
0] AND SPECIALIZING TREES IN L

In this note we prove:

Theorem 1. Assume 0] exists. Suppose κ is a cardinal, and κ+ its successor (both
as calculated in V ). Let T be a tree in the constructible universe L of height κ+

and size ≤ κ+, and assume that T has no branch (in L). Then T is special in V .

Under these assumption, κ+ has the tree property in L. The point is that we
allow the trees to be fat.

Theorem 1 has the following strong converse, which follows from a result of
Shelah and Stanley.

Theorem 2. If 0] does not exist, there is a cardinal κ and a tree T in L such that
T is a non special κ+-Aronszajn tree in V .

We mention the following theorem:

Theorem (Foreman, Magidor and Shelah [1]). Assume 0] exists. For any non
trivial poset P ∈ L, forcing with P adds a real.

It is an open question whether this statement is equivalent to 0].

Assume 0] exists. We will use the following standard facts about the canonical
class of indiscernibles I.

Fact 1 (See 9.8 in Kanamori). Let σ be an n-ary canonical term and α0 < ... < αn
ordinals from I. If σ(α0, ..., αn−1) is an ordinal then σ(α0, ..., αn−1) < αn.

Fact 2 (The remarkable condition. See 9.10 in Kanamori). Let σ be an (m +
n + 1)-ary term, α0 < ... < αm+n and αm−1 < βm < ... < βm+n all in I. Then
σ(α0, ..., αm+n) = σ(α0, ..., αm−1, βm, ..., βm+n).

Lemma 1 (See Jech). Assume 0] exists, and I is the canonical class of indis-
cernibles. Let κ be an ordinal such that V |= cfκ > ω and L |= κ is regular. Then
κ is a limit point of I.

Lemma 2 (See Jech 18.3). Assuming 0] exists, if κ is any ordinal such that there
is some L-fresh subset of κ, then cfκ = ω. (By an L-fresh subset of κ we mean a
set X ⊂ κ such that X ∩ α ∈ L for each α < κ, yet X /∈ L.)

We will also use the following two simple lemmas:

Lemma 3. Suppose T =
⋃
α∈κ Tα and for each α there is a function fα : Tα −→ κ

which is specializing on Tα. Then there is a sepcializing function f : T −→ κ.

Lemma 4. Suppose T =
⊔
x∈X Tx is a disjoint union, where X is a set. Assume

that given two different x, y ∈ X, for any s ∈ Tx and t ∈ Ty, s ⊥ t. Assume also
that for each x there is a function fx : Tx −→ κ which is specializing on Tx. Then
there is a specializing function f : T −→ κ.
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We now begin the proof of theorem 1.
Let T ∈ L be a tree on κ+ of size ≤ κ+, with no branch in L. We may assume

that T is a subset of the ordinal κ+. By lemma 1, κ+ is a limit point of I. Note
that, since T ∈ L, a branch in T is an L-fresh subset of κ+. By lemma 2, T has no
branch in V as well.

Fix a term τ and sequences of ordinals ū, v̄ such that T = τ(ū, v̄), where ū < κ+

and min v̄ = κ+. Let u = sup ū < κ+.
For each t ∈ T , fix a term σt and a sequence of ordinals x̄ such that t = σ(x̄).

Write x̄ = āt, b̄t, c̄t where āt ≤ u < b̄t < κ+ ≤ c̄t. Since t ∈ κ+, by fact 2 we may
assume that c̄t are consecutive elements of I and min c̄t = κ+. Let Γt be the order
type of b̄t (i.e. the relationship between the order in the sequence and the order as
ordinals).

There are countably many terms σ, countably many possible order types Γ, and
countably many possible lengths of the sequence c̄. There are at most κ many
options for the sequence ā, as it is bounded by u < κ+. So we can partition T
into at most κ many subsets on which σ, ā, c̄ and Γ are constants. By lemma 3, it
suffices to work on each such subset. Thus the following lemma will conclude the
theorem:

Lemma 5. Let S ⊂ T , σ a term, d̄, c̄ ⊂ I such that d̄ < κ+ ≤ c̄, k an integer and
Γ an order type of k elements. Assume that all the elements of S are of the form
σ(d̄, x̄, c̄) where x̄ ⊂ I, u ≤ max d̄ < x̄ < κ+ and the order type of x̄ is Γ. Then S
can be partitioned into κ many antichains.

