A NOTE ON \mathfrak{b} AND $\operatorname{add}(\mathcal{B})$

ASSAF SHANI

Cichon and Pawlikowsky [CP86] showed that after adding a single Cohen real, the bounding number \mathfrak{b} in the generic extension V[G] is collapsed to $\mathbf{add}(\mathcal{B})^V$, the additivity of the meager ideal as calculated in the ground model V.

Their proof in fact shows that in the Cohen extension, the covering number of the meager ideal $\mathbf{Cov}(\mathcal{B})$ increases above \mathfrak{b} . Then, using the equality $\mathbf{add}(\mathcal{B}) = \min(\mathfrak{b}, \mathbf{Cov}(\mathcal{B}))$, they conclude that $\mathbf{add}(\mathcal{B})$ and \mathfrak{b} must agree in the extension. Finally, they show that $\mathbf{add}(\mathcal{B})$ is preserved, concluding that in the Cohen extension $\mathfrak{b} = \mathbf{add}(\mathcal{B}) = \mathbf{add}(\mathcal{B})^V$.

In this note we construct in a very concrete manner a sequence of length $\mathbf{add}(\mathcal{B})^V$, in the Cohen extension, witnessing that $\mathfrak{b} = \mathbf{add}(\mathcal{B})^V$ (see Corollary 1.9). This is done by presenting $\mathbf{add}(\mathcal{B})$ as a generic parametrized version of \mathfrak{b} , as follows.

1. $add(\mathcal{B})$ as a generic parametrized version of \mathfrak{b}

Proposition 1.1. Let κ be a cardinal. The following are equivalent.

- (1) $\kappa < \operatorname{add}(\mathcal{B});$
- (2) for any sequence of κ many Borel functions $f_{\alpha} \colon \mathbb{R} \to \omega^{\omega}$ there is a Borel function $f \colon \mathbb{R} \to \omega^{\omega}$ such that

 $\forall^* x \forall \alpha(f(x) \text{ dominates } f_\alpha(x)),$

where $\forall^* x$ means "for comeager many x".

First, we recall the following characterizations of \mathfrak{b} and $\mathbf{add}(\mathcal{B})$, in terms of interval partitions and chopped reals, respectively. These characterizations, in particular, illustrate that $\mathbf{add}(\mathcal{B}) \leq \mathfrak{b}$. We also sketch the proof that $\mathbf{add}(\mathcal{B})$ is preserved in the Cohen extension.

Definition 1.2 (See Blass [Bla10]). (1) Π is an interval partition (IP) if it partitions ω into finite intervals, which we always view in increasing order.

- (2) Given two interval partitions Π and Σ , say that Π dominates Σ if for all but finitely many *n* there exists *k* such that $\Sigma(k) \subseteq \Pi(n)$.
- (3) A Chopped real (CR) (x, Π) is a pair of $x \in 2^{\omega}$ and $\Pi \in IP$.
- (4) A real $y \in 2^{\omega}$ matches a chopped real (x, Π) if there exists infinitely many intervals in Π on which y and x agree.
- (5) (x,Π) engulfs (y,Σ) if for all but finitely many *n* there exists *k* such that $\Pi(n) \supseteq \Sigma(k)$ and *x* and *y* agree on $\Sigma(k)$.
- (6) Match (x, Π) is the set of all reals y which match the chopped real (x, Π) .

Lemma 1.3 ([Bla10]). (1) For any (x, Π) , Match (x, Π) is comeager;

- (2) any comeager set contains $Match(x, \Pi)$ for some (x, Π) ;
- (3) $Match(x,\Pi) \subseteq Match(y,\Sigma)$ if and only if (x,Π) engulfs (y,Σ) .

Date: August 19, 2021.

Let $c \in 2^{\omega}$ be Cohen generic over V.

Claim 1.4 (see [Bla10, Chapter 11.3]). If $(x, \Pi) \in V[c]$ then there is (y, Σ) in V such that if z is in V and z matches (y, Σ) , then z matches (x, Π) .

