is a model of ZF. However, the precise identity of M remained open,
even whether or not it satisfies ZFC.

These questions about M are closely related to questions about possible generic
classifications of E1. For example, we show that the axiom of choice in fact fails in
M , and this is closely related to the generic classification of E1 from Theorem 1.10.

Theorem 1.14. (1) “Choice for b-sequences of E0-classes” fails in M ;
(2) M satisfies DC;
(3) M = V (B), the minimal ZF-model extending V and containing B, where B

is a set of reals.

(Note that b as calculated in M is in fact add(B)V , by the aforemetioned result
of Cichon and Pawlikowsky.) We also establish a characterization of reals in M , see
Corollary 3.15, which is closely related to the proof of part (2) in Theorem 1.10.
Part (3) of Theorem 1.14 can be seen as a weak positive fragment of choice in M ,
and will be used to conclude part (3) of Theorem 1.10.

Question 1.15. What other forms of choice hold in the intersection model M?
Does DCκ hold for an uncountable κ < add(B)V ?

Question 1.16. Suppose x ∈ [0, 1]ω is a Random real, with respect to the product
measure. Let N =

⋂
n<ω V [xn], where xn is the tail of x past n. What can we say

about N? What do reals in N look like? (As in Proposition 3.2, N is a model of
DC.)

The rest of the paper is organized as follows. A generically absolute complete
classification of E1 is given in Section 2, establishing part (1) of Theorem 1.10.

In Section 3, the intersection model M is analyzed. Theorem 1.14 is proved there:
part (1) in Lemma 3.6; part (2) in Proposition 3.2; part (3) in Theorem 3.19. Using
these the rest of Theorem 1.10 is proved: part (2) in Proposition 3.17 and part (3)
at the end of the section.

In Section 4, the claim made in Example 1.9, that a turbulent equivalence re-
lation admits no generically absolute classification, is justified (Theorem 4.7). A
notion of generic turbulence is defined for arbitrary analytic equivalence relations
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(Definition 4.5), which extends the usual notion for orbit equivalence relations (Re-
mark 4.6). In Subsection 4.1 we consider a notion of “intersection numbers” for
equivalence relations (Definition 4.9), and use it to give a proof that E1 is not Borel
reducible to an orbit equivalence relation.

In Section 5, another failure of choice in the intersection model M is established:
the chromatic number of the shift graph is greater than 2.

Section 7 contains further discussion on why the notion of “generically absolute
classification” is a reasonable extension of “classification by countable structures”.
In particular, some statements made during the introduction are justified.

Acknowledgments. I would like to thank James Cummings for numerous long
and insightful conversations, without which this paper would not have been. I also
thank Filippo Calderoni, Clinton Conley, Paul Larson, and Jindrich Zapletal, for
very helpful discussions, and the referee for helpful feedback and corrections.

2. A complete classification for E1

Replace R with the space 2ω, and consider E1 as an equivalence relation on (2ω)ω

(see [Gao09, 8.1].) Given x ∈ (2ω)ω, we consider x as a function x : ω × ω → {0, 1},
a matrix of 0’s and 1’s, and identify it with a member of the space 2ω×ω. So for
x, y ∈ (2ω)ω, they are E1-equivalent if the agree on all but finitely many columns.

We begin by identifying some interesting E1-invariants. We will reach a complete
classification of E1 by collecting “enough” of these invariants.

Definition 2.1. Given a function f : ω → ω + 1, define the function x � f whose
domain is {(n,m) : m < f(n)}, the area below the graph of f , by

(x � f)(n,m) = x(n,m) for m < f(n).

Definition 2.2. Given a partial function y : ω × ω → {0, 1}, define [y] to be the
set of all functions z with the same domain as y such that z and y differ in at most
finitely many places.

Note that [y] can be identified with an E0-class.

Remark 2.3. Let f : ω → ω be some function and suppose that y, z : ω×ω → {0, 1}
are partial functions with domain {(n,m) : m < f(n)}. Then [y] = [z] if and only
if y and z agree on all but finitely many columns.

In conclusion:

Claim 2.4. Given f : ω → ω, the map x 7→ [x � f ] is E1-invariant. That is, if x, y
are E1-related, then [x � f ] = [y � f ].

The reader is refered to either [Bla10, Hal17, Jec03] for the eventual domination
order<∗ on ωω, the space of functions from ω to ω. Fix 〈fα : α < b〉 an<∗-increasing
and unbounded sequence of functions in ωω such that each fα is increasing. For
x ∈ (2ω)ω, define

c(x) = 〈[x � fα] : α < b〉 .
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Claim 2.5. c is a complete classification of E1.

Proof. The map is invariant, as each coordinate is invariant. It remains to show
that if c(x) = c(y) then x E1 y. In fact it suffices to assume that for unboundedly
many α < b, [x � fα] = [y � fα]. If so, we many find an unbounded subset
X ⊆ b and some k < ω such that for any α ∈ X, any n > k and m < fα(n),
(x � fα)(n,m) = (y � fα)(n,m). That is,

(?) for any α ∈ X, any n > k and m < fα(n), x(n,m) = y(n,m).

As 〈fα : α ∈ X〉 is<∗-unbounded, there must be some k′ ≥ k such that {fα(k′) : α ∈ X}
is unbounded in ω. Since each fα is increasing, it follows that for any n ≥ k′,
{fα(n) : α ∈ X} is unbounded in ω. Finally, given any n ≥ k′ and any m, there is
some α ∈ X such that fα(n) > m, and so, by (?), x(n,m) = y(n,m). That is, x
and y agree on all columns past k′, and so are E1-equivalent. �

Note that the map x 7→ c(x) is definable using the parameter 〈fα : α < b〉. Fur-
thermore the calculation of c(x) is absolute (local), that is, clause (2) of Definition 1.5
holds. The map c is E1-invariant in any extension, so clause (3)(a) of Definition 1.5
is satisfied. Finally, in the proof above we only required that 〈fα : α < b〉 is un-
bounded in the eventual domination order, to conclude that c is a complete classifica-
tion. Since Cohen forcing does not add dominating reals (see [Hal17, Lemma 22.2]),
〈fα : α < b〉 remains unbounded in a Cohen-real extension, so the map c remains a
complete classification, thus (3)(b) of Definition 1.5 is satisfied. This concludes part
(1) of Theorem 1.10.

