0[#] AND SPECIALIZING TREES IN L

In this note we prove:

Theorem 1. Assume 0^{\sharp} exists. Suppose κ is a cardinal, and κ^+ its successor (both as calculated in V). Let T be a tree in the constructible universe L of height κ^+ and size $\leq \kappa^+$, and assume that T has no branch (in L). Then T is special in V.

Under these assumption, κ^+ has the tree property in L. The point is that we allow the trees to be fat.

Theorem 1 has the following strong converse, which follows from a result of Shelah and Stanley.

Theorem 2. If 0^{\sharp} does not exist, there is a cardinal κ and a tree T in L such that T is a non special κ^+ -Aronszajn tree in V.

We mention the following theorem:

Theorem (Foreman, Magidor and Shelah [1]). Assume 0^{\sharp} exists. For any non trivial poset $P \in L$, forcing with P adds a real.

It is an open question whether this statement is equivalent to 0^{\sharp} .

Assume 0^{\sharp} exists. We will use the following standard facts about the canonical class of indiscernibles I.

Fact 1 (See 9.8 in Kanamori). Let σ be an n-ary canonical term and $\alpha_0 < ... < \alpha_n$ ordinals from I. If $\sigma(\alpha_0, ..., \alpha_{n-1})$ is an ordinal then $\sigma(\alpha_0, ..., \alpha_{n-1}) < \alpha_n$.

Fact 2 (The remarkable condition. See 9.10 in Kanamori). Let σ be an (m + n + 1)-ary term, $\alpha_0 < ... < \alpha_{m+n}$ and $\alpha_{m-1} < \beta_m < ... < \beta_{m+n}$ all in I. Then $\sigma(\alpha_0, ..., \alpha_{m+n}) = \sigma(\alpha_0, ..., \alpha_{m-1}, \beta_m, ..., \beta_{m+n}).$

Lemma 1 (See Jech). Assume 0^{\sharp} exists, and I is the canonical class of indiscernibles. Let κ be an ordinal such that $V \models cf \kappa > \omega$ and $L \models \kappa$ is regular. Then κ is a limit point of I.

Lemma 2 (See Jech 18.3). Assuming 0^{\sharp} exists, if κ is any ordinal such that there is some L-fresh subset of κ , then $cf\kappa = \omega$. (By an L-fresh subset of κ we mean a set $X \subset \kappa$ such that $X \cap \alpha \in L$ for each $\alpha < \kappa$, yet $X \notin L$.)

We will also use the following two simple lemmas:

Lemma 3. Suppose $T = \bigcup_{\alpha \in \kappa} T_{\alpha}$ and for each α there is a function $f_{\alpha} : T_{\alpha} \longrightarrow \kappa$ which is specializing on T_{α} . Then there is a sepcializing function $f : T \longrightarrow \kappa$.

Lemma 4. Suppose $T = \bigsqcup_{x \in X} T_x$ is a disjoint union, where X is a set. Assume that given two different $x, y \in X$, for any $s \in T_x$ and $t \in T_y$, $s \perp t$. Assume also that for each x there is a function $f_x: T_x \longrightarrow \kappa$ which is specializing on T_x . Then there is a specializing function $f: T \longrightarrow \kappa$.

We now begin the proof of theorem 1.

Let $T \in L$ be a tree on κ^+ of size $\leq \kappa^+$, with no branch in L. We may assume that T is a subset of the ordinal κ^+ . By lemma 1, κ^+ is a limit point of I. Note that, since $T \in L$, a branch in T is an L-fresh subset of κ^+ . By lemma 2, T has no branch in V as well.

Fix a term τ and sequences of ordinals \bar{u}, \bar{v} such that $T = \tau(\bar{u}, \bar{v})$, where $\bar{u} < \kappa^+$ and min $\bar{v} = \kappa^+$. Let $u = \sup \bar{u} < \kappa^+$.

