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INTRODUCTION

Let % be a normal ultrafilter over a measurable cardinal A, and consider the corresponding elementary
embedding j: V — N, where N is the transitive collapse of Ult(V,% ). For a forcing notion Q € N,
we want to add a Q-generic, by forcing with Q as a forcing notion in V. In the generic extension, the
Q-generic over V is in particular Q-generic over N. Note that N is elementarily equivalent to V, that is,
N is in some sense a “close approximation” of the entire universe V. However, the properties of Q as a
forcing notion in V can be quite different from its properties as a forcing notion in N.

We focus on the case Q = j(P), where P is a forcing notion in V. P will typically be a forcing notion
which is familiar and well understood, hence by elementarity, j (P) is also well understood, as a forcing
notion in N. We then study its properties as a forcing notion in V. Note that in this case, j(P) is equal
to P* /% , the ultrapower of P by 7%/. Furthermore, the forcing notion P usually satisfies some simple
definition in V, hence j (P) is simply the satisfaction of this definition in the model N.

We will be primarily interested in forcing notions P that “force above A”. The accurate assumption is that
Pt is At -distributive; the practical conclusion is that in the forcing extension, %/ remains an ultrafilter,
and the new ultrapower embedding extends the old one (as no new A-sequences of elements from V are
added). This assumption will prove useful in the study of j (P)-generic extensions.

We study the ultrapower of some familiar forcing notions, such as the forcing notion for destroying a
stationary subset, and the forcing notion for threading a square sequence. Particular attention will be
given to the ultrapower of Cohen forcing, and its interaction with large cardinals.

We remark that ultrapowers of forcing notions were used by Shelah in the context of cardinal invariants
of the continuum (see [1]). However, in Shelah’s proof, the ultrapower of a c.c.c forcing notion that blows
up the continuum to A was used. Thus the situation described above is very different in nature.

A short description of the main contents of each section is as follows:

In the preliminaries section, we mostly review basic facts and definitions about forcing and ultrapower
embeddings. A more detailed discussion about projections of forcing notions and ultrapower embeddings
of generic extensions is included, as these will be substantially used throughout this paper.
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In section 1, we study j (P) for a general poset P. We show that as forcing notions, j (P) can be embedded
in P*, and conclude that distributivity is transferred from P* to j(P). We also show that if H C j (P) is
generic over V, then H and j (H) are mutually generic over N.

In section 2, we give an example for a poset P which is k-distributive, yet j(P) is not x-distributive.
Hence the assumption on P* in section 1 is essential. The example is the forcing notion for threading a
[I-sequence.

In section 3, we take P to be Cohen forcing at some regular cardinal k¥ > A. We then use the results
of section 1 to study j(P) in the context of destruction and preservation of large cardinals. We show
that j (P) in fact destroys the weak compactness of k. More explicitly, we define a certain combinatorial
principle which contradicts compactness, and show that j(P) forces this principle. We also study the
quotient forcing P* /j (P).

In section 4, we consider the following question: “is a P-generic added when forcing with j (P)?”. We
give examples for either direction. The forcing notion for destroying a stationary subset is considered
here.

PRELIMINARIES

We assume the reader is familiar with forcing and ultrapower embeddings. This preliminary section does
not pretend to introduce these concepts, but rather will review some basic definitions and facts, and fix
some notation. We focus on stating facts and properties that will be used later rather than giving accurate
definitions. We refer to any of the common textbooks on set theory and forcing, for example [4, 6, 5].

0.1. Forcing. We follow the usual approach for forcing with partial orders. A triplet (P,<p,1) is said
to be a forcing notion, or a poset, if (P, <p) is a partially ordered set with a maximal element 1 € P. We
follow the convention that for p, g € P, p extends g (or p is stronger than q) if p <p q.

The forcing notions we work with are assumed to be separative, so if p |- g € G, where G is the name for
the generic filter, then p < g. In some cases we may deal with posets that are not separative by definition,
but we always have the separative quotient in mind, which produces equivalent forcing extensions as the
original poset.

One of the most basic forcing notions is Cohen forcing for a cardinal k. The k-Cohen poset is defined as
follows:

Cohen (k) = P = {p : domp — 2; |[domp| < k},

where for p,g € P, p < g <= p Dqg.

We sometimes also associate Cohen forcing at k with the poset {p : domp — 2; domp € k}, which is
equivalent as a forcing notion to Py, since it is dense in Pk.

For Cohen forcing, as well as other forcing notions which are composed of partial functions into 2,
a condition p € Py is associated with the bounded set {a € domp; p(a) =1}. Similarly, a generic
filter G C Py is associated with the generic function | JG: Kk — 2 as well as the generic subset of K,
{o0 < ;UG (x) = 1}. When writing G we may refer to either the function or the subset, depending on
the context.



0.1.1. Closure and distributivity properties.

Definition. P is k-closed if for any descending chain of conditions of length < k there is a lower bound.
Thatis, if (pe; @ < M) CP,x < <N = pg < pgand N < k, then thereis p € Ps.t Vo <N (p < pq).

Definition. P is k-directed closed if any directed set of conditions of size < k has a lower bound. That
is,if FCP,|F|<xandVp,gqe FAre F(r < pAr<gq),thenthereis pe Ps.tVge F(p <q).

Definition. P is x-distributive if forcing with P adds no new subsets of ordinals of size < k.

Fact 0.1. Let P be a separative poset. The following are equivalent:

(1) P is k-distributive.
(2) The intersection of < kK many dense subsets of P is dense.

Next we consider strategic closure. We follow the definitions in [2].

Definition. For an ordinal « and poset P, define G (P) to be the following two players game of length
a.

Player Even plays at even stages (including limit stages) and player Odd plays at odd stages. po = 1p,
and at each stage B, the player picks a pg € P such that Vy < f8 (pﬁ < py), otherwise the player loses.
Player Even wins the play iff Player Even does not lose at any stage 8 < «.

Definition 0.2. P is k-strategically closed if player Even has a winning strategy for the game G (P).

The following implications hold and are known to be strict implications:
K-closure = K-strategic closure = «k-distributivity.

We will see examples for forcing notions separating these properties in the following sections.

0.1.2. Product forcing and two step iterations.

Definition. ([6, p.252]) Let (P, <p,1p), (Q,<g,1p) € V be forcing notions. We define the product forc-
ing notion (P x Q, <, 1) as follows. 1 = (1p,1¢) and for (p1,41), (p2,92) € P x Q,

(r1,q1) < (P2,q2) = p1 <p2Aq1 < qo.

The most important fact about product forcing is that it is the same as iterating the forcings one after
another, and that the factors commute, which is captured by the following.

Fact 0.3. (See [6, Ch. VIII]) Suppose P, Q € V, G C P, H C Q; then the following are equivalent:

e G X H is P x Q-generic over V.
e G is P-generic over V and H is Q-generic over V [G].
e H is Q-generic over V and G is P-generic over V [H].

Furthermore, if the above conditions hold then
V|G xH|=V|G][H] =V [H]||[G].

In this case we say that G and H are mutually generic over V.
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Similarly, we can take products of more than two posets. Suppose A is an ordinal and for each ot < A we
have a poset Py. Define

P=[] Pu={f:domf=2AAVa <A(f(a)€ Ps)}.

<A

If G C P is P-generic, then for each @ < A, Go = {f(&); f € G} is Py-generic. Furthermore, by
fact 0.3 we get that for each @ # 8, Go and Gg are mutually generic. Note also that f € G <=
VOC < )v (f(OC) € Ga), that iS, G == Ha<l Ga.

Definition. ([4, p.267]) Let (P,<p,1p) € V be a forcing notion and (Q, <0, 1Q) a P-name for a forcing
notion. Define a forcing notion (P *0, <, 1) as follows:

) P*Q: {(p,c});p € PANIFpg € Q}, 1= (1p,1Q).

e (P1,q1) < (P2,42) == p1<p2Ap1lFg1 <o
Fact. ([4, p.267]) Let P be a forcing notion and Q a P-name for a forcing notion.

(1) If G is P-generic over V and H is Q®-generic over V [G], then G x H is P * Q-generic over V,
where

GxH = {(p,q);p eGAGY H}.
(2) If K is P x Q-generic over V, define
G={peP;3q(p.q) €K}, H= {q‘G; Ip (p.4) € K}-
Then G is P-generic over V, H is Q®-generic over V [G],and K = G*H.

Furthermore, in the situation above we have V [Gx H| =V [G] [H].

0.1.3. Embeddings and projections.
Definition 0.4. ([6, p. 218]) Let P,Q be posets. A map i: P — Q is called a complete embedding if

(D) Vp1,p2 € P(p1 < p2 = i(p1) <i(p2)).
(2) Vp1,p2 € P(p1 L p2 = i(p1) Li(p2)).
(3) Vge QIpe PVp' e P(p' <p = (i(p’) and ¢ are compatible in Q)).

Given 1. and 2., condition 3. is equivalent to the assertion that for any maximal antichain A C P, i"A is a
maximal antichain in Q.

The important fact is that if i: P — Q is a complete embedding, then in a Q-generic extension there is
also a P-generic filter. More accurately, Q can be thought of as a two step iteration, where the first factor
is P. That is, there is a P-name for a forcing notion R such that P x R is forcing isomorphic to Q.

