The important technical lemma:

Lemma 1. (*Magidor*) Let ρ be a regular cardinal, κ, λ cardinals s.t $\rho < \kappa < \lambda$. Suppose that in $V^{\operatorname{Col}(\rho,<\kappa)}$, P is a ρ -closed poset and $|P| < \lambda$. Let i be the identity complete embedding of $\operatorname{Col}(\rho,<\kappa)$ into $\operatorname{Col}(\rho,<\lambda)$. Then i can be extended to a complete embedding j of $\operatorname{Col}(\rho,<\kappa) * P$ into $\operatorname{Col}(\rho,<\lambda)$ such that the quotient forcing $\operatorname{Col}(\rho,<\kappa) * P$ is ρ -closed in $V^{j}[\operatorname{Col}(\rho,<\kappa) * P]$.

The use of this lemma is by establishing indestructibility, under closed enough posets, to certain reflection properties, when dealing with non-large cardinals.

Lemma 2. Suppose κ is a regular cardinal, $\kappa < \mu$ is a measurable cardinal, and we force with Col $(\kappa, < \mu)$. In the resulting model, $\mu = \kappa^+$ and the following statement is true, even after a further forcing extension by Col (κ, μ) :

For any $\lambda < \kappa$, every coherent sequence $\mathscr{C} = \langle \mathscr{C}_{\alpha} : \alpha < \mu \rangle$, where $|\mathscr{C}_{\alpha}| < \lambda$, has a thread.

Claim 3. Suppose Q is a poset and τ is a Q-name s.t $Q \Vdash \tau \notin \check{V}$. Let $G \times H$ be a $Q \times Q$ -generic over V, let

$$a = \tau^G, \quad b = \tau^H.$$

Then in $V[G \times H]$, $a \neq b$.

Main lemma for separating squares:

Lemma 4. Suppose $\lambda < \kappa$, $\mathscr{C} = \langle C_{\alpha}; \alpha < \kappa^+ \rangle$ is a $\Box_{\kappa, < \lambda}$ -sequence and P is a poset satisfying

 P^{λ} is λ^+ -distributive.

Then P does not thread \mathscr{C} .

Proof. Suppose otherwise, that there is a *P*-name τ s.t *P* forces τ is a thread through \mathscr{C} . Let $\prod_{\alpha < \lambda} G_{\alpha}$ be a P^{λ} -generic over *V* and denote $D_{\alpha} = \tau^{G_{\alpha}}$. Since \mathscr{C} has no thread in *V*, by claim 3 we have that $\langle D_{\alpha}; \alpha < \lambda \rangle$ is a sequence of distinct clubs threading \mathscr{C} . However, as P^{λ} is λ^+ -distributive, cf $(\kappa) \ge \lambda^+$ in the generic extension. Thus $D = \bigcap_{\alpha < \lambda} D_{\alpha}$ is a club, and we can find a $\beta \in D$ s.t below β all the D_{α} 's are distinct. Now

 $\forall \alpha < \lambda \ (\beta \in D_{\alpha} \Longrightarrow D_{\alpha} \cap \beta \in C_{\beta}),$

in contradiction to $|C_{\beta}| < \lambda$.

Remark. In particular, if *P* is κ -closed, then *P* does not thread \mathscr{C} .

Now we can prove lemma 2:

Proof. (Lemma 2) Let $j: V \longrightarrow M$ be an elementary embedding corresponding to the measurable cardinal μ . Let $G \subset \text{Col}(\kappa, < \mu)$ be generic over V and $H \subset Q = \text{Col}(\kappa, \mu)$ generic over V[G]. Write

$$j(\operatorname{Col}(\kappa < \mu) * Q) = \operatorname{Col}(\kappa, < j(\mu))^{M} * j(Q) = \operatorname{Col}(\kappa, < \mu) * \operatorname{Col}(\kappa, [\mu, j(\mu)))^{M} * j(Q) = \operatorname{Col}(\kappa, < \mu) * \operatorname{Col}(\kappa, [\mu, j(\mu)))^{M} * j(Q) = \operatorname{Col}(\kappa, < \mu) * \operatorname{Col}(\kappa, < \mu) * Q = \operatorname{Col}(\kappa, < \mu) * Q = \operatorname{Col}(\kappa, < \mu) * Q = \operatorname{Col}(\kappa, < \mu) * \operatorname{Col}(\kappa, < \mu) * \operatorname{Col}(\kappa, < \mu) * Q = \operatorname{Col}(\kappa, < \mu) * Q = \operatorname{Col}(\kappa, < \mu) * \operatorname{Col}(\kappa, < \mu) * Q = \operatorname{Col}(\kappa, < \mu) * \operatorname{Col}(\kappa, < \mu) * Q = \operatorname{Col}(\kappa, < \mu) * \operatorname{Col}(\kappa, < \mu) * Q = \operatorname$$

By lemma 1, we have

$$j(\operatorname{Col}(\kappa < \mu) * Q) = \operatorname{Col}_{1}(\kappa, < \mu) * Q * R * j(Q)$$

where *R* is κ -closed (and so is j(Q)). The definition of *R* can be carried out inside *M* - this is possible since $M^{\mu} \subset M$ and we can assume, without loss of generality, that *Q* is coded as a partial order on μ . Note that all those forcings are κ -closed in *M*, hence also κ -closed as posets in *V*.