For each $t \in T$, fix a term σ_t and a sequence of ordinals \bar{x} such that $t = \sigma(\bar{x})$. Write $\bar{x} = \bar{a}_t, \bar{b}_t, \bar{c}_t$ where $\bar{a}_t \leq u < \bar{b}_t < \kappa^+ \leq \bar{c}_t$. Since $t \in \kappa^+$, by fact 2 we may assume that \bar{c}_t are consecutive elements of I and $\min \bar{c}_t = \kappa^+$. Let Γ_t be the order type of \bar{b}_t (i.e. the relationship between the order in the sequence and the order as ordinals).

There are countably many terms σ , countably many possible order types Γ , and countably many possible lengths of the sequence \bar{c} . There are at most κ many options for the sequence \bar{a} , as it is bounded by $u < \kappa^+$. So we can partition Tinto at most κ many subsets on which σ, \bar{a}, \bar{c} and Γ are constants. By lemma 3, it suffices to work on each such subset. Thus the following lemma will conclude the theorem:

Lemma 5. Let $S \subset T$, σ a term, $\overline{d}, \overline{c} \subset I$ such that $\overline{d} < \kappa^+ \leq \overline{c}$, k an integer and Γ an order type of k elements. Assume that all the elements of S are of the form $\sigma(\overline{d}, \overline{x}, \overline{c})$ where $\overline{x} \subset I$, $u \leq \max \overline{d} < \overline{x} < \kappa^+$ and the order type of \overline{x} is Γ . Then S can be partitioned into κ many antichains.

Proof. By induction, assume the claim is true for k and that the conditions of the lemma are satisfied with k + 1.

Let $Z \subset S$ be the set of all the minimal elements with respect to the tree relation. For $z \in Z$, define $S_z = \{t \in S; t \geq_T z\}$. By lemma 4, it suffices to partition each S_z to κ many antichains, so fix a z and assume $S = S_z$. i.e. for each $y \in S$, $z \leq_T y$. Let \bar{x} be such that $z = \sigma(\bar{d}, \bar{x}, \bar{c})$.

Claim 1. If $y = \sigma(\bar{d}, \bar{y}, \bar{c}) \in S$ then $\min \bar{y} \leq \max \bar{x}$.

Proof. Assume otherwise. Fix a sequence $\langle \bar{y}_{\xi}; \xi < \kappa^+ \rangle$ such that $\bar{y}_{\xi} \subset I$ has the same order type of \bar{y} and for $\xi < \zeta < \kappa^+$, $\sup \bar{y}_{\xi} < \min \bar{y}_{\zeta}$. By assumption,

$$\sigma(d, \bar{x}, \bar{c}), \sigma(d, \bar{y}, \bar{c}) \in \tau(\bar{u}, \bar{v}), \ \sigma(d, \bar{x}, \bar{c}) \leq_{\tau(\bar{u}, \bar{v})} \sigma(d, \bar{y}, \bar{c})$$

where $\tau(\bar{u}, \bar{v}) = T$. Also, \bar{x}, \bar{y} have the same order type and $\sup \bar{x} < \min \bar{y}$.

Since \bar{y}, \bar{y}_{ξ} are all above \bar{u} and below \bar{v} , then by indiscernibility we get: for every $\xi < \kappa^+$, $\sigma(\bar{d}, \bar{y}_{\xi}, \bar{c}) \in T$, and $\sigma(\bar{d}, \bar{y}_{\xi}, \bar{c}) \leq_T \sigma(\bar{d}, \bar{y}_{\zeta}, \bar{c})$ for every $\xi < \zeta < \kappa^+$. Thus the set $\{\sigma(\bar{d}, \bar{y}_{\xi}, \bar{c}); \xi < \kappa^+\}$ generates a branch in T of order type κ^+ , a contradiction.