3. The intersection model for E1

Let P be Cohen forcing on 2ω×ω. That is, the conditions of P are finite partial
functions from ω × ω to {0, 1}, ordered by reverse extension. A generic filter for P
can be identified with a generic real x ∈ 2ω×ω. Note that P is forcing equivalent to
Cohen forcing for adding one real in 2ω.

Fix x ∈ 2ω×ω a P-generic over V . Define the step functions δn : ω → ω + 1 by
δn(m) = 0 if m < n and δn(m) = ω if m ≥ n, and let xn = x � δn. That is, xn
is a tail of columns of x. Let Pn be the poset of all finite partial functions from
(ω \ n)× ω to {0, 1}. So P = P0, and each xn may be identified as a Pn-generic.

We are interested in the following intersection model, which we fix for the remain-
der of the paper.

Definition 3.1. M =
⋂
n<ω V [xn].

This is the same model as described in Section 1.2 (after identifying Rω with
2ω×ω). M satisfies ZF by [LZ20, 4.2.9]. Moreover, M satisfies DC (part (2) of
Theorem 1.14).

Proposition 3.2. DC holds in M .
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Proof. Suppose R is a relation on X, in M , such that ∀x∃y(x R y) holds. So X
is in V [xn] for each n. For each n we may choose a well ordering of X in V [xn],
definably in X and xn, as follows: choose a minimal Pn-name τ (according to some
well ordering in V ) so that τ [xn] is a well ordering of X. This definition can be
carried uniformly in any model V [xm] with m ≤ n.

Define a sequence 〈zn : n < ω〉 recursively so that zn+1 is the minimal, according
to the above chosen well ordering of X in V [xn+1], with zn R zn+1. For each m,
the sequence 〈zn : n ≥ m〉 is definable in V [xm]. Each zi is in M , and therefore in
V [xm], and so the sequence 〈zn : n < ω〉 is in V [xm], for each m. It follows that
〈zn : n < ω〉 ∈M , as required. �

Remark 3.3. More generally, DC holds in the intersection model arising from
any countable coherent sequence: see [LZ20], “Supplemental materials”, “Updated
Theorem 4.2.9”.

Next we prove part (1) of Theorem 1.14, that the axiom of choice fails in M .

Remark 3.4. Thinking of x as a matrix of 0’s and 1’s, one can see that each row
of x, as an element of 2ω, is in M . In fact, given f ∈ ωω in V , x � f is in M . More
generally, given f ∈ ωω in M , x � f is in M . We will see below that any real in M
is definable from one of those.

Fix a <∗-increasing and unbounded sequence 〈fα : α < b〉 in V . Since Cohen
forcing does not add dominating functions, and V ⊆ M ⊆ V [x], the sequence
〈fα : α < b〉 is <∗-unbounded in M as well.

By the remark above, each x � fα is in M , and so is Aα = [x � fα], the set of all
finite changes of x � fα. Define A = 〈Aα : α < b〉.

Claim 3.5. A ∈M .

Proof. Let yn be defined as x from the n’th column onward, and be all zeros in the
first n columns. Then yn ∈ V [xn] and Aα = [yn � fα]. We conclude that A is in
V [xn], for each n, and therefore A is in M . �

Lemma 3.6. There is no choice function for A in M .

Proof. Assume towards a contradiction that 〈aα : α < b〉 ∈M where aα ∈ Aα. Then
[aα] = [x � fα] for any α < b. Working in V [x], there is an unbounded X ⊆ b and
k < ω such that for all n > k, α ∈ X and m < fα(n), x(n,m) = aα(n,m).

We can now find in the ground model an unbounded Y ⊆ b and {pα : α ∈ Y }
such that pα  α ∈ Ẋ. By thinning out Y , we may assume that there is a fixed
p ∈ P such that pα = p for all α ∈ Y .

As in the proof of Claim 2.5, fix n > k such that {fα(n) : α ∈ Y } is unbounded,
and {(n,m) : m < ω} is disjoint from the domain of p. Let ȧl be a Pl-name such
that ȧl[xl] = 〈aα : α < b〉, for l ∈ {0, n + 1}. Take q ∈ P extending p and forcing
that ȧ0[ẋ] = ȧn+1[ẋn+1]. Fix some m such that (n,m) is not in the domain of q,
and α ∈ Y such that fα(n) > m. Let r be a condition in Pn+1 deciding ȧn+1

α (n,m)
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which is compatible with q. Now the condition r ∪ q decides x(n,m) = aα(n,m),
yet (n,m) is not in the domain of r ∪ q, a contradiction. �

We now go on to prove parts (2) and (3) of Theorem 1.10.

Definition 3.7. Given a sequence 〈pn : n < ω〉 such that pn is a condition in Pn,
the diagonal of the sequence 〈pn : n < ω〉 is the function d ∈ ωω defined by d(n) =
the maximal l such that pm(n, l) is defined, for some m ≤ n.

Claim 3.8. If 〈pn : n < ω〉 is in M , then the diagonal d is also in M .

We write y @ 2ω×ω to mean “y is a partial function ω × ω → {0, 1}”. Given
y, z @ 2ω×ω, write z v y if y extends z.

Definition 3.9. For y @ 2ω×ω say that y forces ψ, y  ψ, if there is some p v y
such that p  ψ.

The following two are the key lemmas towards understanding the reals, and other
sets in M .

Lemma 3.10. Suppose Z ∈M , Z = Ż[x]. Then there is a sequence
〈
τ Żn : n < ω

〉
∈

M , τ Ż0 = Ż, where τ Żn is a Pn-name such that τ Żn [xn] = Z and there is a function

dŻ ∈ ωω in M such that for each n, x � dŻ forces that Ż[ẋ] = τ Żn [ẋn].

Proof. Working in V [x], define the sequence 〈τn : n < ω〉 such that τn is the least Pn-
name, according to a fixed well order in V , with τn[xn] = Z. Note that 〈τn : n ≥ m〉
is definable in V [xm] using Z and xm. It follows that 〈τn : n < ω〉 is in V [xm], for
each m, and therefore 〈τn : n < ω〉 is in M . Without loss of generality τ0 = Ż.