Definition 0.5. ([6, p. 221]) Let P, Q be posets. A map i: P — Q is said to be a dense embedding if
(D) Vp,p' e P(p'<p = i(p) <i(p))

2 Vp,p' eP(pLp = i(p) Li(p))
(3) i"Pis dense in Q.
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A dense embedding is in particular a complete embedding. The important fact is thatif i: P — Q is a
dense embedding, then P and Q produce the same generic extensions. In this case we say that P and Q
are forcing isomorphic or forcing equivalent.

Dually to complete embeddings, we have complete projections.

Definition 0.6. Let P, Q be posets. A map a: P — Q is said to be a complete projection if

e Vp1,pp € P(p1 <pr = a(p1) <a(pz)) (ais a homomorphism).
e VpePVgeQ(g<a(p) = Ip e P(p'<pAa(p’) <q)) (ais dense).

The second condition can be stated as follows: For any p € P, the image of P | p under a is dense below
a(p).

If there is such projection we say that P is completely projected onto Q. Note that even if a is not surjec-
tive, the density condition implies that the image of P under a is dense in Q, hence forcing isomorphic to
0.

The following lemma shows that up to forcing isomorphism, complete projections and complete embed-
dings are in fact the same. That is, if P completely projects onto Q, then Q completely embeds into a
poset which is forcing isomorphic to P.

Lemma 0.7. Suppose a: P — Q is a complete projection. Define a Q-name for a poset R = { pEPa(p)cH }
where H is the Q-name for a Q-generic. Define i : P — Q*R by
i(p) = (a(p),p).

Then i is a dense embedding.

Proof. (1) of definition 0.5 is clear as a is a homomorphism. (2) holds since if

(a(p),p)=i(p)lli(qg)=(alq),q),

then in particular p || q.

For (3), we show that {(a(p),p); p € P} is dense in O*R.

Take a condition (g,7) € Q * R. Then by definition g I- 7 € R, i.e. g~ 7€ PAa(#) € H. Thus there is
s<qandt € Ps.tsl-t=r Inparticular s |- a(t) € H, hence, by separativity, s < a (t).

Now by the density condition on a, there is some p <t s.ta(p) <s. Hence (a(p),p) < (s,t) <(q,7). O

By the above lemma and the standard facts on dense embeddings, we have in particular that if G C P is
P-generic over V, then H = a”G is Q-generic over V and G is R” -generic over V [H]. Furthermore, if H
is a Q-generic over V, G a R” -generic over V [H], then G is also P-generic over V.

The following facts are commonly used for showing the distributivity or strategic closure of forcing
notions.

Fact. Suppose P, Q are posets and Q is completely embedded into P. Then

P is x-distributive —> Q is K-distributive.

The proof is simple, as any Q-generic extension can be embedded in a P-generic extension, hence cannot
add new subsets of ordinals of size < k.



6

Fact. Suppose P, Q are posets and either there is a complete projection of P onto Q or a complete
embedding of Q into P. Then

P is k-strategically closed —> Q is K-strategically closed.

A proof of the fact above is included in the appendix, see lemma 5.2.

Notice that distributivity is a property invariant under forcing equivalence, unlike closure and strategic
closure, which are properties of the partial order. That is, for a poset P, we may be interested in finding a
forcing equivalent poset which is closed, and not only in whether P itself satisfies closure properties.

0.2. Ultrafilters and ultrapowers. We review here some basic definitions and facts regarding ultrafil-
ters, ultrapowers and ultrapower embeddings. We refer to [4] and [5] for a thorough treatment.

Let X be a set. We say that 7/ is an ultrafilter over X if % is a filter on P (X) = {Y; Y C X} and for any
Y CX,eitherY € % or X \Y € % . For asubset A C X, A is said to be large iff A € % .
Given a (set) model M for the language .# we can form the ultrapower of M by %, defined by

UIt(M. %) = {[fly: f: X — M},

where [f],, is the equivalence class of f under the equivalence relation =4 on [[y M, defined by
f=wg = {xeX;f(x)=gx)} e%.
The subscript %7 may be omitted from [ ], when clear from context.
We make Ult (M, % ) a structure to the language - as follows. For a predicate symbol P € . define the
interpretation of P in Ult(M, 7% ) by
[f]y € PMH) — [xex;f(x)ePM}ew.
We define a corresponding embedding j: M — Ult(M, % ) as follows. For a € M, let f,: X — M be
the constant function a, that is Vx € X (f; (x) = a). Then define
J(a) =[faly -
Fo$’s theorem states that for any formula ¢ () for the language . and [f],, ..., [fn] € Ult(M,% ),
UltM, %) = o([f]y,- [h]) <= {xeXio(filx),...fnx)} € %.
In particular, for any @ C M,
Ult(M,Z)E ¢ (j(a)) < ME¢(a).

That is to say j is an elementary embedding.

Similarly, when % € V, where V is a set theoretic universe, we can take the ultrapower of V by % and
get j:V — Ult(V,%) s.t j is definable in V and is an elementary embedding for the language €. See
[5] for details on the construction and its definability.

For a cardinal A, we say that an ultrafilter %/ is A-complete if the intersection of < A many large sets is
large. Recall the following fact (see [5]):

Ult(V,% ) is well founded if and only if % is w;-complete.

If 7 is w;-complete, Ult(V, % ) is isomorphic to a transitive class N via the Mostowski collapse. In this
case we identify Ult(V, % ) with its Mostowski collapse N, and denote the corresponding embedding by
j :V — N. Furthermore, for any f: A — V we denote [f],, as the corresponding element in N.



A cardinal A is measurable if and only if there is a A-complete ultrafilter over A.
Recall the following fact:

Fact. The following are equivalent:

e There is a non trivial @;-complete ultrafilter.
e There is a transitive class N C V, N # V and an elementary embedding j: V — N.
e There exists a measurable cardinal.

For definitions, proofs and a comprehensive discussion on the subject, see [S]. Here we will mention the
following fact, which can serve as a definition for a measurable cardinal for our purposes.

Fact. Suppose A is a measurable cardinal, then there exists an ultrafilter % over A (a normal ultrafilter),
such that if N is the transitive collapse of Ult(V, % ), j the corresponding ultrapower embedding, i.e.
J:V—N~UWt(V,%),

then we have:

e N is closed under A-sequences, i.e. N* CN.
o [id],, = A, where id : A — A is the identity function.

o [fla =Ji(f)(A) forany f: A — V.

0.3. Ultrapowers of forcing extensions. Suppose % is a normal ultrafilter over a measurable cardinal
A with a corresponding ultrapower embedding

J:V—NUIt(V,%).

Suppose P is a A T-distributive forcing notion and G a P-generic over V. By distributivity, no new subsets
of A are added in V [G], hence in V [G], % is an ultrafilter over A. We can therefore take the ultrapower
of V [G] by % and we have a corresponding embedding

j:V[G] — N~UI(V[G],%).
Claim. Forany f €V, f: A — V we have [f]v% = [f]‘g;/[G].
Proof. We prove by induction on the well founded relation €. Let f be as in the claim and suppose for
anygeV,g: A — Vsit[g' €[f]” wehave [g]" = [g]V[G].
1f [¢)" € [£]" then clearly [g]" = [¢]"'” € [
If [g]V[G] = [f]V[G}, then w.l.o.g V) < A (g(n) € £(n)), in particular g : A — V. By At -distributivity
we have g € V, hence by induction hypothesis [g]"[¢! = [g]" € [f]". 0O

The claim above in particular shows that j extends j, i.e. j|y= j. Furthermore, we claim that j(G) is
J (P)-generic over N and N =N [j(G)].

To simplify the definability of V in the generic extension we note the following. When constructing a
generic extension of V, we can do so while adding a predicate V for the language of set theory. The
forcing theorem shows that the generic extension is a model of the appropriate ZFC axioms with the new
predicate (and of course, T € V iff T = X for some x € V ). When taking an ultrapower of the generic
extension, we therefore get an elementary embedding with respect to the language (E, ‘V/). Now we have

that V [G] thinks it is a generic extension of V with a generic G. Hence by elementarity, N thinks it is
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a generic extension of VN with a generic j(G). Thus it only remains to show that VN = N. This again
follows from distributivity. Suppose f € V[G], f: A — V[G] s.t [f] € V", then w.l.o.g we can assume
f: A — VVI6 = V. Hence by A *-distributivity, f € V, thus [f] € N.

To see that A "-distributivity is essential, we include in the appendix an example for a forcing notion P, s.t
no new subsets of A are added after forcing with P (hence % remains an ultrafilter), yet the conclusions
above fail. See section 5.1.

1. FORCING WITH j (P)

We fix a measurable cardinal A, a normal ultrafilter %7 over A, and the corresponding elementary embed-
ding

Jj:V—N~Ut(V,%).
Let P be a forcing notion. We study the ultrapower of P, j (P), as a forcing notion in V.

Remark. The measurability of A is not essential in most of the arguments, yet we choose to enjoy the
structural and notational luxuries of ultrapower embeddings by normal ultrafilters. There will be some
exceptions, where we will use the fact that N* C N, and we emphasize this when we do (mostly in
section 4). Also, the fact that we study an ultrapower of a given poset P is not essential. Analogous claims
and proofs can be given for any forcing notion Q in N (which is then represented as Q = [y« Po/ %,
for some posets {Py; 00 < A }).