In M[G][H], we have $H = j''H \subset j(Q)$ and $j(Q) = \operatorname{Col}(\kappa, j(\mu)) = \operatorname{Col}(\mu, j(\mu))$. Hence we can take $q = \bigcup H \in \operatorname{Col}(\mu, j(\mu))$ as a master condition. Let K be R * j(Q)-generic over V[G][H] containing q. Let $V^* = V[G * H * K]$. In V^* we can define an embedding

$$\tilde{j}: V[G * H] \longrightarrow M[G * H * K]$$

which extends *j*.

Now assume that \mathscr{C} is a coherent sequence of length μ in V[G*H]. By the above, \mathscr{C} has a thread in V^* (since any element of $\tilde{j}(\mathscr{C})_{\mu}$ will thread \mathscr{C}). But V^* is a κ -closed extension of V[G*H], in contradiction to lemma 4.

Henceforth we assume we work in a model as described in lemma 2, that is, after collapsing the measurable.

Lemma 5. Suppose $S_{<\lambda}$ is the poset for adding a $\Box_{\kappa,<\lambda}$ -sequence, T is the threading poset. Then

 $\forall \eta < \lambda \left(T^{\eta} \text{ is } \kappa \text{-distributive} \right).$

(clearly by the lemma before T^{λ} is not κ -distributive.)

This follows from the following proposition, which states that for $\alpha < \lambda$, $S * T^{\alpha}$ is forcing isomorphic to a κ -closed poset.

Proposition. Define $E \subset S * T^{\alpha}$,

 $E = \left\{ \left(p, \left\langle d_{\xi}; \xi < \alpha \right\rangle \right); p = \left\langle C_{\alpha}; \alpha \leq \beta \right\rangle \in S \land \forall \xi < \alpha \left(p \Vdash \left(d_{\xi} \in T \right) \land \max d_{\xi} = \beta \right) \right\}.$

Then E is dense and κ -closed.

Proof. E is κ -closed: Suppose $\left\langle \left(p^{\eta}, \overrightarrow{d^{\eta}} \right); \eta < \mu \right\rangle$ is a descending sequence of length $\mu < \kappa$, where $\overrightarrow{d^{\eta}} = \left\langle d_{\xi}^{\eta}; \xi < \alpha \right\rangle$. Define

$$d_{\xi} = igcup_{\eta < \mu} d^{\eta}_{\xi}, \quad q = \left\{ d_{\xi}; \xi < lpha
ight\}, \quad p = igcup_{\eta < \mu} p^{\eta} \frown q.$$

Thus (p, \vec{d}) is a lower bound of the sequence, and in *E*.

E is dense: Take a condition $(p, \vec{d}) \in S * T^{\alpha}, \vec{d} = \langle d_{\xi}; \xi < \alpha \rangle, p = \langle C_{\alpha}; \alpha \leq \beta \rangle$. W.l.o.g., $\beta \geq \max d_{\xi}$ for all $\xi < \alpha$. Define

 $e_{\xi} = d_{\xi} \cup (\beta + \omega \setminus \beta + 1).$

Let $C_{\beta+\omega} = \{e_{\xi}; \xi < \alpha\}$, and let $q = \langle C_{\alpha}; \alpha \leq \beta + \omega \rangle$, $\overrightarrow{e} = \langle e_{\xi}; \xi < \alpha \rangle$. Then $(q, \overrightarrow{e}) \in E$ and $(q, \overrightarrow{e}) \leq (p, \overrightarrow{d})$.

Remark. The lemma for $\lambda = v^+$ says that if *S* and *T* add and destroy a $\Box_{\kappa,v}$ -sequence, then T^v is κ -distributive (and T^{v^+} is not).

A quick corollary is:

Corollary 6. Separating squares

Proof. We force with $S_{\kappa,\lambda}$, thus $\Box_{\kappa,\lambda}$ holds. We want to show that $\Box_{\kappa,<\lambda}$ fails. Assume by contradiction that there is some $\Box_{\kappa,<\lambda}$ sequence \mathscr{C} . Note that after forcing with *T* we get a $S_{\lambda} * T$ -generic extension of *V*, and $S_{\lambda} * T$ is κ closed and collapses κ^+ to κ , thus $S_{\lambda} * T$ is forcing isomorphic to $\operatorname{Col}(\kappa, \kappa^+)$. Hence, by lemma 2, after forcing with *T*, \mathscr{C} must have a thread. Thus forcing with *T* threaded \mathscr{C} , in contradiction to lemma 4, as *T* satisfies " T^{λ} is κ -distributive".

Similarly, another easy application:

Proposition 7. (*The fly swatter*) A non reflecting stationary subset of κ does not imply $\Box(\kappa)$.

Proof. Start with κ indestructible (under κ -Cohen forcing, for the property $\neg \Box(\kappa)$). Let A and D be the forcing for adding and destroying a non reflecting stationary subset, $S \subset A$ generic. Then in V[S] we have D^2 is κ -distributive, hence cannot destroy a $\Box(\kappa)$ -sequence, thus there is no $\Box(\kappa)$ -sequence in V(S). Similarly, a non reflecting stationary subset does not imply $\Box(\kappa, \lambda)$ for any $\lambda < \kappa$.

And, for example:

Proposition 8. $\Box_{\kappa,2}$ *does not imply* $\Box(\kappa^+)$.

Proof. A $\Box(\kappa^+)$ -sequence cannot be destroyed by a forcing s.t P^2 is κ -distributive.

And also

REFERENCES

[1] On the strengths and weaknesses of weak squares