Let $\Xi = \{\min \bar{y}; \sigma(\bar{d}, \bar{y}, \bar{c}) \in S\}$. By the claim, Ξ is bounded by $\max \bar{x}$, thus Ξ is of size $\leq \kappa$. For $\xi \in \Xi$, let $S_{\xi} = \{\sigma(\bar{d}, \bar{y}, \bar{c}); \sigma(\bar{d}, \bar{y}, \bar{c}) \in S \land \min \bar{y} = \xi\}$. By lemma 3, it suffices to partition each S_{ξ} into κ many antichains. Let $\bar{d}' = \bar{d} \uparrow \xi$. Then S_{ξ} satisfies the hypothesis of the lemma 5 with \bar{d}' and k. By the inductive hypothesis, we can partition S_{ξ} into κ many antichains. \Box

This finishes the proof of theorem 1.

Recall the following result of Shelah and Stanley [3]:

Theorem ([3]). Let $C = \langle C_{\alpha}; \alpha < \kappa^+ \rangle$ be a $\Box(\kappa^+)$ -sequence, and let $S \subset \kappa^+$ be stationary s.t. $S \subset \operatorname{cof}(\lambda)$ and S is disjoint to the limit points of C, i.e. for any $\alpha < \kappa^+, S \cap C'_{\alpha} = \emptyset$. Then there is a κ^+ -tree T with a λ -ascent path and a weakly specializing function f defined on the levels in S. i.e., f is defined on the levels T_{α} for $\alpha \in S$ and gives values below α , and f satisfies the specializing condition.

Since T is weakly special, it is Aronszajn. Since T has an ascent path, it is not special (see [3]).

proof of theorem 2. Assume that 0^{\sharp} does not exists. Let κ be a strong limit singular cardinal of uncountable cofinality, so that V and L agree on κ^+ . In L, \Box_{κ} holds, so, by Shelah-Stanley, there is a κ^+ -aronszajn tree with an ω -ascent path. Note that the ascent path remains so in any outer model, thus the tree is not special in V as well. This gives a weak version of theorem 2 (i.e. only that T has no branch in L).

For the stronger version, we want a tree which is also Aronszajn in V. So we need a weakly specializing function defined on a set which is stationary in V.

Let \mathcal{C} be the \Box_{κ} sequence in L. Recall the standard construction of a square sequence with a stationary set disjoint from its limit points (see [2]):

Consider the regressive function f defined by $f(\alpha) = \operatorname{otp}(C_{\alpha})$ for α with $\operatorname{cf} \alpha = \omega$. Find, in V, a fixed value μ on a stationary $S \subset \{\alpha \in \kappa^+; \operatorname{cf} \alpha = \omega\}$. Since C and f are in L, the set $S' = \{\alpha; f(\alpha) = \mu\}$ is in L, and contains S, hence is stationary in V. Now $S' \cap \lim(C_{\alpha})$ contains at most one element, for each $\kappa < \alpha < \kappa^+$. Let $D_{\alpha} = C_{\alpha} \setminus \gamma$ for the unique $\gamma \in \lim C_{\alpha} \cap S'$. Then S', \mathcal{D} are in L, S' is stationary in V, \mathcal{D} is a $\Box(\kappa^+)$ -sequence and S' is disjoint from the limit points of \mathcal{D} .

We can now apply the Shelah-Stanley construction to get a κ^+ -tree in L with an ascent path which is weakly special on a V-stationary subset, thus has no branch in V.

References

- Foreman, M., Magidor, M., and Shelah, S., 0[#] and Some Forcing Principles. The Journal of Symbolic Logic, 51(1), 39-46, 1986.
- [2] Magidor, M., Lambie-Hanson, C.: On the strengths and weaknesses of weak squares. Appalachian Set Theory: 2006-2012. Cambridge University Press, 2012.
- [3] Shelah, S., Stanley, L.: Weakly compact cardinals and nonspecial Aronszajn trees. Proc. Amer. Math. Soc., 104(3):887-897, 1988.

UCLA

assafshani@ucla.edu