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1. Introduction

An S space is a regular space which is hereditarily separable but not Lindelöf. An
L space is a regular space which is hereditarily Lindelöf but not separable. The S
and L space problems ask for the existence of such spaces.

If the regularity requirement is weakened to Hausdorff, such spaces were constructed
by Sierpiński [7] (see also [2]). Once regularity is assumed, as first asked by Hajnal
and Juhasz in [2], the questions turned out to have much deeper ties to set theory.

An extensive account on the subject, as well as historical remarks, can be found in
[10]. We mention here some results which are relevant to the questions considered
below.

From the definitions, there is no clear relationship between the S and L space
problems. The following result suggests that there is. A space is called a strong L
(S) space if all of its finite powers are L (S) spaces.

Theorem 1 (Zenor [11]). There is a strong S space iff there is a strong L space.

Kunen showed that Martin’s axiom implies that there are no strong S or L spaces,
and asked whether it already implies the non existence of any S or L space.

Theorem 2 (Kunen [4] (MAℵ1)). If X is a non-separable regular space, then Xk

contains an uncountable discrete subset for some integer k.

Todorcevic later established the consistency of the non existence of S spaces, using
proper posets. Szentmiklossy [8] showed that Martin’s axiom does not suffice.

Theorem 3 (Todorcevic [9] (PFA)). For any partition f : [ω1]2 → 2, either there
is a 0-homogeneous subset of size ℵ1, or for some integer l there are uncountable
sets A ⊂ ω1 and B ⊂ [ω1]l, where B is pairwise disjoint, such that for any α ∈ A
and b ∈ B with α < b, there is some j < l for which f(α, b(j)) = 1. Furthermore,
this partition relation implies that there are no S spaces.

The partition relation above is abbreviated by ω1 → (ω1, ω1; finω1)2. Subsets A
and B as in the theorem will be called 1-homogeneous of tpye (ω1; finω1). If l is
fixed, then such sets are 1-homogeneous of type (ω1; [ω1]l). Similar variations, such
as type (finω1; [ω1]l) are defined in the same manner.

Todorcevic concludes the paper [9] by mentioning that the dual partition relation,
ω1 → (ω1,finω1;ω1)2, would imply that there are no L spaces, and asks whether
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it is consistent. This again suggests a similarity between the S and L problems,
especially with both partition relations having the common natural strengthening
ω1 → (ω1, ω1;ω1)2, whose consistency also remained open.

In [10], Todorcevic shows that the two problems are not the same, by constructing
a model with an L space but no S spaces (see also [1]). Finally, in a surprising turn
of events, Moore gave a ZFC construction of an L space, thus giving a negative
answer to the corresponding partition relation.

Theorem 4 (Moore [5]). There is a partition o∗ : [ω1]2 → ω such that for any
uncountable pairwise disjoint family A ⊂ [ω1]k and uncountable B ⊂ ω1 and for
any φ : k → ω, there are a ∈ A and β ∈ B such that a < β and for all i < k,
o∗(a(i), β) = φ(i).

In particular, ω1 6→ [finω1;ω1]2ω, which is the statement above restricted to constant
fucntions φ.

Theorem 5 (Moore [5]). There is an L space.

Moore showed that his L space satisfies the conclusion of Theorem 2 with k = 2
and made the following conjecture:

Conjecture 1 (Conjecture 4 in [5], assuming PFA). If X is a non-separable regular
Hausdorff space, then X2 contains an uncountable discrete subspace.

A closely related question was asked earlier in the paper:

Question 1 (Question 5.7 in [5], assuming PFA). If c : [ω1]2 → 2, are there A ⊂ ω1

and B ⊂ [ω1]2 which are uncountable with B being pairwise disjoint and a φ : 2→ 2
such that for all α ∈ A and b ∈ B with α < b there is an i < 2 such that
c(α, b(i)) 6= φ(i)?

The statement in the question is a formal weakening of ω1 → (ω1; [ω1]2)2
2, which

we get by only allowing a constant function φ.

A quick proof of ω1 6→ (ω1; [ω1]2)2
2 is given in section 2 below. A negative solution

to Question 1 and Conjecture 1 is established in section 4.

It is well known how to construct S and L spaces from strong failures of partition
relations, as was originally done by Hajnal and Juhasz [3]. See also chapter 6 and
the beginning of chapter 8 in [10]. The following construction of an L space is given
in section 7 of [5] for l = 1, the general proof is the same. These arguments can
also be found in proposition 4.3 of [6].