First we show how to embed j(P) in P* =[], P, the product of A copies of P. Consider the map
[l : P> — j(P), defined by f + [f],,.

Lemma 1.1. The map [],, : P* — j(P) is a complete projection.

Proof. Recall definition 0.6 of a complete embedding. [ |,, is clearly a homomorphism, as
[<pg=Yn<A(f(n)<pgM) = [flo <jp) [8lu-

To see that [ ], is dense, take f € P* and p € j(P) s.t p <) [fly- Wemust finda g € Prstg<p f
)

and [g],, <;p) p. Take any g s.t [g],, = p. Since p <;p) [f]y. we have {n;g(n) <p f(n)} € %.
Thus, by changing g on a small set we geta g € P* s.t [g],, = [§],, and VN < A (g(n) <p f(1)). Hence
g <p f and [g],, = p, as required. O

Recall section 0.1.3. Tt follows from lemma 1.1 that j(P) embeds into P*, as forcing notions. More
specifically, we can define a j (P)-name for a poset R, s.t for any generic H C j (P),

RH:{fePl;[f]%eH}.

There is a dense embedding i: P* — j(P) % R defined by i(f) = ([f],, ,f). The following lemma
is a trivial corollary of the simple facts on dense embeddings, applied to i. We include a proof for
completeness.



Lemma 1.2. Suppose G is P’l-generic over'V. Define

H=A{[fly@: f €G}.
Then H is j(P)-generic over V.

Proof. Suppose V > D C j(P) is a dense subset of j(P). We wish to show that H N D # 0. Define
D= {fEP’l; (floy GD}, then D is dense in P*:

For any f € P*, let p = [f],, € j(P). By density of D in j(P) we have some p > ¢ € D. Take g € P* st
g < fand[g], =q,theng e D.
Now, by genericity of G we have some & € GN D, thus [h],, € HND. O

Furthermore, any j (P)-generic extension can be extended, by forcing with R, to a P* -generic extension.
Thus any j (P)-generic over V can be thought of as being derived as in lemma 1.2.

Corollary 1.3. If P* is k-distributive, then j(P) is x-distributive.

Proof. By the discussion above, any j (P)-generic extension can be embedded into a P’l-generic exten-
sion. Thus if P* adds no subsets of ordinals of size < k, neither does j(P). 0

In particular, if P is x-closed, P* is k-closed as well, hence j (P) is k-distributive by the above corollary.
Note that in any case, if P is A-closed, then by elementarity, N F j(P) is j(A)-closed, in particular
NE j, (P)is At-closed. Since N* C N, we get that V E j; (P) is A*-closed. Also note that for k¥ > A+,
j (P) will typically not be k-closed as j(P) C N and N is not closed under A *-sequences.

On the other hand, for strategic closure we have:

Corollary 1.4. If P is k-strategically closed then j(P) is K-strategically closed.

Proof. First note that if P is k-strategically closed, then so is P*, as we can use the strategy separately
at each coordinate. Now the corollary follows from lemma 1.1, as strategic closure is preserved under
complete projections (see lemma 5.2 in the appendix for a proof). 0

One can ask whether the distributivity of P in general suffices to deduce the distributivity of j (P) as well.
In section 2 we show that this is not the case.

Recall section 0.3: Suppose G is Q-generic, where Q is a A T-distributive forcing notion. Then j can be
extended to

J:VI[Gl— N|[j(G)] ~Ul(VI[G], %),
where N is the ultrapower of V as computed by V [G] as well. In this case we abuse notation and note ]
by j.
AB;sume j(P) is AT -distributive, then we have j: V [H] — N[j (H)]. Note that H is in particular j (P)-
generic over N, as j(P) € N. Also, by elementarity, j (H) is j> (P)-generic over N (where j> = jo j). In
Corollary 1.6 below we show that H and j (H) are in fact mutually generic over N.

Lemma 1.5. Suppose G is P*-generic, H = {[f],,; f € G} is the corresponding j(P)-generic. For
o <A, let Gy ={f(a); f € G} be the projection of G to the ath coordinate. Then for any oy < A, Gg,
and H are mutually generic over V.
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Proof. W.lo.g ap = 0. The argument here is carried out in the forcing extension V [G].
By fact 0.3 about mutual genericity, it suffices to show that Gy is P-generic over V [H]. Suppose not, then

there is f € P* and D a j (P)-name for a dense subset of P s.t f I D NGy = 0.
Define p = [f] € j(P). As D is a j(P)-name for a dense subset of P, there is a ¢ € P, ¢ <p f(0) and

pejP),p <;ppstpIFipqeD.
Take g € P* s.t [§] = p/ and § <pa f. Define

q a=0
€)= {g(a) @ #0
g < f(0), hence g <p f. Also, g(0) = ¢ implies that g IF-p, g € Gy. Furthermore, g IFp: [g] € H, and
lg]=18l=p"IFjpyqeD.
Hence g is an extension of f, forcing that DH N Gy > g, in contradiction. 0

Corollary 1.6. Assume P* is A+ -distributive. For any H which is j(P)-generic overV, in V [H] we have

H and j(H) are mutually generic over N.

Proof. Let G be a P*-generic s.t H = {[f],, ; f € G}. By A*-distributivity of P*, we have an extension
of jto j: V]G] — N[j(G)]. Let {Gy; o < A} be the projections of G, and denote j ((Gg; ¢ < A)) =
(Goi; o0 < j(A)). Thatis, for @ < j(A), Ga = {f(c); f € j(G)} is the ath projection of j(G). Note
that G =[5y Ga, hence

H=[(Gos a <A)ly = j((Ga)s . <A)(A) = Gy.
Now, applying j to lemma 1.5 we get that in N [j (G)]:
For any o < j(A), Go and j(H) are mutually generic over N.
In particular, for @ = A, G; = H and j (H) are mutually generic over N. O

This corollary will be used in section 3.
A bit more about mutual genericity: Fix a j (P)-generic H, we work in V [H]. Let
J N — N*"~UIt(N,j(%))

be the ultrapower embedding of N by j(% ), where in N, j (%) is a normal ultrafilter over j(A). Note
that for any P which is A T-distributive, N k= j (P) is j (4) " -distributive. Hence by section 0.3 (applied in
N), j* can be extended to an ultrapower embedding

J'N[H] — N*[j* (H)],

and j* (H) is j* (j (P))-generic over N*.
Also, if j(P) is A " -distributive (in V), there is an extension of j,

J:VIH] — N[j(H)],
where j(H) is j? (P)-generic over N.
Claim. j*(j(P)) = j*(P).
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Proof. j* is the ultrapower embedding by j(%/) as defined in N, so by elementarity, j* = j(j). Hence
foranyx €V,

Therefore j(H) and j* (H) are both j? (P)-generic over N*.

Proposition 1.7. Assume P* is A" -distributive. Then j(H) and j* (H) are mutually generic over N*.

Proof. We work again in the P*-generic extension. Take a P*-generic G s.t H = {[f],,; f € G}. Let
{G(at); a < A} be the projections, G = [[o-1 G (). As we’ve seen above, H = j(G) (1), so by ele-

mentarity,

jH) =7 (G)(j(A)).
Similarly, j(G) is j<P’l>—generic over N, and we can extend j* to j*: N[j(G)] — N*[j*(j (G))],
where j* (j(G)) = j?(G). By elementarity,

JU(H) =" (7(G)) (" () = /2 (G) (4).
Now, in N* [j2(G)] we have

Vo < B < j2(A) (j2 (G) (a) and j*(G)(B) are mutually generic over N¥).
In particular, taking @ = A and 8 = j (A1), we get that j (H) and j* (H) are mutually generic over N*. [J

Note that, while the power P* produces A many P-generics over V, the ultrapower j (P) produces only
one j (P)-generic over N (at least intuitively). Working in a j (P)-generic extension, the proposition above
shows that we can “resurrect” one of the many P-generics added by P*, in the form of a 2 (P)-generic
over N*. This idea will motivate the proof of proposition 2.3 below.

Also note that the ultrapower embedding can be further iterated, and in a similar way, we can get more
than two mutual generics, over the corresponding iterated ultrapower model.

2. A COUNTER EXAMPLE FOR DISTRIBUTIVITY

In section 1 we have seen (corollary 1.3) that distributivity of pP* implies distributivity of j(P). In
particular, closure of P implies distributivity of j (P).

In this section we show that the mere distributivity of P does not imply the distributivity of j(P). More
specifically, for any regular cardinal k¥ > AT we have a forcing notion P which is k-distributive yet j (P)
is not A " -distributive.

Note that by corollary 1.3 such a P must in particular be an example to a forcing which is k-distributive,
yet P* is not k-distributive. A known example for this is the forcing notion for threading a [ sequence.
We first introduce the definitions and sketch some facts. Recall,

Definition 2.1. Let x be a cardinal. A (J(x)-sequence is a sequence ¢ = (Cy; @ < K, ¢ is a limit ordinal)
such that:

(1) Cy C ais aclub.
(2) If @ € Cy is a limit ordinal, then Cg N ot = Cy.
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(3) There is no club D C k such that Voo € D(DNa = Cy).

A sequence ¢ satisfying (1) and (2) is said to be coherent. A club D C « satisfying Vo € D (DNa = Cy)
is said to thread the sequence ¥. Thus a [J(k)-sequence is a coherent sequence with no thread. Recall
the following forcing notions for adding and destroying a [J (k) sequence.