For each n, let qn be minimal condition in Pn (according to some fixed well order)
such that qn @ xn and qn  τn[ẋn] = τn+1[ẋn+1]. Note that 〈qn : n ≥ m〉 is definable
in V [xm] from xm and Z. It follows that 〈qn : n < ω〉 is in M . Let d be the diagonal
of 〈qn : n < ω〉. For any n, large enough initial segments of x � d force that τ0 and

τn agree. So d = dŻ and τ Żn = τn are as desired. �

Lemma 3.11. Let Z be a set in M , and fix a name Ż for Z. Given z = ż[x] ∈M ,

there is a function f ż,Ż in M such that for any g, if g ≥∗ f ż,Ż and g ≥ dŻ , dż then

z ∈ Z =⇒ x � g  ż ∈ Ż, z /∈ Z =⇒ x � g  ż /∈ Ż.

By g ≥ d we mean that g(n) ≥ d(n) for each n.

Proof. Fix
〈
τ Żn : n < ω

〉
, dŻ and

〈
τ żn : n < ω

〉
, dż in M as above. Let 〈pn : n < ω〉

be in M such that pn ∈ Pn is minimal deciding τ żn ∈ τ Żn , pn @ xn. Let f ż,Ż ∈ M
be the diagonal of 〈pn : n < ω〉. Given g such that g ≥∗ f ż,Ż and g ≥ dŻ , dż, fix m

such that g is above f ż,Ż beyond m. Then for any n ≥ m, x � g decides correctly

τ żn ∈ τ Żn . In addition, x � g extends x � dŻ and x � dż, and so forces that τ Ż0 = τ Żn
and τ ż0 = τ żn. Therefore x � g decides correctly the statement ż ∈ Ż. �
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The lemma will be applied first to sets Z which are subsets of V . In this case we
only consider z ∈ V , and use their canonical names ž.

Definition 3.12. Suppose Z ⊆ U is in M , with U ∈ V , and y v x. Say that y
defines Z via Ż if for any v ∈ U , if v ∈ Z then y  v ∈ Ż and if v /∈ Z then
y  v /∈ Ż. We often suppress Ż if it is clear from context, or irrelevant.

Remark 3.13. If y v x defines Z via Ż, and x′ is a P-generic extending y, then
Ż[x′] = Z.

From Lemma 3.11 we conclude:

Corollary 3.14. Suppose Z ⊆ κ is in M . Let f ∈ ωω be such that

• f dominates
{
f α̌,Ż : α < κ

}
;

• f is pointwise above dŻ .

Then x � f defines Z.

Corollary 3.15. Suppose Z ⊆ ω in M is a real. Then there is f ∈ M ∩ ωω such
that x � f defines Z.

Proof. Using DC, we may find in M a sequence f ň,Ż , each as in Lemma 3.11. Let

f ∈M diagonalize this sequence, with f ≥ f Ż . �

So reals in M are determined by x � f for some f ∈ M . Therefore by changing
x above f , the realization of a particular real in M in unchanged. We will want to
change x on all columns, to another P-generic.

Lemma 3.16. Suppose x ∈ 2ω×ω is P-generic over V , f : ω → ω is in V [x]. Then
there is some x′ ∈ 2ω×ω such that

• x′ is P-generic over V ;
• x and x′ agree below f ;
• x 6E1 x

′.

Moreover, both x, x′ live in a Cohen-real extension of V .

Proof. 1 Let ḟ be a name such that ḟ [x] = f . Define a poset Q as follows. The
conditions are pairs (p, q) where p ∈ P, q : dom q → ω is a finite function such that

p  q(l) ≥ ḟ(l) for any l ∈ dom q. Say that (p, q) extends (p′, q′) if p ≤ p′, q extends
q′ as a function, and for any i ∈ dom q \ dom q′, (i, q(i)) is above the domain of p′.
(That is, if (i, j) ∈ dom p′ then j < q(i).) Note that Q is countable and therefore
forcing equivalent to Cohen-real forcing.

1Another way of finding x′ as in the lemma, due to Paul Larson, is as follows. Let y ∈ 2ω×ω

be P-generic over V [x], and define x′ to agree with x below the graph of f , and to agree with y
otherwise. It can be shown that x′ is P-generic over V .
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Define π : Q→ P as follows. π(p, q) = r where dom r = dom p and

r(i, j) =

{
1− p(i, j) i ∈ dom q ∧ j = q(i);

p(i, j) otherwise.

That is, r flips the values of p along the graph of q, and is equal to p elsewhere. It
follows from the definitions that π is a forcing projection (see [Cum10, 5.2]).

A Q-generic is naturally associated with a pair (y, g) such that y ∈ 2ω×ω is P-

generic and g : ω → ω is a function which is pointwise above ḟ [y]. Note also that
the map π0 : Q→ P defined by (p, q) 7→ p is a projection, so we may find g so that
(x, g) is Q-generic over V . Let x′ = π(x, g), a P-generic over V . Then x and x′ agree

everywhere but on the graph of g. Since g is pointwise above f = ḟ [x], x and x′

satisfy the desired properties. �

We now prove part (2) of Theorem 1.10.

Proposition 3.17. There is no generic classification of E1 using sequences of E0-
classes of length < add(B).

Let E = E0 for this proof. Note that the proof works without change for any
countable Borel equivalence relation E.

Proof. Assume for a contradiction that there is such a classification c : (2ω)ω → I,
defined by some ψ(x,B, e), where e is a parameter and I is the set of sequences
of E-classes of length < add(B). Let x ∈ (2ω)ω be Cohen generic and c(x) =
〈Bα : α < κ〉 = B its invariant, where κ < add(B)V and each Bα is an E-class.
Then B is in M . Indeed, let yn be defined as x on the n’th column forward, and be all
0’s on the first n columns. Then yn E1 x and yn ∈ V [xn]. Now c(x) = c(yn) ∈ V [xn]
for each n, so B is in the intersection model M .

Working in V [x], fix 〈bα : α < κ〉 such that bα ∈ Bα. Each bα is a member of a
Polish space, and therefore can be identified as a subset of ω. Since bα ∈ M , by
Corollary 3.15, there is a function fα such that for any h, if h is above fα then x � h
defines bα.

By a result of Cichon and Pawlikowsky [CP86], the bounding number b in a Cohen-
real extension V [x] is add(B)V , the additivity of the meager ideal as calculated in
V . Since κ < add(B)V , κ < bV [x], so in V [x] we may find g ∈ ωω which dominates
{fα : α < κ}. Fix a condition p ∈ P forcing that

ψ(ẋ, Ḃ, ě) ∧ ∀α < κ(Bα = [ḃα]E).