Theorem 6. Let l be an integer. Suppose there is a coloring c : [ω1]2 → 2 satisfying
the following: whenever A ⊂ [ω1]k and B ⊂ [ω1]l are uncountable families of
pairwise disjoint sets and φ : k × l → 2, there are a ∈ A and b ∈ B such that a < b
and for all i < k and j < l,

c(a(i), b(j)) = φ(i, j).

For β < ω1, define wβ : ω1 → 2 by wβ(ξ) = c(ξ, β) if ξ < β and wβ(ξ) = x0

otherwise. Let L = {wβ ; β < ω1} viewed as a subspace of 2ω1 .

Then L is a regular non separable subspace of 2ω1 whose l’th power is hereditarily
Lindelöf.
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Our focus will be on constructing colorings with properties as above, and the cor-
responding L spaces will follow.

In section 5 we show that the theorems of Kunen and Todorcevic are optimal, by
proving the following theorem, which is the main result in this paper.

Theorem 7. For any integer l, there is a partition c : [ω1]2 → ω such that whenever
A ⊂ [ω1]k and B ⊂ [ω1]l are uncountable families of pairwise disjoint sets and
φ : k× l→ ω, there are a ∈ A and b ∈ B such that a < b and for all i < k and j < l,

c(a(i), b(j)) = φ(i, j).

Together with Theorem 6 we get:

Theorem 8. For any integer l there is an L space whose l’th power is also an L
space.

The proof presented in section 2 directly appeals to Theorem 4.3 from Moore’s [5].
This theorem summarizes the main technical results developed there about the
oscillation function. A stronger version of this theorem, which already follows
from Moore’s proof, will be necessary. The strengthened version is formulated in
section 3, and the results in the paper will be derived directly from it. Other than
that, no technical knowledge from [5] is necessary. A sketch is given of how the
proof from [5] readily gives the stronger version. The reader is referred to [5] for
the definitions and details behind the oscillation function.

Note that the results of section 5 subsume those in section 4, which subsume those
in section 2.

2. A quick proof of ω1 6→ (ω1; [ω1]2)2
2

Using the method of minimal walks, Moore defines a function osc : [ω1]2 → ω with
the following property:

Theorem 9 (Theorem 4.3 in [5]). For every A ⊂ [ω1]k and B ⊂ [ω1]l which are
uncountable families of pariwise disjoint sets and every n < ω, there are a ∈ A and
bm (m < n) in B such that for all i < k, j < l and m < n:

a < bm, and osc(a(i), bm(j)) = osc(a(i), b0(j)) +m.

Note that the partition c : [ω1]2 → 2, defined by c(α, β) = osc(α, β) mod 2, readily
gives the failure of ω1 → (ω1;ω1)2

2.

In this section we work with the structure 6 = {0, 1, 2, 3, 4, 5}, where + is taken
modulo 6. If X is a subset of 6 and k an integer, X + k = {x+ k mod 6; x ∈ X}.

Let B = {0, 1, 3} ⊂ 6.

Lemma 10. For any integer k, B ∩ (B + k) 6= ∅.

Note that then B ∪ (B+ k) 6= 6. Since 6r (B+ k) = (6rB) + k it follows that the
lemma also holds for the complement, i.e., for every k, (6rB)∩ ((6rB) + k) 6= ∅.

Define f : [ω1]2 → 2 by f(α, β) = 0 iff osc(α, β) mod 6 ∈ B.
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Proposition 11. f is a counterexample to ω1 → (ω1; [ω1]2)2
2.

Proof. Suppose A ⊂ ω1, B ⊂ [ω1]2 are uncountable and B is pairwise disjoint. We
show that there are α ∈ A and b ∈ B such that α < b and f(α, b(0)) = f(α, b(1)) =
0. The same argument, replacing B with 6 r B, would produce α ∈ A and b ∈ B
such that α < b and f(α, b(0)) = f(α, b(1)) = 1.