First, the forcing notion S = Sy for adding a [(J (k) sequence. Conditions in S are p s.t:

(1) p=(pa; ¢ < yAa is alimit ordinal) for some y < k.
(2) Foreach ¢ <7, po C xisaclubin .
(3) For limit ordinals o, B <y, @ € pg = pgNa = pq.

The conditions of S are ordered by end extension. Let ¢’ = (Cy; & < Kk, ¢ is a limit ordinal) be the name
for the S-generic sequence. Define an S-name for a forcing notion, 7' = T.;, for adding a thread through
€. Conditions in 7 are limit ordinals below &, and are ordered by (for o > B)

oa<rf < BeC,.
Claim. Define the following subset of S 7":
E={(p,y);p=(pa; @ < y) € SA7yis alimit ordinal } .

Then E is a k-closed dense subset of S x 7.

Proof. (Sketch) E is k-closed: Suppose 1 < k and ((py,7); vV < 1) is a descending sequence of ele-

ments from E. Take
y=sup¥%,q9=J py, p= (U pv> ~q.
v<n v<n v<n

Then (p, y) is a lower bound of the sequence ((py,1); VvV < 1n).
E C ST is dense: Take any condition (p,{) € S*T, p = (py; & < ), and assume w.l.o.g that § > (.
Define

Ppro=pcU{CIUB+o\B+1), pP=p~— ppro
We see that j € S, and by definition, p < p. Furthermore, p IF (B+®) <7 {, as { € pgiq. Thus
(p,B+ o) is in E and extends (p, {). O

Thus S * T is forcing isomorphic to a k-closed forcing. In particular, S is k-strategically closed and T is
k-distributive. We can also use the k-closed dense subset to prove the following fact.

Fact. If € is S-generic over V, G is Tg-generic over V [€¢] and D = JycCa. Then D is a club in x,
threading € .

Proof. (Sketch) V [¢][G] is equivalent to an E-generic extension, and if G C E is the corresponding
E-generic filter, we see that

D= {}/; e, r= (p,}/)}.
It follows that D is unbounded in k, by the k-closure of E. Also, by definition of D, it satisfies Vo €
D(DNa = Cgy), hence D is closed, and threads % O

Assume henceforth that 4 € V was added by forcing with S, hence T = T is a k-distributive forcing
notion. The following known fact shows that distributivity is not preserved by products.
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Claim 2.2. T x T is not @;-distributive.

Proof. Suppose D x E is a T x T-generic. Then both D and E thread (Cy; o < k).

Suppose by contradiction that in the generic extension cf (x) > .

By genericity, we must have that D and E are different. Take some & on which D and E disagree.

Since cf (k) > @, D,E C K are clubs, there is a limit ordinal 3 above o s.t § € DNE.

Then DN = Cg = EN . In contradiction. O

A similar argument can be used to show the following fact:

Fact. If ¢ = (Co; @ < K, o is a limit ordinal) is S-generic over V, then in V €], € is indeed a (O (x)-
sequence.

Proof. By the definition of a [J(k)-sequence and the definition of S, it only remains to show that % has
no thread in V [¢]. Assume otherwise, and let D € V [¢] be a thread. Let E be a T-generic over V [].
V€] |E] is a S * T-generic extension of V, and as we have seen above, S x T is forcing isomorphic to a
k-closed forcing notion. Thus V [¢] [E] F K is regular. However, since E is generic over V [¢], we must
have that £ # D, and both thread % . This leads to a contradiction, as in claim 2.2. O

Finally, we show that distributivity is not preserved by ultrapowers.

Proposition 2.3. j(T) is not A -distributive.

Proof. The idea is, under the assumption of A *-distributivity, to construct two mutual generics for j> (T'),
as in proposition 1.7. Then we get a contradiction as in claim 2.2. However, we have to be more cautious,
as we do not have the assumption that T* is A *-distributive, which we used in proposition 1.7.
Assume by contradiction that j(7') is A "-distributive. Let D be j (T')-generic over V.
By At -distributivity we have an extension of j, j: V [D] — N [j (D)] (recall section 0.3). By elementar-
ity we have

j(D) is j*(T)-generic over N.
Let j*: N — N* ~ Ult(N, j (%)) be the ultrapower embedding of N by j(% ). As T is x-distributive,
K > AT, there is an extension of j*, j* : N[D] — N* [j*(D)], and by elementarity,

JF (D) is j* (j(T))-generic over N*.

As in the discussion before proposition 1.7, j* (j (T)) = j2(T), and j (D), j* (D) are both j* (T)-generics
over N*. That is, both j (D) and j* (D) thread ;2 (%). To get a contradiction, we show that j (D), j* (D)
are different.

We claim that for any ordinal 71 there is a limit ordinal o < k s.t the first ordinal of Cy 1s 1 + 1, 1.e.
CoNN+2={n-+1}. This is true since ¢ was introduced by forcing. Consider the poset S for adding
a OJ(x)-sequence. For any condition p = (pg; @ < YA« is a limit ordinal) € S (w.l.o.g assume y > 1),
we can define p’ = pU (Y+ ®, py+o ), where pyro = {n+1}U(y+®)\ (y+1). Then p’ < p and

P lFsCrioNn+2={n+1}.
Now, working in N, we know that j (%) was introduced by forcing over some ground model. Hence

taking 1 = A, there is some limit ordinal o < K s.t the first ordinal in j (%) (@) is A 4+ 1. Consider the
condition & € j(T'). We have

al-jryDNA+2=j(%€)(0)NA+2={A+1}.
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W.Lo.g we can assume o € D (we take D which is T | a-generic), hence DNA +2={A +1}. In N, the
critical point of j* is j(A), which is greater than A, so we have

iD)NjA)+2={jA)+ 1IN (D)NA+2={A+1}.

Note that since V [D] thinks j (D), j* (D) are clubs in the sense of N*, then j(D), j* (D) are indeed
clubs in k (in the sense of V [D]). Now, as V [D] F cf(k) > o, there is a limit ordinal S > j(A) s.t
B € j(D)N j*(D). Thus we have A +1 € j*(D)N B = j2(€) (B) = j (D) N B, in contradiction. O

Remark. The important aspects of 7" that we have used are that it is k-distributive, and that there cannot
be two distinct T-generics in a A T-distributive forcing extension. For any other such poset, one can carry
the above proof similarly, where proposition 1.7 serves as motivation for the fact that we get different
generics by applying j and j*. We will see another poset satisfying these properties in section 3 below.
Note that the “two” above is not essential. Suppose P is a K-distributive poset such that there cannot be
three (or a, for an ordinal o < 1) different generics in a A *-distributive extension. Similar arguments
can show that j (P) is not A *-distributive. Such forcing notions, where P is k-distributive for & < o,
yet P% is not A "-distributive, exist. For instance, the forcing notion for threading a [y «¢-sequence.

3. ULTRAPOWER OF COHEN FORCING

The situation we have in mind throughout this section is that K has some large cardinal property, and we
ask questions related to destruction and preservation of this large cardinal property, while forcing with
the ultrapower of Cohen (k). Recall the following common situation in large cardinal forcing:

A is a poset, designed to add some combinatorial object, which usually contradicts some large cardinal
property. D is an A-name for a poset, designed to “destroy” the object added by A. The poset A * D is
forcing isomorphic to Cohen (k), therefore, assuming we started with an indestructible large cardinal, D
resurrects the large cardinal property of k.

Three examples are as follows:

e A adds a x-Suslin tree 7, D adds a branch in 7.
e A adds a non reflecting stationary subset S C k, D adds a club disjoint to S.
e A adds a [J(k)-sequence %, D adds a thread through %

For definitions, more examples, and a comprehensive discussion on the subject, see [2]. [ (k)-sequences,
and the forcings which add and destroy them, were reviewed above in section 2. The forcing notions for
adding and destroying non reflecting stationary subsets are reviewed in section 4 below.

In this section, we describe a similar situation, where A is the ultrapower of Cohen (k). We define a
combinatorial principle: an unresolvable argument over k, which contradicts the weak compactness of
K, and show that forcing with the ultrapower of Cohen (k) adds an unresolvable argument over k. We
then define and study the corresponding D which resolves the argument.

Notation. For a cardinal k and a subset a C k, we associate a with its characteristic function ),. For
subsets a,b C Kk, we note the statement ¥, C X, V X» C Xa by a || b. This coincides with the forcing
definitions if we think of ), and ), as elements in some Cohen poset.

Definition 3.1. Let %/ be a normal ultrafilter over A, j: V — N the corresponding ultrapower embed-
ding, and let k¥ > A be a regular cardinal. We say that .% is a % -argument over x if . is a family of
functions f: A — V, satisfying
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D VfeZ ([fly € Px(x)).

(2) Vf,g € Z([fly || 8l )- In other words, f and g are compatible on a large set (coherence con-
dition).

(3) Ugez [fly is cofinal in k.

For a function g: A — V, we say that g resolves the argument % if
gl = U o
fe7
An argument .# is unresolvable if there is no function g resolving it.
Remark 3.2. If 7 is an unresolvable 7 -argument over K, then A = (¢ # [f],, satisfies
ACKk,A¢N,Va<k(ANa eN).
Similarly, if we have a set A as above, for each @ < Kk take some fyu: A — V st AN = [f]y . Then

F ={fu; @ < x} is an unresolvable % -argument over K.