By Lemma 3.16 we may find x′, in a further generic extension, such that x′ is
P-generic over V , x′ and x agree below g, yet x and x′ are not E1-equivalent. By a
finite change of x′, we may assume that x′ extends p.

Claim 3.18. For each α < κ, Ḃα[x′] = Ḃα[x] = Bα.

Proof. Fix α < κ. Define y ∈ 2ω×ω by changing finitely many coordinates of x′,
so that y still extends p and agrees with x below g, and moreover y and x agree



14 ASSAF SHANI

below fα. (This is possible since g eventually dominates fα.) Then y is P-generic

over V and ḃα[y] = ḃα[x] = bα, by the choice of fα. Furthermore, y and x′ are
E1-related. Since the map c is a generic classification, Ḃ[y] = Ḃ[x′]. In particular,
Ḃα[x′] = Ḃα[y] = [bα]E = Bα. �

It follows that c(x) = B = c(x′). In conclusion, we found x and x′ in a Cohen-
real generic extension which are not E1-equivalent, yet they are assigned the same
invariant by c. Thus c is not a complete classification in this extension, so c is not
a generically absolute classification. �

The following establishes part (3) of Theorem 1.14. Recall that, working in some
generic extension of V , given a set A, V (A) is the minimal transitive extension of
V which satisfies ZF. Showing that a model M is of the form V (A) for a set A,
where V is a model of ZFC, can be seen as some weak fragment of choice for M .
If A is a set of ordinals, then V (A) satisfies the axiom of choice. The next level of
complexity, in which choice can fail, is when A is a set of reals (a set of subsets of
ω).

Theorem 3.19. Let F = (ωω)M and D = {[x � f ] : f ∈ F}. Then

M = V (D).

Note that V (D) = V (
⋃
D) where

⋃
D is a set of reals.

Proof. As before, since the map x 7→ [x � f ] is E1-invariant for each f , we see that
D ∈ M , and therefore V (D) ⊆ M . It remains to show that M ⊆ V (D). Note that
each f ∈ F is encoded by [x � f ], as the domain of all members in [x � f ], and so
F ∈ V (D) as well.

Claim 3.20. There is a poset Q ∈ V (D) and a filter G ⊆ Q which is Q-generic over
V [x], such that in V (D)[G] there a y ∈ (2ω)ω, Cohen generic over V , and there is a
function g ∈ V [x][G] dominating all functions in F so that y � g = x � g.

Proof. Consider the poset Q ∈ V (D) to enumerate F , D, and (P(P))V . Fix G ⊆ Q
generic over V [x]. In the extension V (D)[G] let 〈En : n < ω〉 be an enumeration of
the dense open subsets of P in V . Next, find in V (D)[G] sequences 〈yn : n < ω〉 and
〈hn : n < ω〉 such that

• hn ∈ F , yn ∈ [x � hn];
• 〈hn : n < ω〉 is <-increasing and <?-dominating F ;
• yn+1 extends yn;
• yn extends a condition in En.

This can be done as follows. Take hn+1 ∈ F which is strictly above hn, such that hn+1

dominates the n + 1’th member of F (under some fixed enumeration in V (D)[G]),
and such that there exists some member of [x � hn+1] extending a condition in
En+1. To find yn+1, take any member of [x � hn+1] (the minimal according to the
enumeration given by the collapse), and change it in finitely many positions so that
it extends yn.
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Define y =
⋃
n yn, so y ∈ 2ω×ω is P-generic over V . Work now in V [x][G]. For

each n, there is some mn such that yn and x � hn agree past mn. We may assume
that mn < mn+1. Define g ∈ ωω by g(k) = hn(k) if n is such that mn < k ≤ mn+1,
and g(k) = 0 if k ≤ m0. Then x � g = y � g. Given f ∈ F , there are n and m such
that for k > m, f(k) < hn(k) < g(k). We therefore established that g dominates
each f ∈ F , which concludes the proof of the claim. �

Lemma 3.21. Suppose y ∈ 2ω×ω is P-generic over V , in some further generic
extension, and y extends x � g for some g which dominates ωω∩M . Them M ⊆ V [y].

Proof. Note that for any Z ∈M we can find some y′, a finite alteration of y, so that

y′ and x agree above dŻ and above g. This is because g dominates dŻ , so y and x

agree eventually above dŻ .

Claim 3.22. For any Z in M , if y′ is a finite alteration of y such that y′ agrees with

x above dŻ and g, then Ż[y′] = Z.

In this case, V [y′] = V [y], so we conclude that Z ∈ V [y] for any Z ∈ M , as the
lemma requires. We now prove the claim, by induction on the rank of the set Z.

Fix Z in M , and let y′ be as above. Fix some z ∈ M of lower rank, and assume
that z ∈ Z. We need to show that z ∈ Ż[y′]. (The argument for when z /∈ Z is
similar.) Let ż be a name such that ż[x] = z, and y′′ a finite alteration of y′ which

agrees with x also above dż as well as dŻ .
Since y′ and y′′ differ by only finitely many coordinates, and both force that

Ż = τ Żn for all n, then Ż[y′] = Ż[y′′]. y′′ agrees with x above g and dż, so ż[y′′] = z

by the inductive hypothesis. Furthermore, since g dominates dż,Ż , then ż[y′′] ∈ Ż[y′′]
by Lemma 3.11. It follows that z ∈ Ż[y′], as desired. �

To conclude the theorem we will use the following well known lemma.

Lemma 3.23 (Folklore). Suppose N ⊆ M are transitive models of ZF, P ∈ N is a
poset. If G is P-generic over M , then N [G] ∩M = N .

Proof sketch of the lemma. Suppose τ ∈ N is a P-name and τ [G] = X ∈ M . Using
an inductive argument on the rank, it suffices to assume that X ⊆ N , and conclude
that X ∈ N . Since G is generic over M , we have τ [G] = X in M [G] as well. Working
in M , we may find p ∈ P forcing that τ = X̌. Now the set X can be defined in N
as the set of all x for which p  x̌ ∈ τ . (The point is that for any q ∈ P and x ∈ N ,
the statement q  x̌ ∈ τ is absolute between M and N .) �

Finally, take G and y ∈ V (D)[G] as above. Since G is generic over V [x], it
is generic over M , and therefore V (D)[G] ∩ M ⊆ V (D) by Lemma 3.23. Since
M ⊆ V [y] ⊆ V (D)[G], it follows that M ⊆ V (D), concluding the proof of the
theorem. �

We now prove part (3) of our main Theorem 1.10, that there is no complete
classification for E1 which is absolute for all forcing.
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Proof of part Theorem 1.10 part (3). Assume towards a contradiction that x 7→ Ax
is an absolute classification of E1. Let A = Ax, the classifying invariant of the Cohen
generic x ∈ (2ω)ω. Then A ∈ M = V (D). By [Gri75, Theorem B] there is some
poset Q in V (D) and a Q-generic filter over V (D), H, such that V (D)[H] = V [x].
Fix a Q-name σ such that σ[H] = x and a condition q ∈ Q forcing, in V (D), that
Aσ = Ǎ.