Apply Theorem 9 for A and B with n = 6, to get α ∈ A and bm(m < 6) in B such
that for any j < 2, and m < n:

α < bm and osc(α, bm(j)) = osc(α, b0(j)) +m

Let k = osc(α, b0(1))−osc(α, b0(0)). Then for eachm, osc(α, bm(0)) = osc(α, bm(1))−
k. By the lemma above, there is some t ∈ B ∩ (B + k). Let m = t − osc(α, b0(1))
mod 6. Then

osc(α, bm(1)) mod 6 = osc(α, b0(1)) +m mod 6 = t ∈ B.
Also,

osc(α, bm(0)) mod 6 = t− k mod 6 ∈ B.
Thus f(α, bm(0)) = f(α, bm(1)) = 0 as required. �

Remark 12. It follows from Proposition 7.13 of [5] that there are uncountable
sets A,B such that for any α < b from A,B respectively, osc(α, b(0)) = osc(α, b(1)).
That is, k above is always 0. So the partition above is not a counterexample to
Question 1.

To solve Question 1 we first need to extract more information from Moore’s proof.

3. Moore’s theorem

One thing we need, but do not get from the statement of Theorem 9, is to fix
the differences osc(a(i), b0(j)) − osc(a(i), b0(0)) before choosing n (and so before
choosing a). However, this already follows from Moore’s proof of Theorem 9 in [5].
The set Ψ is added for technical reasons needed later.

Theorem 13 (as 4.3 in [5]). For every A ⊂ [ω1]k and B ⊂ [ω1]l which are uncount-
able families of pariwise disjoint sets, and any countable set X, there are a0 ∈ A,
b0 ∈ B and d ∈ ωk × ωl such that for any finite set of formulas Ψ over X and for
every n < ω, there are a ∈ A and bm (m < n) in B such that for all i < k, j < l,
and m < n: a < bm, typeΨ(a) = typeΨ(a0), typeΨ(bm) = typeΨ(b0),

osc(a(i), bm(j)) = osc(a(i), b0(j)) +m and

osc(a(i), b0(j)) = osc(a(i), b0(0)) + d(i, j).
(1)

We sketch below why the additional conclusion is satisfied in Moore’s proof, see [5]
for details and the relevant definitions.

Suppose A ⊂ [ω1]k, B ⊂ [ω1]l and X are as in the statement. Take a countable
M ≺ H(ℵ2) containing all the relevant objects, let δ = M ∩ ω1. Take a0 ∈ A,
b0 ∈ B both above δ. Define d ∈ ωk × ωl by

d(i, j) = osc(a(i), b0(j);L(δ, b0(j)))− osc(a(i), b0(0);L(δ, b0(0)))
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for i < k and j ∈ l. Suppose Ψ is a finite set of formulas over X. Let A′ ={
a ∈ A; typeΨ(a) = typeΨ(a0)

}
and B′ =

{
b ∈ B; typeΨ(b) = typeΨ(b0)

}
. Since

X ∈M and X is countable then X ⊂M , and therefore A′,B′ ∈M .

Let n be an integer. Moore’s construction gives am ∈ A′ and bm ∈ B′ for m < n,
all outside of M , by repeated applications of Lemma 4.4 from [5], which satisfy
osc(am(i), bm(j); L(δ, bm(j))) = osc(a0(i), b0(j); L(δ, b0(j))) +m.

At the end an is reflected to some a ∈ M , and a is chosen so that for any i < k,
ebm(j) | L(a(i), δ) does not depend onm, j. Thus the addition to the oscillation given
by osc(a(i), b(j);L(a(i), δ)) is the same for all m and j. From this the additional
conclusion in Theorem 13 follows.

4. A solution to Question 1

In [5] Moore considers a partition involving raising elements of the unit circle to
powers given by the oscillation function. Then an essential use of Kronecker’s
Theorem is what enables him to deal with arbitrary integers k in Theorem 4.
Kronecker’s Thoerem will be used, for the same purpose, in this section and in
section 5 below.

For notational convenience, we will work with the additive structure on I = [0, 1)
instead of the multiplicative structure on the unit circle. For any integer m and
r, w ∈ I, the operations r+w, m · r and the distance |r−w| are calculated modulo
1. In this context, Kronecker’s Theorem is:

Theorem (Kronecker’s Theorem). Suppose that ri (i < k) are elements of I which
are rationally independent. For every ε > 0 there is a natural number nε such that
if u, v are in Ik, there is an m < nε such that for all i < k,

|ui +m · ri − vi| < ε.