Remark. The measurability of A is not essential in definition 3.1. An analogous property can be defined
for a general ultrafilter %/, and the following theorems will hold as well.

Theorem 3.3. Let 7/ be an ultrafilter over A, K > A cardinals.

(1) If x is weakly compact, then every % -argument over K is resolvable.
(2) If x is O-strongly compact, 0 > K a cardinal, then every % -argument over 0 is resolvable.

Proof. 1. Recall that for an uncountable cardinal x, “k is weakly compact” is equivalent to the following:
Va < K‘(K‘—) (K‘)é) .

Let 7 be an ultrafilter over a cardinal A < k, and let .% be a % -argument over K. k is weakly compact,
hence inaccessible, so 24 < K, and we have Kk —> (K)%;L. Also, | Zk| = k and Kkt = K, so .7 is of size
k. Let # = (fa; @ < k) be an enumeration of .%, w.l.o.g, assume [fy],, C . Note that by assumption,

Ug<x [fa]g is cofinal in .
Define the following partition / : [k]* — 22 (). Forany a < f < k,

h(o,B)={n <A fa(m) |l fp(n)}

Note that for any & < B we have [fq] || [f5], hence () € % . Therefore h: [k]* — % .
By k — (K‘)%,l, there exists a large homogenous subset X C k. That is, |X| = x and there is some A € %
s.t
Vo< B(a,peX = h(a,p)=A).
Define g: A — & (k) by
vn <A, gm= fu(n).

oeX
By definition of X and A, for any a € X we have

n<Afamllgm)}oAc.
Therefore,

Vo€ X ([fa] || [8]) . hence [ [fal |l [g]-

acX
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Since |X| = K, Ugex [fe] is cofinal in k. So Ugex [f«] and [g] are both cofinal subsets of x and are
compatible, hence |Jycx [fo] = [g]- Finally, by the coherence of .7,

U fad = U [fal =gl

<K aceX

Thus g resolves the argument .%, and we are done.

2. Let j% : V — M be a 8-strong compactness embedding generated by a fine ultrafilter #* over Py6.

Remark 3.4. Note that we have j® (%) = % € M and we can take the ultrapower of M by %/. We can
also go the other way around and take the ultrapower of N by j (7). Since j, j% are definable we can
note the corresponding embeddings as j( je) : N — MV and j® (j): M — NM. We claim that the
map ||, : N Zx0 s MV as computed in N is the same as computed in V, and similarly for the map
[ - M* — NM In particularj(je) = j9 |v and j® (j) = j |, hence j (je) and j® () are essentially
the same as j® and j respectively. Furthermore, both embedding commute, that is, jo j® = j® o j. We
refer to section 5.2 for details of this technical yet simple claim.

Let 7 be a % -argument over 0, let A = ¢ # [f]4,- Then
VEVa <8 (AN e N)NAEN.
Define 8 = sup j9”6, then B < j%(6), and
ME j°(A)NB eNM.

By the remark above, NM = M". Note that M" is the Mostowski collapse of Ult(N, j(#)), hence is
contained in N. Thus j® (A)NB € N, and j° |y is defined in N, since it is the ultrapower embedding of
N by j(7). Hence in N we can define

acA = j%a)ej®@np.
So we get that A € N, a contradiction.

Fix a normal ultrafilter %/ over A and the corresponding ultrapower embedding
JiV—N=U(V,%).

Fix a cardinal k¥ > A" and let P = P, = Cohen forcing at k. P is k-closed, hence so is P*. Therefore
j(P) is x-distributive, and corollary 1.6 can be applied. Note that by normality of %, j (P) is a A" -closed
poset. For notational simplicity, assume j (k) = K.

Theorem 3.5. Forcing with j (P) adds an unresolvable % -argument over K.

Proof. Let H C j(P) be generic over V. Define
T = {feP’l; 1Al EH}.

Forany f, g€ %, [fly , 8]y € H, therefore [f],, || [g]4, as H is afilter. Also, by genericity, U ez [fly =
Upen p is cofinal in j(x) = k. Hence in V [H], .# is a % -argument over k. We show that .7 is unre-
solvable.
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Suppose by contradiction that there is a function g € V [H] which resolves .%, that is, g: A — & (k)

and
gl = U fla-

fez

The embedding j can be extended to
iV [H) — N (H)) = U(V [H], %),
and then [g|,, € N[j(H)]. Note that
Ur=U fle =g
pEH feF
It follows that H can be defined in N [j (H)], by H={p <€ j(P);p| (8]} hence H € N[j(H)]. How-

ever, by corollary 1.6, H is generic over N [j (H)], in contradiction. O

Corollary 3.6. In a j(P)-generic extension, K is not weakly compact and there are no compact cardinals
between A and K.

Proof. Follows from theorem 3.5 and theorem 3.3. U

Recall from section 1 that we have a complete projection [],, : P* — j(P). Note that in this case P*
is forcing isomorphic to P. Hence the poset j(P) fits into the general scheme described at the begin-
ning of this section; it adds a certain combinatorial object, an unresolvable argument, which contradicts
compactness, and it completely embeds into Cohen (k). We now study the quotient poset R = P*/j (P),
which resolves the argument added by j (P). R is the j (P)-name for a poset s.t for any j (P)-generic H,

RH:{fePl;[f]% EH},

and ordered by f < g <= f D g (same order as P*). We have a dense embedding i: P* — j(P)*R
defined by i (f) = ([f]4, ,f) (recall preliminaries section 0.1.3), hence j (P) xR is forcing isomorphic to
P* . In particular, I i(P) R is a k-distributive forcing notion.

Fix a j (P)-generic H over some ground model V and let V = V [H]. Let & = {f € P} [f], € H} be

the corresponding unresolvable % -argument over k, and let R = R”. If G C R is generic over V, we can
define g: A — (k) by
s=Ur

feG
Then g resolves .#. (Note that, as R is k-distributive, %/ remains an ultrafilter and .% remains a % -
argument over K in V [G].)

Claim 3.7. Ris A-closed, yet not A "-closed.

Proof. Suppose 1 < A and (fu; @ < 1) is an R-descending sequence. Define f = gy fa. Clearly

fePrandVa <1 (f < fq). Hence it only remains to show that f € R, that is, [f] € H. By elementarity,
and that 7 < A, we get that [f] = Ug<y [fa], Where ([fo]; @ < 1) is a j(P)-descending chain. Note that
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in N, j(P) is simply Cohen forcing, and Vo < 1 ([f] € H). It is generally true that the least lower bound
of a sequence of elements in the generic is also in the generic. Therefore

1= U fe] €H.
o<n

Hence f € R, as required.
To see that R is not A T-closed, take any p € P s.t j(p) ¢ H (which can be easily found, as for any two
p,p €PstpLp atleastoneof j(p), j(p')isnotin H). For o < A define f, € P* by:

p nN<a

forn <A, fa(n>:{1 n>a

For any o < A, [fo] =1 € H, hence fy € R. However, if g € P is a lower bound of (foa; a0 < A), then
vn <A(g(n) <p), hence [g] < j(p) and therefore [g] ¢ H. So there is no lower bound of (fy; & < 1)
inR. 0J

Lemma 3.8. Suppose % is an ultrafilter over A and ¥ is an unresolvable 7/ -argument over K. Let Q
be a AT -distributive forcing notion and suppose that Q resolves the argument .%. Then Q x Q is not
At -distributive.

Proof. First, by At -distributivity of Q, .% remains a %/ -argument over k. Let ¢ be a Q-name s.t
QlFg: A — Z(x) and g resolves .Z#.

Recall that, by A -distributivity, the ultrapower calculation in the generic extension is the same as in V.
Z is unresolvable in V, so we must have Q I [g],, ¢ N, therefore QIF {n <A;¢(n) ¢V} e . W.lo.g
we can assume Q I-Vn < A (¢(n) ¢ V). Assume by contradiction that Q x Q is A *-distributive, and let
G1 X Gy be Q x Q-generic over V. In particular G| and G, are both Q-generic over V. For i € {1,2}, let

gi=gY.
By mutual genericity of G| and Gy, and the fact that Q IF v < A (¢(n) ¢ V), we must have

VN <A(g1(n) #82(n)). thus [g1]y # [g2]4 -
However, as both g and g, resolve the argument .%, we have
[81]% = U [f]% = [gz]o//,

fesz

In contradiction. O

Applying lemma 3.8 to R, we get

Corollary. R x R is not A" -distributive.

Note that R is the quotient of two A T-closed posets. by the corollary above, R is not forcing isomorphic
to any A" -closed poset. More generally:

Corollary 3.9. Suppose .7 is an unresolvable 7 -argument. Then no A" -closed forcing notion resolves
F.

Proof. The product of closed posets is closed, so the corollary follows from lemma 3.8. UJ
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Conclusion 3.10. Suppose Kk is weakly compact and indestructible to x-directed closed forcings. After
forcing with j (P) we get a model in which the following hold.

(1) There is an unresolvable % -argument .% over K.

(2) « is inaccessible, not weakly compact, and there are no strongly compact cardinals between A
and .

(3) The forcing notion R = P*/j(P) resolves .% and resurrects the weak compactness of k. R is
K-distributive, A-closed and R x R is not A "-distributive.

(4) For any u < A and ultrafilter /" over W, any # -argument over K is resolvable.