Let q ∈ H ′ be Q-generic over V (D)[H], and let x′ = σ[H ′], so Ax = A = Ax′ .
We claim that x and x′ are not E1-related, showing that x 7→ Ax is not a complete
classification in this extension. Indeed, by Lemma 3.23, V (D)[H] ∩ V (D)[H ′] =
V (D) = M . If x were E1-related to x′, then for large enough n, they would agree
on their n’th columns. This would imply that for large n, the n’th column x(n) is in
V [x] and V [x′], and therefore is in M . This is a contradiction, since x(n) 6∈ V [xn+1]
and M ⊆ V [xn+1].

�

4. Turbulence

We now show that turbulent equivalence relations remain completely unclassi-
fiable in the context of generically absolute classifications. When E = Ea is the
orbit equivalence relation of a turbulent action a, this follows directly from the
characterization of turbulence in [LZ20] (Theorem 4.1 below). In this section we
extend the characterization of Larson and Zapletal (Theorem 4.3), and use this to
extend the definition of turbulence to arbitrary analytic equivalence relations (Defi-
nition 4.5). Finally, we prove in this generality that turbulent equivalence relations
are not generically classifiable (Proposition 4.7).

Theorem 4.1 (Larson-Zapletal [LZ20, Theorem 3.2.2]). Suppose a : G y X is a
continuous action of a Polish group G on X with dense and meager orbits. The
following are equivalent.

• a : Gy X is generically turbulent;
• If x ∈ X is Cohen-generic over V and g ∈ G is Cohen generic over V [x] then
V [x] ∩ V [g · x] = V .

Definition 4.2 ( [KSZ13, Definition 3.10]). Let E be an analytic equivalence re-
lation on a Polish space X, and let x ∈ X be in some generic extension of V .
Define

V [[x]]E =
⋂
{V [y] : y is in some further generic extension, y ∈ X and x E y} .

That is, a set b is in V [[x]]E if in any generic extension of V [x] and any y in that
extension which is E-equivalent to x, b is in V [y].

We will call this model V [[x]]E the intersection model of x, with respect to E.
For example, our tail intersection model M is precisely V [[x]]E1 . Indeed, it follows
from the definition that V [[x]]E1 ⊆ V [xn] for each n, and therefore V [[x]]E1 ⊆ M .
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On the other hand, for any y E1 x, in some generic extension, there is some n such
that V [xn] ⊆ V [y]. Thus M ⊆ V [y] for any such y, and so M ⊆ V [[x]]E1 .

In the setting of Theorem 4.1, note that V [[x]]Ea ⊆ V [x] ∩ V [g · x], for any g,
where Ea is the orbit equivalence relation induced by the action a. It follows from
Theorem 4.1 that if a : G y X is a generically turbulent action, then for a Cohen
generic x ∈ X, V [[x]]Ea = V is as small as can be. We show that the latter already
characterizes turbulence.

Theorem 4.3. Suppose a : G y X is a continuous action of a Polish group G on
X with dense and meager orbits. The following are equivalent.

• a : Gy X is generically turbulent.
• If x ∈ X is Cohen-generic over V then V [[x]]Ea = V .

The key lemma in the proof of Theorem 4.3 is the following.

Lemma 4.4. Suppose a : G y X is a continuous action of a Polish group G on X
and Ea is the induced equivalence relation. Let x ∈ X be in some generic extension
and g ∈ G be Cohen generic over V [x]. Then

V [[x]]Ea = V [x] ∩ V [g · x].

Note that here x is not required to be Cohen generic.

Proof. Let z = g · x. By definition, V [[x]]Ea ⊆ V [x] ∩ V [z]. It remains to show
that for any y in a generic extension of V [x], if y E x then V [x] ∩ V [z] ⊆ V [y].
Suppose first that y ∈ V [x][H] where H is P-generic over V [x][g] (not just over
V [x]) for some P ∈ V [x]. In this case, by mutual genericity, g is generic over
V [x][H]. In V [x][H], fix γ ∈ G such that y = γ · x. Since G acts on itself by
homeomorphisms and g ∈ G is Cohen over V [x][H], then so is gγ, and therefore
V [y][gγ]∩ V [x][H] = V [y], by Lemma 3.23. Finally, gγ · y = g · x = z is in V [y][gγ],
so V [z] ∩ V [x] ⊆ V [y][gγ] ∩ V [x][H] = V [y], as desired.

For the general case, let y ∈ V [x][H] where H is some P-generic over V [x], P ∈
V [x]. H may not be generic over V [x][g]. It suffice to show that if a ∈ V [x] and
a /∈ V [y] then a /∈ V [z]. Fix an a ∈ V [x] and some condition p forcing that x E ẏ
and ǎ /∈ V [ẏ]. Let H ′ be P-generic over V [x][g] extending p. By the argument above
V [z] ∩ V [x] ⊆ V [ẏ[H ′]]. Since a /∈ V [ẏ[H ′]] then a /∈ V [z]. �

Proof of Theorem 4.3. For the forward direction: take a Cohen generic g ∈ G over
V [x], then V [[x]]Ea ⊆ V [x]∩V [g ·x] = V (by Theorem 4.1). For the other direction,
assume that for any Cohen generic x ∈ X the intersection model is trivial: V [[x]]Ea =
V . Then for any g ∈ G, Cohen generic over V [x], it follows from Lemma 4.4 that
V [x]∩V [g·x] = V [[x]]E = V . Now Theorem 4.1 implies that a : Gy X is generically
turbulent. �

These results naturally motivate the following definition of turbulence.

Definition 4.5. Let E be an analytic equivalence relation on a Polish space X. Say
that E is generically turbulent if for any Cohen generic x ∈ X,
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(1) the E-class of x is dense and meager in X and
(2) V [[x]]E = V .