Fix a sequence 〈rα; α < ω1〉 of rationally independent elements of I. For a ∈ [ω1]<ω

and an integer N , let n(N, a) be the nε given by Kronecker’s Theorem for ri = ra(i)

and ε = 1
N . Let Q = [0, 1) ∩Q. Define f : [ω1]2 → I by

f(α, β) = osc(α, β) · rα + rβ mod 1.

Define a coloring c : [ω1]2 → 2 by

c(α, β) = 0 iff f(α, β) ∈ [0,
1

2
).

It follows from the next theorem that c witnesses the failure of Question 1.

Theorem 14. Suppose A ⊂ [ω1]k, B ⊂ [ω1]2 are uncountable families of pairwise
disjoint sets, and φ : k× 2→ 2. There are a ∈ A and b ∈ B such that a < b and for
any i < k and j < 2,

c(a(i), b(j)) = φ(i, j).

Proof. Let A, B and φ be as in the statement. Take X = N ∪ Q and let a0 ∈ A,
b0 ∈ B and d ∈ ωk ×ω2 be given by Theorem 13, applied to A,B and X. For i < k
and j < 2, let

θ(i, j) = d(i, j) · ra0(i) + rb0(j) − rb0(0).
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Note that since {rα; α < ω1} are rationally independent, then θ(i, 1) 6= 0, 1
2 for

each i < k. (θ(i, 0) = 0 for each i < k and is there just for notational uniformity.)
Take some ε > 0 such that |θ(i, 1)|, | 12 − θ(i, 1)| > ε for each i < k. Let d =

sup {d(i, 1); i < k}. Take N such that 1
N < ε

10·d , and let n = n(N, a0).

By applying the conclusion of Theorem 13, with a suitable Ψ, we get a, bm(m < n)
satisfying (1) such that |ra(i) − ra0(i)| < 1

N , |rbm(j) − rb0(j)| < 1
N and n(N, a) =

n(N, a0). Define

ui = osc(a(i), b0(0)) · ra(i) + rb0(0).

Let

v′i =


ε
2 φ(i, 0) = 0, φ(i, 1) = 0;
1
2 −

ε
2 φ(i, 0) = 0, φ(i, 1) = 1;

1− ε
2 φ(i, 0) = 1, φ(i, 1) = 0;

1
2 + ε

2 φ(i, 0) = 1, φ(i, 1) = 1.

Define vi = v′i if 0 < θ(i, 1) < 1
2 , and vi = 1

2 − v
′
i if 1

2 < θ(i, 1) < 1. The point is
that, as can be verified, for any x,

(2) if |x− (vi + θ(i, j))| < ε

2
then x ∈ [0,

1

2
) iff φ(i, j) = 0.

Since n(N, a) = n, there is some m < n such that for each i < k,

(3) |ui +m · ra(i) − vi| <
1

N
.

It is now left to verify that a and bm satisfy the conclusion of the theorem:

f(a(i), bm(j)) = osc(a(i), bm(j)) · ra(i) + rbm(j)

= (osc(a(i), b0(0)) +m+ d(i, j)) · ra(i) + rb0(0) + rbm(j) − rb0(0)

= ui +m · ra(i) + d(i, j) · ra(i) + (rbm(j) − rb0(j)) + (rb0(j) − rb0(0))

= ui +m · ra(i) + θ(i, j) + d(i, j)(ra(i) − ra0(i)) + (rbm(j) − rb0(j)).

Therefore

|f(a(i), bm(j))−(vi+θ(i, j))| ≤ |ui+m·ra(i)−vi|+d(i, j)|(ra(i)−ra0(i))|+|rbm(j)−rb0(j)|.

So by (3) and the choice of N ,

|f(a(i), bm(j))− (vi + θ(i, j))| ≤ 2 + d

N
<

3d · ε
10d

<
ε

2
.

Finally, by (2), f(a(i), bm(j)) ∈ [0, 1
2 ) iff φ(i, j) = 0, thus c(a(i), bm(j)) = φ(i, j).

�

Corollary 15. There is an L space whose square is also an L space.

The corollary follows directly from Theorem 6 and Theorem 14 above.