Proof. Enumerate all pairs (p, n) where p is a condition in the Cohen forcing \mathbb{P} and $n \in \omega$. We construct (y, Σ) recursively. At stage m, we define the m'th interval of Σ and the values of y in it.

For each (p, n) in the list so far, we extend y so that there is some q extending p which forces y agrees with \dot{x} on some interval of $\dot{\Pi}$ beyond the n'th interval (which will be then contained in the m'th interval of Σ .

Suppose z matches (y, Σ) . Then by construction, for any condition p it is not the case that there is and n such that p forces z does not match (x, Π) past n. This is because, by construction, for any such p and any n there is an extension of p which forces z to agree with x on an interval of Π past n. So z agrees with x on infinitely many intervals in Π .

Remark 1.5. If Π is the trivial partition of ω into singletons, then there is no (y, Σ) in V which engulfs (c, Π) .

Corollary 1.6. If Y is non meager in V then Y is non meager in V[c].

Proof. If $D = \text{Match}(x, \Pi)$ is comeager in V[c], we need to show D is not disjoint from Y. Let (y, Σ) be as in the claim above. Since Y is non meager in V there is $z \in \text{Match}(y, \Sigma)^V \cap Y$, and so $z \in Y \cap D$ in V[c].

Fact 1.7 (Cichon-Pawlikowsky [CP86]). If $D \subseteq \mathbb{R}$ is comeager in V[c], there is a comeager subset of the plane $C \subseteq \mathbb{R} \times \mathbb{R}$ in V such that $D = C_c$.

Corollary 1.8 (Cichon-Pawlikowsky [CP86]). $add(\mathcal{B})$ is preserved by a Cohen real extension.

Proof. First, in V there is a sequence $\langle C_{\alpha} : \alpha < \mathbf{add}(\mathcal{B})^V \rangle$ where each C_{α} is meager, yet $C = \bigcup C_{\alpha}$ is not meager. C_{α} remains meager, and C remains non meager, so $\mathbf{add}(\mathcal{B})^{V[c]} \leq \mathbf{add}(\mathcal{B})^V$.

Suppose D_{α} , $\alpha < \kappa$, are comeager sets in V[c], where $\kappa < \operatorname{add}(\mathcal{B})^V$. We wish to show that $D = \bigcap_{\alpha < \kappa} D_{\alpha}$ is comeager. For each α there is a comeager set C_{α} in the plane such that $D_{\alpha} = (C_{\alpha})_c$. Let $C = \bigcap_{\alpha < \kappa} C_{\alpha}$. Since $\kappa < \operatorname{add}(\mathcal{B})^V$, C is comeager in the plane, and so $D = (C)_c$ is comeager.

Proof of Proposition 1.1. Fix $\kappa < \operatorname{add}(\mathcal{B})$ and Borel functions $f_{\alpha} \colon \mathbb{R} \to \operatorname{IP}, \alpha < \kappa$. We need to find a Borel $f \colon \mathbb{R} \to \operatorname{IP}$ such that $\forall^* x \in \mathbb{R}, f(x)$ dominates $f_{\alpha}(x)$ for all $\alpha < \kappa$. Let $\overline{0} \in 2^{\omega}$ be the constant 0 sequence. Define $f'_{\alpha} \colon \mathbb{R} \to \operatorname{CR}$ by $f'_{\alpha}(x) = (\overline{0}, f_{\alpha}(x))$. Let

 $D_{\alpha} = \{(x, y) : \text{ y matches } f'_{\alpha}(x)\}.$

For each $\alpha < \kappa$, D_{α} is a comeager subset of the plane. Since $\kappa < \operatorname{add}(\mathcal{B})$, the intersection $\bigcap_{\alpha < \kappa} D_{\alpha}$ is comeager. Fix dense open sets C_n such that $\bigcap_{\alpha < \kappa} D_{\alpha} = \bigcap_{n < \omega} C_n$.