Proof. By induction, assume the claim is true for k and that the conditions of the
lemma are satisfied with k + 1.

Let Z ⊂ S be the set of all the minimal elements with respect to the tree relation.
For z ∈ Z, define Sz = {t ∈ S; t ≥T z}. By lemma 4, it suffices to partition each
Sz to κ many antichains, so fix a z and assume S = Sz. i.e. for each y ∈ S, z ≤T y.
Let x̄ be such that z = σ(d̄, x̄, c̄).

Claim 1. If y = σ(d̄, ȳ, c̄) ∈ S then min ȳ ≤ max x̄.

Proof. Assume otherwise. Fix a sequence 〈ȳξ; ξ < κ+〉 such that ȳξ ⊂ I has the
same order type of ȳ and for ξ < ζ < κ+, sup ȳξ < min ȳζ . By assumption,

σ(d̄, x̄, c̄), σ(d̄, ȳ, c̄) ∈ τ(ū, v̄), σ(d̄, x̄, c̄) ≤τ(ū,v̄) σ(d̄, ȳ, c̄)

where τ(ū, v̄) = T . Also, x̄, ȳ have the same order type and sup x̄ < min ȳ.
Since ȳ, ȳξ are all above ū and below v̄, then by indiscernibility we get: for

every ξ < κ+, σ(d̄, ȳξ, c̄) ∈ T , and σ(d̄, ȳξ, c̄) ≤T σ(d̄, ȳζ , c̄) for every ξ < ζ < κ+.
Thus the set

{
σ(d̄, ȳξ, c̄); ξ < κ+

}
generates a branch in T of order type κ+, a

contradiction. �

Let Ξ =
{

min ȳ; σ(d̄, ȳ, c̄) ∈ S
}

. By the claim, Ξ is bounded by max x̄, thus

Ξ is of size ≤ κ. For ξ ∈ Ξ, let Sξ =
{
σ(d̄, ȳ, c̄); σ(d̄, ȳ, c̄) ∈ S ∧min ȳ = ξ

}
. By

lemma 3, it suffices to partition each Sξ into κ many antichains. Let d̄′ = d̄_ξ.
Then Sξ satisfies the hypothesis of the lemma 5 with d̄′ and k. By the inductive
hypothesis, we can partition Sξ into κ many antichains. �

This finishes the proof of theorem 1.
Recall the following result of Shelah and Stanley [3]:
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Theorem ([3]). Let C = 〈Cα; α < κ+〉 be a � (κ+)-sequence, and let S ⊂ κ+ be
stationary s.t. S ⊂ cof(λ) and S is disjoint to the limit points of C, i.e. for any
α < κ+, S ∩ C ′α = ∅. Then there is a κ+-tree T with a λ-ascent path and a weakly
specializing function f defined on the levels in S. i.e., f is defined on the levels Tα
for α ∈ S and gives values below α, and f satisfies the specializing condition.

Since T is weakly special, it is Aronszajn. Since T has an ascent path, it is not
special (see [3]).

proof of theorem 2. Assume that 0] does not exists. Let κ be a strong limit singular
cardinal of uncountable cofinality, so that V and L agree on κ+. In L, �κ holds,
so, by Shelah-Stanley, there is a κ+-aronszajn tree with an ω-ascent path. Note
that the ascent path remains so in any outer model, thus the tree is not special in
V as well. This gives a weak version of theorem 2 (i.e. only that T has no branch
in L).

For the stronger version, we want a tree which is also Aronszajn in V . So we
need a weakly specializing function defined on a set which is stationary in V .

Let C be the �κ sequence in L. Recall the standard construction of a square
sequence with a stationary set disjoint from its limit points (see [2]):

Consider the regressive function f defined by f(α) = otp(Cα) for α with cfα = ω.
Find, in V , a fixed value µ on a stationary S ⊂ {α ∈ κ+; cfα = ω} . Since C and
f are in L, the set S′ = {α; f(α) = µ} is in L, and contains S, hence is stationary
in V . Now S′ ∩ lim(Cα) contains at most one element, for each κ < α < κ+. Let
Dα = Cα \ γ for the unique γ ∈ limCα ∩ S′. Then S′, D are in L, S′ is stationary
in V , D is a �(κ+)-sequence and S′ is disjoint from the limit points of D.

We can now apply the Shelah-Stanley construction to get a κ+-tree in L with an
ascent path which is weakly special on a V -stationary subset, thus has no branch
in V . �
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