The method above does not seem to generalize to solve the problem with arbitrary
exponent l. A general solution is given in section 5 below.
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5. Higher exponents

The following proposition shows the equivalence of ω1 → [finω1; [ω1]l]2ω (which is
the negation of (a) below), and the weaker statement, when we ask to avoid some
pattern φ : k × l → ω. In this case, as shown later in this section, both relations
are false. We formulate it in terms of an equivalence since the proof works in more
general settings, for similar partition relations which are not provably false, such as
ω1 → [[ω1]k; finω1]2ω. The failure of such partition relation with general patterns φ
is often the one necessary for certain constructions, as it is in our case to construct
the relevant L spaces.

Proposition 16. Fix an integer l. The following are equivalent:

(a) There is a coloring χ : [ω1]2 → ω such that if A ⊂ [ω1]k and B ⊂ [ω1]l are
uncountable families of pairwise disjoint sets and t ∈ ω, then there are a ∈ A
and b ∈ B such that a < b and for any i < k and j < l, χ(a(i), b(j)) = t.

(b) There is a coloring c : [ω1]2 → ω such that if A ⊂ [ω1]k and B ⊂ [ω1]l are
uncountable families of pairwise disjoint sets and φ : k × l → ω, then there are
a ∈ A and b ∈ B such that a < b and for any i < k and j < l, c(a(i), b(j)) =
φ(i, j).

Proof. The first statement is the restriction of the second to constant functions φ,
so the converse direction is clear.

For the forward implication, we first construct a function ϕ : R+ → ω satisfying the
following: For any finite sequence of pairwise disjoint rational intervals q(0), ..., q(k−
1) and any φ : k → ω there is some t ∈ N such that

(4) for any i < k if x ∈ q(i) then ϕ(t+ x) = φ(i).

This can be done by fixing an enumeration of all pairs 〈q, φ〉 as above, and defining
ϕ by ω many steps where at each step it is only defined on a bounded segment of
R+.

Let χ : [ω1]2 → ω witness that ω1 6→ [finω1; [ω1]l]2ω, as in (a). Define c : [ω1]2 → ω
by

c(α, β) = ϕ(χ(α, β) + rα + rβ).

Suppose A ⊂ [ω1]k, B ⊂ [ω1]l and φ : k × l → ω are as in (b). By thinning out we
may assume that a ∩ b = ∅ whenever a ∈ A and b ∈ B.

Let M be a countable elementary submodel of H(ℵ2) containing A, B, χ, Q and
the sequence 〈rα; α < ω1〉. Take some a0 ∈ ArM and b0 ∈ B rM .

Note that since {rα; α < ω1} are rationally independent, then ra0(i) + rb0(j) 6=
ra0(i′) +rb0(j′) whenever (i, j) 6= (i′, j′). Let q(i, j) (i < k, j < l) be pairwise disjoint
rational intervals such that ra0(i) + rb0(j) ∈ q(i, j). Take a rational ε > 0 small
enough such that for any i < k and j < l, the 2ε-interval around ra0(i) + rb0(j)

is contained in q(i, j). Fix sequences of rationals x ∈ Qk and y ∈ Ql such that
|ra(i) − x(i)|, |rb(j) − y(j)| < ε for any i < k and j < l.

Take an integer t such that (4) holds for q(i, j) (i < k, j < l) and φ. Let A′ ={
a ∈ A; (∀i < k) |ra(i) − x(i)| < ε

}
and B′ =

{
b ∈ B; (∀j < l) |rb(j) − y(j)| < ε

}
. Note
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that x, y, ε ∈M , since Q ⊂M . Therefore A′ and B′ are in M , and are uncountable
since a0 ∈ A′ and b0 ∈ B′.

By the choice of χ, there are a ∈ A′ and b ∈ B′ such that a < b and for all i < k
and j < l, χ(a(i), b(j)) = t. Note that |(ra(i) + rb(j)) − (ra0(i) + rb0(j))| < 2ε, thus
by the choice of ε, ra(i) + rb(j) ∈ q(i, j). Finally, by the choice of t,

c(a(i), b(j)) = ϕ(t+ ra(i) + rb(j)) = φ(i, j).

�

Question 2. Are the following two statements equivalent?

- There is a coloring χ : [ω1]2 → 2 such that ifA ⊂ ω1 and B ⊂ [ω1]l are uncountable
families of pairwise disjoint sets and t ∈ 2, then there are α ∈ A and b ∈ B such
that α < b and for any j < l, χ(α, b(j)) = t.