Remark 4.6. If a : G y X is a continuous action and E is the orbit equivalence
relation, it follows from Theorem 4.3 that the action is generically turbulent if and
only if E is generically turbulent with respect to the above definition.

Theorem 4.7. If E is generically turbulent (as in Definition 4.5) then E does not
admit a generically absolute classification.

Proof. Assume for a contradiction that x 7→ Ax is a generically absolute classification
of E. Let x ∈ X be a Cohen generic over V . Then A = Ax is in V [[x]]E. By
assumption, A ∈ V . Fix a condition p in the Cohen forcing for X such that p 
Aẋ = Ǎ. Now any two Cohen generics extending p are E-related, contradicting the
fact that the E-classes are meager. �

Since E1 admits a generically absolute classification (Claim 2.5), then so does E+
1

(see Proposition 7.4). This implies the result of Kanovei and Reeken [KR03], that
no turbulent orbit equivalence relation is Borel reducible to E+

1 . This result is vastly
generalized in [LZ20, Theorem 3.3.5].

4.1. Intersection numbers and a theorem of Kechris and Louveau.

Theorem 4.8 (Kechris-Louveau [KL97, Theorem 4.2]). Suppose a : G y X is a
continuous action of a Polish group G on a Polish space X, let Ea be the induced
orbit equivalence relation on X. Then, on any comeager subset of (2ω)ω, E1 is not
Borel reducible to Ea.

Larson and Zapletal [LZ20, Theorem 4.1.1] gave a proof of this theorem using the
intersection model M . We give a different proof here, using the following definition,
motivated by Lemma 4.4.

Definition 4.9. Given an equivalence relation E on X and x ∈ X in some generic
extension, let the intersection number of x (relative to E) be the minimal size
of a finite set B such that

V [[x]]E =
⋂
y∈B

V [y],

where B is contained in the E-class of x in some generic extension of V [x]. If no
such set exists say that the intersection number is infinite.

It follows from Lemma 4.4 that if E is an orbit equivalence relation then the
intersection number of x is always ≤ 2, for any x ∈ X in some generic extension.
On the other hand, for a Cohen generic x ∈ (2ω)ω, the intersection number of x
relative to E1 is infinite:

Claim 4.10. Let x ∈ (2ω)ω be Cohen-generic. Suppose x1, ..., xn, in some further
generic extension, are all E1-equivalent to x. Then

V [[x]]E1 ( V [x1] ∩ ... ∩ V [xn].
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Proof. Fix k large enough such that x and x1, ..., xn all agree starting the k’th column
onwards. Then x(k) ∈ V [x1] ∩ ... ∩ V [xn]. However, x(k) /∈ V [[x]]E1 = M , so M is
strictly smaller than V [x1] ∩ ... ∩ V [xn]. �

Borel reductions respect the intersection number:

Lemma 4.11. Let E and F be analytic equivalence relations. Suppose f : E →B F
is a (partial) Borel reduction and x ∈ dom f in some generic extension. Then the
intersection number of x relative to E is equal to the intersection number of f(x)
relative to F .

By a partial Borel reduction we mean that the domain of f is a Borel subset of the
domain of E, and f is a reduction of E � dom f to F . The lemma is a generalization
of [Sha21, Lemma 3.5], which states that if f : X → Y is a (partial) Borel reduction
of E to F , and x ∈ dom f , in some generic extension, then V [[x]]E = V [[f(x)]]F .

Proof. Assume first that V [[f(x)]]F =
⋂
y∈B V [y] where B is contained in the F -

class of f(x) in some big generic extension V [G]. For each y ∈ B, f(x) F y in
V [G]. By absoluteness for the statement (∃x)f(x) F y there is xy ∈ V [y] such that
f(xy) F y, thus xy E x for each y ∈ B (since f is a reduction). Now

⋂
y∈B V [xy] ⊆⋂

y∈B V [y] = V [[f(x)]]F = V [[x]]E. It follows that
⋂
y∈B V [xy] = V [[x]]E, so the

intersection number of x is ≤ |B|.
Similarly, suppose V [[x]]E =

⋂
y∈D V [y] where D is contained in the E-class of x,

in some big generic extension. Then {f(y) : y ∈ D} is contained in the F -class of
f(x), and V [[f(x)]]F =

⋂
y∈B V [f(y)], so the intersection number of f(x) is ≤ |D|.

We conclude that the intersection numbers of x and f(x) are the same. �

Proof of Theorem 4.8. Assume for contradiction that there is a reduction f , defined
on a comeager subset of Rω, reducing E1 to some equivalence relation E induced by
a Polish group action. Let x ∈ Rω be Cohen generic over V , so x is in the domain
of f . By lemmas 4.4 and 4.11 it follows that the intersection number of x is 2,
contradicting claim 4.10. �

Remark 4.12. In the proof above, x is taken to be a Cohen generic real in the
domain of E1. However, we have no control over what f(x) looks like. This is why
we need to consider arbitrary reals x ∈ X in Lemma 4.4.

Question 4.13 (see [KL97]). If E is an analytic equivalence relation, is it true that
either E is Borel reducible to an orbit equivalence relation or E1 ≤ E?

The proof above suggests the following strategy for a counterexample: suppose
we can find an analytic equivalence relation E such that:

(1) For any x ∈ domE in a generic extension the intersection number of x is
finite;

(2) there is x ∈ domE in a generic extension whose intersection number is
strictly greater than 2.
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Part (1) would imply that E1 6≤B E and part (2) that E is not Borel reducible to
an orbit equivalence relation. On the other hand, the following would support a
positive answer to Question 4.13.

Question 4.14. If E is an analytic equivalence relation, x in the domain of E in
some generic extension, must the intersection number of x be either ≤ 2 or infinite?

5. Chromatic numbers in the intersection model

Consider the shift graph (P(ω), S), where for X ⊆ ω, S(X) = X \ minX. (We
identify P(ω) with 2ω in the usual way.) This is an acyclic graph, so its chromatic
number is 2 in a ZFC model.

Proposition 5.1. In M , the chromatic number of the shift graph is not 2.

Remark 5.2. The following alternative intersection model was studied in [LZ20].
Let c : ω× ω1 → {0, 1} be Cohen-generic over V . Define M ′ =

⋂
n<ω V [c � (ω \ n)×

ω1]. This model was considered precisely to provide an example of an intersection
model in which the axiom of choice fails. Indeed, they show that in M ′ the shift
graph does not have chromatic number 2. The argument below is similar, using
functions in ωω to get uncountably many reals out of ω many Cohen reals, as before.
Note that both M ′ and M are models of DC.