Proof. (1) is theorem 3.5. «x is inaccessible as j(P) is k-distributive, and the rest of (2) follows from
(1) by theorem 3.3. (3) was proved in the discussion above. For (4), suppose by contradiction that for
some U < A, and for some ultrafilter %" over U, an unresolvable # -argument over K was introduced by
j(P). R is A-closed, hence by corollary 3.9, forcing with R does not resolve the argument. Thus after
forcing with R, we get a j (P) * R-generic extension, in which there is an unresolvable 7 -argument over
k. Thus, by theorem 3.3, k is not weakly compact in that generic extension. However, j (P) xR is forcing
isomorphic to P*, which is x-directed closed. Therefore, by our assumption on , j (P)*R IF k is weakly
compact, in contradiction. O

Question. As mentioned in the beginning of this section, the situation described above is satisfied by some
well known forcing notions, which correspond to combinatorial principles that contradict compactness.
It is therefore natural to ask how does the combinatorial principle of having an unresolvable argument
interacts with the common combinatorial principles. For instance, does it imply the existence of any of
them, or vice versa. More specifically, we can ask which combinatorial principles are added after forcing
with j (P).

Ultrapower of the preparation forcing. For the rest of this section we assume familiarity with super-
compact cardinals, reverse Easton forcing and extension of elementary embedding. See [2] as a master
reference.

Recall that if « is supercompact, there is a preparation forcing P~ s.t K remains supercompact after
forcing with Py * Py, where here Py is Cohen forcing as defined in V/<x. More generally, we have
Laver’s indestructibility theorem for supercompact cardinals:

Any supercompact cardinal can be made indestructible under x-directed closed forcing.

We have seen above that j (Cohen (k)) always destroys weak compactness. Next we show that if we take
the ultrapower of the preparation forcing as well, supercompactness is preserved. More explicitly, if K is
supercompact and we force with j (P * Py ), then K remains supercompact in the generic extension.
We define here P as follows. Assume K is supercompact and g : K — K is a function satisfying

vo > k3% | j% : V — My is a @-supercompactness embedding for x A j% (g) (k) > 6.

Define P to be the reverse Easton iteration of Py, where Py is Cohen forcing at a if A < o < K,
g"a C o and « is inaccessible, and P, is trivial otherwise. Let P = P  Py.

We know that in a P-generic extension, for any # we can extend a 0-supercompactness embedding ;®,
hence x remains supercompact.

Note that P is A *-closed, hence j (P) is A "-distributive.
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Proposition 3.11. After forcing with j(P), K remains supercompact.

Remark. Note that this is not a “preparation forcing for j (Py)” (as would contradict corollary 3.6). While
J (P<x * Py) is trivially decomposed as j (P<x) * j (Py), this is not the same as forcing with j (P~ ), and
then forcing with the ultrapower of k-Cohen forcing, as defined in V/ (P<x),

Proof. First note that for A < i < k, i inaccessible, we have a decomposition
J(P)=j (PepPop) = j(Pey) *j (Pop)

P>, is p-closed, hence by corollary 1.3, j (Pz “) is p-distributive.

Let H = H.y * Hy be j(P)-generic over V. Take { > k, we wish to show that Kk is {-supercompact in
V [H]. W.Lo.g assume that {<* = (.

Take 6 > 2¢ and let j® : V — M be a O-supercompactness embedding in V s.t j© (g) (k) > 6.

Let u be the first ordinal above k such j® (P) (@) is not trivial, then y > 0. u is inaccessible in M, hence
j(u) = j%(j) (1) = p and p is the first ordinal such that j (j® (P)) (1) is not trivial (recall remark 3.4).

Hence p is also the first ordinal s.t j% (j (P)) (1) is not trivial, as j (j® (P)) = j® (j (P)). Thus we have a
decomposition in M,

where j (j (P))s, is 07 -distributive in M.

Let p € j° (P),, be a master condition for P. i.e. if G is the P-name for a P-generic, then

u
II—erEG<j6(r)2p).

By elementarity, in N we have
e ¥re J (6) (5(7°) (1) = ().

where j (G) is the j(P)-name for a j (P)-generic. Hence j (p) is a master condition for j (P). Note that

forr € j(G) C j(P), j(j%) (r)=j% (r).
Now we can apply the usual arguments for constructing a normal measure over &,.(.
For # which is a nice j (P)-name for a subset of 2., consider the dense open set of j (j(P)))>u.

Di={re (i (P))su:3ne ((h~r)| 0 € ()},

where for 4 € H, we consider it as an element of (j6 (j (P)))<ﬂ =j(P). As{~*=¢(, |2 =C. We
can think of a nice name for a subset of Z,{ as a function from P to the set of all antichains in j (P).

Thus, as |j (P)| = K there are at most (2“)(: = 2¢ such names 7.
By 6" -distributivity of j® (j(P)) |>u, we have that D = (; D; is dense. Take go € D s.t go < j(p).
Next, for a nice name for a choice function f : 2, — {, and « < 0, define the dense open set

Dio={re P GP)oys et ((h~r)] (1) (10) = () }.
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As before, for each a@ < 6 there are 2% such nice names f. Hence we have 6 such pairs ( 7, Oc) . By
0" -distributivity, take g € j% (j (P)) s.tq € N(f.a)Ps.a ad g < qo.
Define a filter ¥ on Z,.( as follows: for X € V [G], X C Z(, take a nice name 7 s.t X = 9 and define

XeV — 3r€H<r/\qH—j9"9€j9(i)>.

We claim that ¥ is a normal ultrafilter over P in V [H]:

First, 7 is well defined since ¢ < j(p) and j(p) is a master condition.

Furthermore, 7 is an ultrafilter since for any nice name 7, there is h € H s.t h —~ g decides the statement
01/ -0 (7

J7"0 € jO(f). _

To see that ¥ is normal, take a choice function f : &«{ — { in V [H|. Let f be a nice name with
ff = f. Then

“_je(](P)) je (f) (j9//6> < je”G.

Since g € Ng<g D}, 4> We have that for some o < 6 there is h € H s.th—~ g+ i (f) (j%"6) = j° ().
Hence

{te 2L ft)=a}e.

4. DOES j(P) ADD A P-GENERIC OVER V?

When forcing with j(P) over V, one can ask whether a P-generic is added as well. In this section we
give some examples, both for when a P-generic is added and when it is not.

Three trivial examples are as follows. Let % be a normal ultrafilter over A and let P, = Cohen forcing
at 1.

If P=P;and u <A, then j(P) =P.

If P = P, then j(P) does not add a P-generic over V, since j(P) is A T-closed (by normality of %).

If P = Py, assuming GCH, then j (P) is a A" -closed forcing of size A . Hence j (P) is forcing isomor-
phic to P.

In fact, since j (Py) is also A "-closed, assuming GCH we have j (P)) ~ j(Py+) ~ Py~ as forcing notions
inV.

Theorem 4.1. Let P be Cohen forcing at K where K > A is regular. Then forcing with j(P) over V adds
a P-generic.

Proof. More specifically we show there is a complete projection a : j(P) — P. Thus given a j(P)-
generic H, a’H is P-generic.
We define a map a : j (P) — P as follows. Given g € j(P), ¢ : domg — 2, define a(g) € P by

a(q) (@) =q(j(@)).
That is, @ € doma (¢) <= j(a) € domg.
First we clam that a is well defined:
Let g € j(P),i.e g €N, q:domg — 2 and N F |domg| < j(x). Take f: A — V s.t [f] = ¢ and
Vn < A (|domf (n)| < k). Define y = sup,_; supdomf(n). Then pu < k and domg C j(t). Thus
dom (a(g)) C u, hence a(q) € P.
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Clearly, if g1, ¢> € j(P) and q; < g» then a(g1) < a(g2). Hence it only remains to show that a satisfies
the density condition.
Take g € j(P),pe Ps.tp<a(q). Wefind ¢ <gs.ta(q') = p. Define ¢ as follows

, _Jq(a) o € domg
(o) = {j(m (@) aedomj(p)\domg

First of all, ¢ € N since ¢, j(p) € N. Hence ¢’ € j(P).
Clearly, ¢’ < g. Also, for any a € domp, we have either j (o) € domg. Then

a(q)(a)=4 (j(a))=q(j(a))=alq)(a)=p(a)
Otherwise, j(a) € domj (p) \ domg. Then

a(q') (@) =j(p)(j(a))=j(p(a))=p(a).

Also note that & € domp = j(a) € domj(p) = o € doma(q').
Thus a(q') = p, and we are done. 0O

We will see below another class of forcing notions for which P embeds into j (P), as well as a class of
forcing notions for which j (P) does not add a P-generic.

First note that the for the trivial example mentioned above, where forcing with j (P; ) adds no P, -generic,
(P;L))L is not A *-distributive. Hence the results of section 1 do not apply, that is, P, is not really “one of
the forcing notions we are interested in” for this matter. We consider now a more interesting example in
which forcing with j (P) does not add a P-generic. In this case we also have that P* is A *-distributive.

Take a normal ultrafilter %7 over A and let k¥ > A be inaccessible. We wish to consider the ultrapower of
a forcing notion that destroys a stationary subset of k, and we want such a forcing notion which is also
k-distributive. There are several ways of achieving that, where the most interesting one in our context
is construction and destruction of non reflecting stationary subsets. However, we will consider a simpler
situation. Let A be Cohen forcing at k. Given an A-generic G C K, define

S={aeG;cf(a)=A1}.