- There is a coloring c : [ω1]2 → 2 such that if A ⊂ ω1 and B ⊂ [ω1]l are uncountable
families of pairwise disjoint sets and φ : l → 2, then there are α ∈ A and b ∈ B
such that α < b and for any j < l, c(α, b(j)) = φ(j).

As mentioned above, Proposition 16 shows that the two statements are equivalent
if 2 is replaced by ω. A related question is:

Question 3. Are ω1 → [ω1; finω1]2ω and ω1 → (ω1; finω1)2
2 equivalent?

Our main result, Theorem 7, states that clause (b) from Proposition 16 holds for
every integer l. By Proposition 16, the following theorem will finish the proof.

Theorem 17. For any integer l, there is a coloring χ : [ω1]2 → ω such that for every
A ⊂ [ω1]k and B ⊂ [ω1]l which are uncountable families of pairwise disjoint sets
and for any t ∈ ω there are a ∈ A and b ∈ B such that a < b and χ(a(i), b(j)) = t
for every i < k and j < l.

Fix some integer l. The following auxiliary partitions will be used to prove the
theorem.

Lemma 18. There is a sequence ϕ̄ = 〈ϕα; α < ω1〉 of functions ϕα : I → ω sat-
isfying that: For any α < ω1, d ∈ ωl and t ∈ ω, there is some ε(α, d, t) > 0 and
q(α, d, t) both in Q such that for any x ∈ I and j < l,

(5) if |x− (q(α, d, t) + d(j) · rα)| < ε(α, d, t) then ϕα(x) = t.

(Note that d could be constant.)

Proof. Let 〈dn, tn; n < ω〉 enumerate ωl × ω. Fix some α < ω1. Define ϕα in ω
stages, where at stage n it is defined on some set An of measure < 1

l , where An is
a finite union of intervals.

Suppose ϕα is defined on An−1. Let B =
⋃
j<l(An−1 − dn(j) · rα), the union of

l many shifts of An−1. Then the measure of B is < 1 and B is also a union of
finitely many intervals. Thus there is some q ∈ Q and ε > 0 such that the interval
(q− ε, q+ ε) is disjoint from B. So for each j < l the ε-interval around q+dn(j) · rα
is disjoint from An−1.
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We add these intervals, with some possibly smaller ε, to get An, so that the measure
of An is < 1

l . Define ϕα to take the value tn on these intervals. This finishes the
construction, and it can be verified that 〈ϕα; α < ω1〉 satisfy the conclusion of the
lemma. (For the remaining undefined points let ϕα take the value 0.) �

Proof of Theorem 17. Define χ : [ω1]2 → ω by

χ(α, β) = ϕα(osc(α, β) · rα).

Suppose A and B are as in the statement of the theorem. Apply Theorem 13 with
A,B and X = N∪Q∪ {ϕ̄} to get a0 ∈ A, b0 ∈ B and d ∈ ωk × ωl. Fix some t ∈ ω.

For each i < k define di ∈ ωl by di(j) = d(i, j), let qi = q(a0(i), di, t), εi =
ε(a0(i), di, t) and take N such that 1

N < min {εi; i < k}. Let n = n(N, a0) (as
defined in the beginning of section 4).

Take a finite set of formulas Ψ, using the parameters {ϕ̄, N, n, t, di, qi, εi; i < k},
such that the following holds: by applying the conclusion of Theorem 13 with n
and Ψ, we get a, b0, ..., bn satisfying (1) and such that n(N, a) = n, q(a(i), di, t) = qi
and ε(a(i), di, t) = εi for any i < k.

Let ui = osc(a(i), b0(0)) · ra(i). Take m < n such that for each i < k,

|ui +m · ra(i) − qi| <
1

N
.

Let x(i, j) = osc(a(i), bm(j)) · ra(i). It remains to show that a, bm satisfy the con-
clusion of the theorem, that is, to show that ϕa(i)(x(i, j)) = t. For any i < k and
j < l,

osc(a(i), bm(j)) = osc(a(i), b0(0)) +m+ di(j),

and so
x(i, j) = ui +m · ra(i) + di(j) · ra(i).

Thus

|x(i, j)− (qi + di(j) · ra(i))| <
1

N
< εi.

Finally, as q(a(i), di, t) = qi and ε(a(i), di, t) = εi, it follows from condition (5) that
ϕa(i)(x(i, j)) = t, as required. �
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and function spaces. Fund. Math., 106(3):175-180, 1980.