Note that if C is dense open in the plane then C_x is dense open for almost all x. Furthermore, given dense open sets $E_n \subseteq \mathbb{R}$ we can definably, in a Borel way, construct a chopped real (y, Σ) such that $Match(y, \Sigma)$ is contained in $\bigcap_n E_n$. For any $x \in \mathbb{R}$ such that $(C_n)_x$ is dense open (comeager many x) let f'(x) be such chopped real (y, Σ) , so that Match (y, Σ) is contained in $\bigcap_n (C_n)_x$, and let $f(x) = \Sigma$.

For each such x and for any $\alpha < \kappa$, f'(x) engulfs $f'_{\alpha}(x)$, thus f(x) dominates $f_{\alpha}(x)$, as desired.

It remains to show that there is a sequence of Borel functions f_{α} , $\alpha < \mathbf{add}(\mathcal{B})$, with $f_{\alpha}: 2^{\omega} \to \mathrm{IP}$, so that there is no Borel function f for which $\forall^* x \forall \alpha(f(x) \text{ dominates } f_{\alpha}(x))$ holds. Fix chopped reals $(x_{\alpha}, \Pi_{\alpha}), \alpha < \mathbf{add}(\mathcal{B})$ which cannot be engulfed simultaneously. Define $f_{\alpha}: 2^{\omega} \to \mathrm{IP}$ as follows.

 $f_{\alpha}(x) = \Pi_{\alpha}^{x}$ is a result of gluing together segments of interval in Π_{α} so that for each interval in $\tilde{\Pi}_{\alpha}^{x}$ there is a subinterval from Π_{α} on which x and x_{α} agree. This is done if, and as long as possible. If not possible, just leave it as Π_{α} . (For a sufficiently generic x this will be possible.)

Note that f_{α} is a Borel function. We show that there is no Borel f such that $\forall^* x \forall \alpha (f_{\alpha}(x) < f(x)).$

Suppose to the contrary that f is such a function. Let $c \in 2^{\omega}$ be a Cohen generic. Let $\Pi = f(c)$ and $\tilde{\Pi}_{\alpha} = \tilde{\Pi}_{\alpha}^{c}$. Then Π dominates $\tilde{\Pi}_{\alpha}$ for each α . Since c is Cohen generic, the definition of $\tilde{\Pi}_{\alpha}^{c}$ succeeds to find intervals on which x_{α} and c agree. It follows that (c, Π) engulfs $(x_{\alpha}, \Pi_{\alpha})$ for each α .

By Claim 1.4 there is a chopped real (y, Σ) in V such that for any $z \in V$, if z matches (y, Σ) then z matches (c, Π) . Therefore, working in V: for any α , for any z matching (y, Σ) , z matches $(x_{\alpha}, \Pi_{\alpha})$. By Lemma 1.3 (y, Σ) engulfs $(x_{\alpha}, \Pi_{\alpha})$ for each $\alpha < \operatorname{add}(\mathcal{B})$, in contradiction.

Corollary 1.9 (Cichon-Pawlikowsky [CP86]). In V[c], $add(\mathcal{B})^V = add(\mathcal{B})^{V[c]}$.

Proof. The second part of the proof above precisely showed that $\tilde{\Pi}_{\alpha}$, $\alpha < \mathbf{add}(\mathcal{B})^V$, are interval partitions which cannot be dominated in V[c]. So indeed $\mathfrak{b}^{V[c]} \leq \mathbf{add}(\mathcal{B})^V$. Also, $\mathbf{add}(\mathcal{B})^V = \mathbf{add}(\mathcal{B})^{V[c]} \leq \mathfrak{b}^{V[c]}$.

References

[Bla10] A. Blass, Combinatorial Cardinal Characteristics of the Continuum, Handbook of Set Theory, Vols. 1, 2, 3, Springer, Dordrecht (2010), pp. 395-489

[CP86] J. Cichon , J. Pawlikowski, On ideals of subsets of the plane and on Cohen reals, J. Symbolic Logic 51 (1986) 560-569.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138, USA *Email address:* shani@math.harvard.edu