It is simple to see that S is stationary in V [G]: given an A-name for a club subset of k, we can construct a
descending chain of conditions < PN < ?L> and a strictly ascending sequence of ordinals < Uns M < 7L>

s.t pp IF iy € C and pyy < supdompy < p1. Define p = supy < My and p =Upp pnU{(1, 1)}, then
pl-Fuesnc.
In V [G], we define the forcing notion D = Dy for adding a club disjoint to S:

p € D <= pisaclosed bounded subset of Kk and pNS =0,
ordered by reverse inclusion. We associate a D-generic with the club subset of x it defines.
Claim 4.2. Define a subset E C Ax D,

E={(p,q);p€ANg € DANdomp =supg+1}.

Then E is a x-closed dense subset of A x D.
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Proof. (Sketch) E is k-closed: Suppose p < k and ((py,qy); vV < W) is a descending chain of elements
in E. Define

¢ = supdompy = supsupqy, p= ] pvU(£,0), q= ] avU{{}.
v<u v<u v<p v<u

Then (p,q) is a lower bound of the sequence ((py,qv); Vv < U).
E is dense in A x D: Take any (p,q) € AxD, w.l.o.g assume that domp > supg. Let { = domp and define

pla) a<§

G=qU(E+o+1\0), p C+w+1%2’ﬁ<o‘):{o (<a’

Then (p,§) € E and extends (p,q). O

Thus A x D is forcing isomorphic to a k-closed forcing notion. In particular, we get that D is forced to be
a k-distributive forcing notion.

Assume henceforth that V = V [G], where G is A-generic over V. Let § = {a € G; cf (o) = A} and
D = Dg. Then D is a x-distributive forcing notion.

Claim. D is A-closed.

Proof. Suppose N < A and (pq; o0 < M) C D is a descending chain of conditions. For a set of ordinals g,
let g be the closure of g, that is, ¢ U {limit points of ¢}. Define p =, <n Pa, then p is a closed bounded
subset of k, extending all of p,. Hence it only remains to show that p is disjoint to S. |Jpg is clearly
disjoint to S, and the only new ordinal in Uy <y Pa \ Ua<n Pa can be suplJpq. By definition we have
cf (supUpa) <M < A, and cof (S) = A, hence suplUpq ¢ S. O

Fact. (See lemma 5.5 in the appendix) If K is inaccessible, A < k. S C K a stationary subset with
cof (S) = A. Then a A" -closed forcing notion preserves the stationarity of S, i.e does not add a club
disjoint to S.

D is A-closed, hence N E j(D) is j(A)-closed, in particular N E j(D) is A *-closed. Since N* C N, we
have that V F j (D) is AT -closed. Therefore, by the fact above, S remains stationary after forcing with
j (D), in particular:
no D-generic is added after forcing with j (D) over V.

Next we show that [], D is k-distributive.
Claim 4.3. If S C « is not stationary, then the poset Dg as defined above is forcing isomorphic to
Cohen (k).
Proof. (Sketch) S is not stationary, so there is a club E C k s.t ENS = @. Define DcD,

D = {p; pis a closed bounded subset of Kk ApNS=0Asupp € E}.

Dis k-closed: Suppose < Pe; &< n> is a descending sequence of conditions in D, < k. Then sup Ue pe €

E, as E is closed, therefore p = g pe € D is a lower bound. So D is a k-closed forcing notion of size ,
therefore D ~ P,.
Furthermore, D is clearly dense in D (as E is unbounded), hence D ~ D~ P.. L]
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Now [ D can be decomposed as D X [[g-q<2 D- D is k-distributive and D is composed of subset of
size < K, hence

VP D is the poset for adding a club disjoint to S,
that is, D = Dg as computed by VD as well. Also, VP E S is not stationary, hence in VP D~ P.. Thus

VPE J] D~ J] P« whichis k-closed.
O<a<A O<a<A

Therefore D X [[g<q<2 Pk 1s K-distributive, hence we get that [[, D is k-distributive.

To complete the discussion on the ultrapower of the forcing notion Dg, we consider forcing with j (Ds),
where S C K is a stationary subset such that {v € S; cf(v) = A1} is not stationary. W.1.0.g we can assume
that v € § = cf(v) # A. Contrary to the situation above, we show that after forcing with j(Ds), a
Dg-generic is added as well.

Fix a stationary subset S C ks.tv €S = cf(v) # A and note D = Dy, defined as above. We show that
there is a complete projection a: j (D) — D.

For g € j (D) we define d(gq) C k by

acd(q) — jla)egq.

For any ¢q € j(D), d(q) is a bounded subset of k. Define a(q) = d(q), then a(q) is a closed bounded
subset of k.
To see that a: j(D) — D is well defined , i.e. that for any ¢ € j (D), a(gq) € D, we need to show that
alqg)NsS=20.
Take o € S, we show that a ¢ a(g). Clearly
: oo 4€J (D) . -

aeS = j(a)ej(S) ="j(a)¢q = a¢al(q).
Suppose by contradiction that o € a(g). Then « is a limit point of @ (q). Note that since & € S, we have
p = cf(a) # A. Hence we can write @ = sup, ., 0y where an € d(q). i.e. j(an) € g. Now, as  # 4
is regular we have

supj ((oms < p)) =sup(j(an):n <u),

therefore j (&) = sup, ., j (). This implies j (@) € g, as g is closed. Hence & € d@(g), in contradiction.
Now the rest of the proof (i.e. that a is a complete projection) follows just as in theorem 4.1.

5. APPENDIX

5.1. Necessity of AT -distributivity. In the preliminaries, section 0.3, we have seen that if % is an
ultrafilter over A, then the ultrapower embedding can be extended to an ultrapower embedding after a
At -distributive forcing extension. We show here that for the conclusions in 0.3, it is not enough to
merely assume that %/ remains an ultrafilter in the generic extension (i.e. that no new subsets of A are
added). For a counter example, we use Magidor / Radin forcing for changing the cofinality of a regular
cardinal. See [3] for Magidor and Radin forcing.

Let k > A be an inaccessible cardinal and u = (uy; &0 < A) ameasure sequence of length 1. Let R =R, be
the corresponding Radin poset. Take a condition p = ((u,A)) where A C Vi, A € % (u) and ANV, 1 = 0.
Then forcing with R | p adds no new subsets to A. In particular, if G is R-generic over V s.t p € G, then
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7 is an ultrafilter over A in V [G] (though R is clearly not A *-distributive).
Consider the ultrapower embedding of V [G],

j:VIGl —M~UL(VI[G,%).

By elementarity, M = My [ j (G)] for some My C M, where My = V™ and j(G) is j(R)-generic over Mj.
Note that k¥ > A is inaccessible, hence j (k) = k. However, in V [G], k¥ > A is a strong limit cardinal with
cofinality A, thus j (k) > k. Therefore j cannot extend ;.

More explicitly, if (kq; & < A) is the cofinal A-sequence added to k, and we define

fiA—VI[G], f(a)=kKq.

Forall o« <A, f(a) €V, therefore | f];/[G] € VM = M,. However, | f]‘;/[G] is not equal to [g];}G] for any

g:A—V,gevV.

5.2. Swapping ultrapowers. Suppose we have two measurable cardinals A < k. %, ¥ normal ultrafil-
ter over A, k respectively, jo : V — N, jy : V — M the corresponding ultrapower embeddings. Then
we can further take ultrapowers Ult (N, jo (¥')) and Ult(M,% ) (where % = jy (% )).

We claim that the two have the same transitive collapse and the resulting embeddings, jy, (jy ) o jg and
Jv (o) o jy, are the same. Furthermore, jy (jy ), jy (jo ) are essentially the same as jy, jg respec-
tively. Thatis, jo (j») = jy v and jy (o) = jur |m-

The argument clearly fails when %/, ¥ are ultrafilters over the same cardinal A. The only thing we use is
that ¥ is A "-complete. Hence the argument holds when %/ is an ultrafilter over A and ¥ a k-complete
ultrafilter over P,.0 for some 6 > k.

Let ji :V—=N~UW(V, %), jx:V —M=Ult(V,?), jx (i) : M — NM ~UW(M, %), j; (jx) :
N — MN ~UIt(N, j, (7)).

We give a proof for the fact that j; (jx) = ji [v (Which we use in section 3). The other arguments which
we omit are similar, technical and categorically natural.

Note that j (%) = % and j, (k) = k as k > A is inaccessible.

Claim5.1. j, (V)C V.

Proof. First, note that ¥ concentrates on / = { < Kk; U is inaccessible}, and for X C I we have X C
jl (X) Thus

VX(Xe?V = jX)eV).
Suppose now that A € j, (¥), then A = [f],, for some f: A — ¥". By A" -completeness of ¥, we have
that B= 1 f(n) € V. Thus j(B) € ¥ and j(B) C A, hence A€ 7. O

Consider the map M"Y — M defined by [f] (7))~ [f]y. We show this is a €-isomorphism from MV to
{Ufly:f: 2 — Ny CM.
Suppose [g]jx(”f/) € [f]m“ﬂ) where f,g €N, f,g: kK — N. Note
A={wgw) e f(W}ein(¥).
By claim 5.1, A € ¥, hence [g],, € [f], . This also shows that the map is well defined, i.e.
[f]j,l(”f/) = [8],‘1('7/) = [fly =18ly-

Thus the map is an injective €-homomorphism, and it remains to show it is surjective, i.e. that for any



26

feV,f: A — N, thereis some ' € Ns.t[f], =[f]y.
Take such f, f: A — N, then for each  thereis f (i) : A — Vst f(u) = [f(,u)}% Define f': A —
V by

Fm)w)=7Fmm)),

that is, for n < A f(n):k—V.
Note f' = [f’}% € N. Thus f': kK — N and for any u < K

F G w) = [y Ga ) = [F )]y, = f ).