Proof of Proposition 5.1. In V , let 〈fα : α < b〉 be an <∗-increasing and unbounded
sequence of functions in ωω such that each fα is increasing. Let x ∈ 2ω×ω be the
Cohen generic over V , where M =

⋂
n<ω V [xn], xn = x � (ω \n)×ω. Define zα ∈ 2ω

by zα(n) = x(n, fα(n)), the restriction of x to the graph of fα.
As before, each zα is in M , but 〈zα : α < b〉 is not in M (similar to Lemma 3.6).

For m < ω, define zα,m ∈ 2ω by zα,m(k) =

{
0 k < m;

zα(k) k ≥ m.
So zα,0 = zα and zα,m

is the result of finitely many application of S to zα. Let A = [{zα : α < b}]E0 , all
reals for which there is some zα with which they agree up to finitely many values.
Note that A ∈ M and {zα,m : α < b, m < ω} ⊆ A. We will show that in M there
is no 2-coloring of (A, S).

Assume towards a contradiction that σ : A → {0, 1} is a coloring, σ ∈ M . Let σ̇
be a name forced to be a 2-coloring of A in M . Working in V , find conditions pα ∈ P
and εα ∈ {0, 1} such that pα  σ̇(żα) = εα for any α ∈ X. Since P is countable, we
may find an unbounded X ⊆ b, a single condition p ∈ P and ε ∈ {0, 1} such that
for α ∈ X, pα = p and εα = ε. Since 〈fα : α ∈ X〉 is <∗-unbounded there is m < ω
for which {fα(m) : α ∈ X} is unbounded in ω.

Let σ̇m+1 be a Pm+1-name and q ∈ P extending p such that q  σ̇[ẋ] = σ̇m+1[ẋm+1].
(This is possible since σ is forced to be in V [ẋm+1].) Fix α ∈ X such that (m, fα(m))
is not in the domain of q. Working with the poset Pm+1, consider the condition
q � (ω \ (m + 1) × ω) and extend it to t ∈ Pm+1 such that t  σ̇m+1(żα,m+1) = δ
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for some δ ∈ {0, 1}. Now q ∪ t is a condition in P forcing that σ̇(żα) = ε and
σ̇(żα,m+1) = δ.

The only coordinates on which zα and zα,m+1 differ are 0, ...,m, and at least one
of these, the m’th coordinate, is undecided by q∪ t. So we can find two extensions of
q∪ t, r0, r1 such that for each i = 0, 1, ri decides zα(0), ..., zα(m) and that the parity
of | {k ∈ {0, ...,m} : zα(k) = 1} | is i, respectively. Since σ is a 2-coloring, r0 forces
that zα and zα,m+1 have the same color, that is, ε = δ, and ri forces that ε 6= δ, a
contradiction. �

Question 5.3. What is the chromatic number of (P(ω), S) in M?

Remark 5.4. When restricting to just the set A defined above, the graph (A, S)
has chromatic number precisely 3 in M . Conley and Miller [CM16] proved in a very
general setting that acyclic graphs, such as the shift graph, admit Borel 3-colorings,
when restricted to a comeager set. The set A is “sufficiently generic” for their
argument, as follows. It suffices to find a forward recurring independent subset of
A. Let B = all z ∈ A of the form z = 0...0110 ∗ ∗ ∗ .... That is, all z’s in which the
first appearance of 1 is followed by 10. B is forwards recurring, by genericity of the
members of A, and B ∩ S(B) = ∅, as any y ∈ S(B) is of the form y = 0...010 ∗ ∗∗.

6. Further questions

Let P be a collection of forcing notions. Say that a map c is a P-absolute
classification of E if, as in Definition 1.5, it satisfies (1), (2), and (3)(a), and
(3)(b) for all generic extensions by posets in P . This notion still respects Borel
reducibility, as in Remark 1.6. It may not respect the usual non-classifiability results.
For example, a turbulent equivalence relation may become classifiable.

Following [Zap08] and [KSZ13], it seems reasonable to study {PI}-absolute clas-
sifications, where I is a proper ideal on a Polish space, and PI is the poset of
Borel sets modulo I. A particularly natural notion is a random absolute clas-
sification, where I is the ideal of measure zero sets. In this measure theoretic
context, Larson and Zapletal developed an analogue for turbulence [LZ20, Defini-
tion 3.6.1]. By [LZ20, Theorem 3.6.2], this measure-theoretic turbulence implies that
V [[x]]E = V when x is random-generic over V . It follows that for such equivalence
relations no random absolute classification exists.

Similarly, given a proper ideal I on Xω, it would be interesting to understand the
tail intersection model corresponding to a PI-generic x ∈ Xω. This also relates to
the study of intersection models of coherent sequences as in [LZ20, Chapter 4].

7. Appendix

In this section we prove some statements about generic classifications which were
mentioned in the introduction, Remark 1.6, Example 1.7, and Example 1.8. These
follow from well known facts about forcing. We also provide some more context and
justification to the fact that “absolute generic classification” extends the notion of
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“classification by countable structures”. Some basic facts are presented in the more
general context of P-absolute classifications. Fix a collections of posets P .

Remark 7.1. Suppose P and Q are posets such that Q embeds into P, as a forcing
poset. Then any Q-generic extension of V can be further extended to a P-generic
extension of V . If c is a complete classification which remains absolute in all P-
generic extensions (as in (3)(b) of Definition 1.5), then it is also true in all Q-generic
extensions. In conclusion, we may assume that P is closed under subforcings and
forcing equivalence.

Proposition 7.2. Suppose E and F are analytic equivalence relations on Polish
spaces X and Y , f : X → Y is a Borel reduction of E to F , and c : Y → I is a
P-absolute classification of F . Then c ◦ f is a P-absolute classification of E.

Proof. Since f is a reduction, c ◦ f is a complete classification of E whenever c is a
complete classification of F . The proposition follows as the statement “f is a Borel
reduction from E to F” is absolute in all forcing extensions. �

Recall the definition of the Friedman-Stanley jump operator E 7→ E+ from the
introduction. Consider also the following product operation on equivalence relations.
Given an equivalence relation E on X, Eω is defined on Xω by 〈xn : n < ω〉 Eω

〈yn : n < ω〉 if xn E yn for all n < ω. Both these operation preserve “classifiability
by countable structures”. Similarly, they preserve generic classifications.