As {u < x; jp (n) =u} € ¥, wehave [f'], =[f],, as required.
Thus after the transitive collapses we get that MY is contained in M. Also, for x € N, if we consider the
constant function h € N, h: kK — N, h (i) = x. Then

Ja Ui (x) = [h]j,l(“//) = [hly = jx (x).

5.3. Projection of a poset. Recall the definitions of strategic closure and complete projections from the
preliminaries.

Lemma 5.2. Suppose P, Q are forcing notions and there is a complete projection a: P — Q. Then

P is k-strategically closed —> Q is K-strategically closed.

Proof. The idea is simple: player Even constructs along the play (gq) in G (Q) a corresponding play
(pa) in G (P) such that a (py) < qo. Then at each stage player Even uses the winning strategy in Gy (P)
to make a move p € P, and chooses a (p) as the move in G (Q).

Fix a winning strategy S for player Even in G (P).

Consider the following strategy for player Even in G (Q), defined inductively on the stage f of the
game.

Suppose B < Kk is even and we have (gq; & < ), a descending chain of conditions in Q (which represents
stage B of the game).

Suppose also (inductive hypothesis) we have a play in the game G (P), (pq; o < B), in which player
Even plays by the strategy S, and Vo < B (a(pa) < qa)-

Playing by the strategy S, we get a pg € P such that Voo < 8 (p[; < pa). Define gg = a (pﬁ) to be the
move at stage 3 played by player Even in G (Q). The move is legit since

Va < B (pg < pa) = Yo <P (98 <qa)-

Let gg41 € Q be the move played by player Odd, gg 1 < g =a (pﬁ).

By the density condition for a, there is some pg | € Ps.ta (PB+1) <qp+1/\Pp+1 < PB-

Thus pg.; is a legit move for player Odd in the corresponding game Gy (P). So we get two sequences
(qa: ¢ < B+2), (pa; & < B +2) as required by the inductive hypothesis for stage 8 + 2.

It is now simple to check that if player Even defines the sequence (p,) throughout the game as described
above, at each stage the inductive hypothesis will be satisfied. Therefore this defines a winning strategy
for player Even in the game G (Q). O

The same proof works when we have a complete embedding i: Q — P. The lemma above is the most
common method for proving the strategic closure of forcing notions, where P is typically the Cohen
poset. For example, for the poset S that adds a [J(k)-sequence (see section 2), we show there is a
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complete embedding of § into a x-closed poset (which is of size k, hence forcing isomorphic to k-
Cohen); for the poset j (P), where P is Cohen forcing at k, we show there is a complete projection of P*
onto j (P) (see section 1), where P* is forcing isomorphic to P.

We show below that the converse is also true, that is, a strategically closed poset can be embedded into
Cohen forcing. So this method is in fact the only way to show a poset is strategically closed.

Lemma 5.3. Suppose Q is a k-strategically closed forcing notion of size K. Then there is a complete
projection a: P — Q, where P = Cohen (k).

Proof. We consider here P as
{p: domp — K; domp € k},
and we note P = (J, - Co Where
Co={p: a— «x}.
Fix a winning strategy S for player Even in the game G (Q). We inductively define {G ;P € P}, G,=
<qﬁ; n<2. domp> s.t the following conditions hold:

(1) Each G, is a play in the game Gy (Q) where player Even plays according to S.

(2) If p C g then G, = Gy |2.domp-
Define Gy = (1p). Assume that for any o < 8 and for any p € C¢ we have constructed G,. We wish to
define G), for each p € Cy.
Suppose 3 is a limit ordinal. For any p € Cg, consider the play G = g« g Gp|a- By conditions (1) and (2)
above, G is a well defined play of length 2 - B = 3, where at each even stage player Even plays according
to the strategy S. Thus the strategy S produces some gg 8.t G, = G —~ <qﬁ> is a play.
Suppose B is a successor ordinal, B = o + 1 for @ < k. We fix some p € Cy, and define Gp ) for

& <k.LetG, = (gh: N <2-0a), and fix an enumeration of Q | ¢5 .
D
Qldhe= <”§2 ;6 < K>~
/ P !
Now fix & < &, and note p’ = p ~ (§). Define ¢, , = rg“‘ and V1) <2« (qﬁ :qf,). Then
<qﬁ/; n<2oa+ 1> is a play in G (Q) where at each stage player Even plays according to S. Hence S

produces some qg.l(aﬂ) stGy = <qgl; n<2-(a+ 1)> is a play as required.
Now define a map a: P — Q as follows. For p € P, domp = o, G, = <qﬁ; n<2. a>, define

a(p) =454

By construction, p < ¢ = a(p) < a(q). Furthermore, for any p € P, if r € Q and r < a(p), then

(p)

r= rg for some & < k, hence a (p —~ (£)) < r. Thus the density condition of « is satisfied.

0

For each k-strategically closed poset Q (of size k), we thus have a projection a: P — Q. So there is a
corresponding quotient poset R = P/Q (more accurately, a Q-name for a poset). Recall some examples.
If Q is the forcing for adding a [J(k)-sequence, then R is the forcing for threading the sequence. If Q
adds a non reflecting stationary subset S C k, then R adds a club disjoint to S. If Q = j(P) adds an
unresolvable argument over K, then R resolves the argument. In all these examples, we have seen that
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the combinatorial object added by Q cannot be destroyed by a sufficiently closed forcing notion (yet the
proof was always trivially applicable to strategic closed forcings as well). From lemma 5.3 above we
can generally deduce: if an object is not destroyed by closed forcings, it is not destroyed by strategically
closed forcings as well.

Similarly, for cardinals k < 6, let Col (x, 0) be the Levi collapse. Then we have:

Proposition 5.4. Let Q be a poset. Q is K-strategically closed if and only if Col(x,|Q|) completely
projects onto Q.

One direction follows from lemma 5.2. The other direction can be proved directly, analogously to
lemma 5.3, but also follows from the following two observations together with lemma 5.3.

e For posets P, Q, there is a complete projection a: P — Q if and only if there is a P-name H s.t
I-p H is Q-generic over V and the following density condition holds: Vg € Q3p € P ( plFgcH )
e For cardinals k < 6, Col (k, 0) is forcing isomorphic to Col (k, 6) * Cohen (k).

After forcing with Col (k,|Q|), we have |Q| = k and Q is k-strategically closed. Thus by lemma 5.3,
there is a complete projection from Cohen (k) onto Q. Hence by taking a further Cohen (k)-generic
extension, we get a Q-generic. Thus any Col (k, |Q|)-generic extension adds a Q-generic, and the density
condition holds, as in the intermediate extension we had a complete projection Cohen (x) — Q.

5.4. Preservation of stationary sets.

Lemma 5.5. Suppose K is inaccessible, A < k, S C K a stationary subset with cof (S) = A and P is a
ATt -closed forcing notion. Then S C K remains stationary after forcing with P.

Proof. Let C be a P-name s.t |- C C K is a club. We must show that [F CN .S # 0.
Since x is inaccessible, the set

E={n<x; (Vy,PC,S,n)<{(Ve,P,C,S,k)}

is a club subset of k. Since S is stationary, we can pick n € SNE.

nesS = cf(n) =A. Let (Ng; @ < A) be a cofinal sequence in 7.

PY1 |- C" is a club in 1. We can construct a descending sequence of conditions (pg; & < A) C PV and
ordinals (tg; & < A), s.t pg IF e € CV1. The construction is possible since forany § < A, (pg; & < 8) €
V. and at limit stages we use the A-closure of P'1. Note that P"1 = PNV;, and if pg I pvy te € C'7 then
palbp lg €C.

By AT-closure of P, we have p € P s.t YVae < A (p < pg). Since C is forced to be closed, we have
plEn €C, hence plFn €CNS.

The construction above in fact shows that such a p can be found extending any given condition g € P,
hence PI-CNS # 0. O

REFERENCES

[1] Jorg Brendle. "Mad families and ultrafilters." Acta Universitatis Carolinae. Mathematica et Physica 048.2 (2007): 19-35.

[2] James Cummings. Iterated Forcing and Elementary Embeddings. In Handbook of Set Theory (2010), M. Foreman and A.
Kanamori Eds., Volume 2, 775-883. Springer.

[3] Moti Gitik. Prikry-Type Forcings. In Handbook of Set Theory (2010), M. Foreman and A. Kanamori Eds., Volume 2,
1351-1447. Springer.



29

[4] Thomas J. Jech. Set Theory. Springer-Verlag, Berlin, third millenium edition, 2003.

[5] Akihiro Kanamori. The Higher Infinite. Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition,
2003.

[6] Kenneth Kunen. Set Theory. An Introduction to Independence Proofs. North-Holland Publishing Company, Amsterdam,
1983. Reprint of the 1980 original.