Proposition 7.3. Suppose E is an analytic equivalence relation on a Polish space
X and c : X → I is a P-absolute classification of E. Then the map cω : Xω → Iω

defined by cω(〈xn : n < ω〉) = 〈c(xn) : n < ω〉 is a P-absolute classification of Eω.

Proof. The map cω is definable, using a definition of c. Parts (1) and (2) of Defini-
tion 1.5 follow. Since c is an E-invariant map in any extension, so is cω. Finally, in
any generic extension by a poset in P , if cω(〈xn : n < ω〉) = cω(〈yn : n < ω〉), then
c(xn) = c(yn) for each n, and therefore xn E yn for each n, since c is a P-absolute
classification. �

Proposition 7.4. Suppose E is an analytic equivalence relation on a Polish space
X and c : X → I is a P-absolute classification of E. Then the map c+ : Xω → P(I)
defined by c+(〈xn : n < ω〉) = {c(xn) : n ∈ ω} is a P-absolute classification of E+.

Proof. Note that c+ can be written as the composition c+ = s ◦ cω, where s : Iω →
P(I) is defined by s(〈An : n < ω〉) = {An : n ∈ ω}. Note that s is definable in an
absolute way in all extensions. It follows that c+ is E+-invariant whenever cω is Eω-
invariant, and c+ is a classification of E+ whenever cω is a classification of Eω. In
particular, c+ is E+-invariant in all extensions, and is a classification in any generic
extension by a poset in P . �

Proposition 7.5. Assume that there is some poset P ∈ P such that P adds a new
real and P×P is in P . Then there is no P-absolute classification of =R with ordinal
classifying invariants.
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Proof. Assume for contradiction that c is a P-absolute classification taking ordinal
values. Fix P as above and let σ be a P-name for a new real. There is some condition
p ∈ P and an ordinal α such that p P c(σ) = α̌. We claim that p forces σ to be in
the ground model, contradicting our assumption. Indeed, given any generic filter G
extending p, let H be P-generic over V [G] with p ∈ H. Then c(σ[G]) = α = c(σ[H]),
and so σ[G] = σ[H], as c is a complete classification in the P×P extension V [G][H].
Finally, by Lemma 3.23, σ[G] ∈ V [G] ∩ V [H] = V . �

The hypothesis in the above proposition holds if P contains the poset P for adding
a single Cohen real, since P × P and P are forcing equivalent. In particular, there
is no generically absolute classification of =R using ordinals. A similar argument
works for random real forcing.

Proposition 7.6. Let P be the poset for adding a single random real in [0, 1], with
respect to Lebesgue measure. Then there is no {P}-absolute classification of =R
with ordinal classifying invariants.

Proof. Let P2 be the poset to add a random real in [0, 1]2, with the product measure.
Then P and P2 are forcing equivalent. Moreover, there are P2-names σl, σr for reals in
[0, 1] so that it is forced that each of σl and σr are P-generics, and V [σl]∩V [σr] = V .
The rest of the argument follows as above. �

Proposition 7.7. Assume that P contains either Cohen forcing or Random real
forcing on 2ω (with the usual product topology and product measure). Then there
is no P-absolute classification of E0 with classifying invariants in 2α, for any ordinal
α.

Proof. Let P ∈ P be either Cohen or Random real forcing, in 2ω. Fix an ordinal α
and assume for a contradiction that c : 2ω → 2α is a P-absolute complete classifica-
tion of E0. Let b ∈ V be the parameter used to define c. Let x ∈ 2ω be P-generic
over V , and define A = [x]E0 .

Both Cohen and Random forcing have the following property: For any two con-
ditions p, q ∈ P, there is an automorphism π of P, swapping finitely many values of
the generic x ∈ 2ω, such that π(p) is compatible with q. In particular, π(Ȧ) = Ȧ. It
follows that for any formula φ and parameter v ∈ V , the truth value of φV [x](A, v)
is decided in V .

Let y = c(x), y ⊆ α. y can be defined in V [x] from A = [x]E0 , as follows: for
ζ < α, ζ ∈ y if and only if there is some x′ ∈ A for which ζ ∈ c(x′). The latter can
be written as a formula φV [x](ζ, A, b). It follows that y can be defined in V as the
set of ζ < α for which it is forced that φ(ζ, Ȧ, b̌) holds, and so y ∈ V .

Fix a condition p ∈ P forcing that c(ẋ) = y̌. Then for any two P-generics x1, x2

which extend p, x1 E0 x2. We conclude that E0 has a non-meager, or positive
measure, equivalence class, a contradiction. �
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For each countable ordinal α there is a natural Borel equivalence relation ∼=α, with
a natural complete classification using hereditarily countable sets in Pα(N), the α’th-
iterated powerset of N (see [HKL98, FS89]). For example, one can take ∼=0 to be
=N, and define ∼=n+1 to be ∼=+

n . Following the approach in [HK96, Introduction (E)]
and [HKL98], an equivalence relation is considered “classifiable using hereditarily
countable sets of rank α” if it is Borel reducible to ∼=α. As ∼=α+1 6≤B ∼=α, invariants
of rank α + 1 are generally more complex than invariants of rank α.

To see that these intuitions are preserved in the context of generically absolute
classifications, we would want to show that ∼=α+1 does not admit a generically ab-
solute classification using hereditarily countable invariants in Pα(N). This follows
from the results in [Sha21]. In fact, similarly to Proposition 7.7 above, this is true
without demanding the invariants to be hereditarily countable, and with N replaced
by any ordinal.

Theorem 7.8. Fix a countable ordinal α, β < α, any ordinal ζ, and let I = Pβ(ζ),
the β’th-iterated powerset of ζ. Then ∼=α does not admit a generically absolute
classification with invariants in I.

For α < ω, this is proved in [Sha21, Section 4], by finding a model of the form
V (A), where A is an invariant for ∼=n+1, so that V (A) cannot be presented as V (B)
for any set B in Pn(ζ), for any ordinal ζ. The conclusion in [Sha21] is that there is
no absolute classification of ∼=n+1 using invariants in Pn(ζ). The same proof shows
that there is no such generically absolute classification, since A is constructed as
the ∼=n+1-invariant of a single Cohen-generic real. The modifications for countable
α ≥ ω are explained in [Sha21, Section 8].
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