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In set theory, a virtual object is one that exists in a generic extension. This note
aims to introduce the study of virtual equivalence classes, and its applicability,
particularly towards questions about Borel reducibility and Vaught’s conjecture.
The emphasis will be on the unifying aspect of this approach. For example, we
will present proofs of the topological Vaught’s conjecture for CLI groups (due to
Becker) and Harrington’s theorem on models of size ℵ1 for counterexamples to the
Lω1,ω-Vaught conjecture, as well as a result on abelian torsion groups of size ℵ1 due
to Fuchs and Kulikov, and the well known existence of a sequence of Turing degrees
satisfying x′n+1 ≤T xn. With respect to the last two results especially, this note is
very much in the spirit of [Mil17], proving things “the hard way”. Nevertheless, the
given treatment of the topological Vaught conjecture is quite simple, and for several
application to equivalence relations the only known proofs use virtual classes.

This note will be most attractive to a reader with some background and an
interest in set theory. Such reader will find the details reasonable, and the general
approach quite pleasing. I hope that any reader interested in Borel reducibility or
Vaught’s conjecture will also benefit from this note, in particular to get an intuition
for what kind of questions may be susceptible to the techniques presented here.

The reader is referred to [Mil17] for background on the interaction between
descriptive set theory and forcing. Particularly, we assume familiarity with Cohen
forcing (in both the combinatorial and topological presentations), the Levy collapse,
and absoluteness results.

The paper [Hjo98] is also a survey of applications of ‘virtual Borel sets’ to de-
scriptive set theory. In a sense the present note can be seen as a continuation of
that line of work. The focus is a little different and most applications presented
here are not present in [Hjo98]. When there is overlap , the current presenta-
tion is cleaner thanks to recent developments such as [Kan08b, LZ20]. Chapter 2
of [LZ20, Chapter 2] is a systematic study of virtual equivalence classes, the most
comprehensive to date. Virtual classes were also studied recently from various per-
spectives [KMS16,KS16,URL17,Sha21]. This note, while far from comprehensive,
attempts to present a more unified storyline. Many of the proofs presented here
are different than in other sources.

For an introduction to Borel reducibility the reader is referred to the books
[Gao09, Kan08b] and the surveys [MR21, For18, KTD12, HK01, Kec99]. The book
[Kan08b] particularly emphasizes forcing techniques. With regards to applications
to Borel reducibility, we focus here on techniques rather than state-of-the-art re-
sults. In particular we use virtual classes to study well known benchmark equiva-
lence relations such as E0, E

N
0 ,=

+, Eω1
. Some recent results are presented, in partic-

ular the study of isomorphism and bi-embeddability of torsion groups from [CT19],
and the study of Archimedean ordered groups from [CMRS23].
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1. Virtual classes and Vaught’s conjecture

Let X be a Polish space and E an analytic equivalence relation on X. An
important fact which we use below is that the space X and the equivalence relation
E can be reasonably interpreted in any generic extension. The discussion below
naturally extends beyond analytic equivalence relations, as long as this can be done.

Definition 1.1. Let P be a forcing poset and τ and P-name so that P 
 τ ∈ X.
We may think of τ as a virtual member of X, or of [τ ]E as a virtual equivalence
class. (A closely related terminology is that of virtual Borel sets [Ste84, Hjo98].)
Assume further that in any generic extension, given two filters G1, G2 ⊆ P which
are generic over the ground model

τ [G1] E τ [G2].

In this case we say that the pair (P, τ) is a stable virtual E-class [Kan08b, 17.1.2],
or an E-pin [LZ20, 2.1.1].

A product forcing argument shows that the above condition is equivalent to
asserting that

P× P 
 τl E τr,

where τl, τr are P×P names so that, given a filterGl×Gr ⊆ P×P, τl[Gl×Gr] = τl[Gl]
and τr[Gl ×Gr] = τr[Gr]. See [LZ20, 2.1.2].

In this case [τ ]E is an equivalence class in a generic extension, which is “stable”
or ”pinned” in the sense that its interpretation does not depend on the generic
filter. We will often omit the adjective ‘stable’ and call (P, τ) a virtual E-class.

Given x ∈ X and a poset P, let x̌ be the canonical P-name for x. Then (P, x̌) is
a stable virtual E-class.

Definition 1.2. Say that a stable virtual E-class (P, τ) is pinned [Kan08b, 17.1.2],
or trivial [LZ20, 2.3.1], if there is some x ∈ X so that

P 
 x̌ E τ.

Non-trivial virtual classes arise naturally from definable violations of the contin-
uum hypothesis. In the descriptive set theoretic context, the continuum hypothesis
is often identified with a perfect set property: a set is either countable, or admits a
definable injective image of 2N. In this sense, a definable set of size ℵ1 can be seen
as a violation of the continuum hypothesis.

By classical descriptive set theoretic wisdom, all analytic sets satisfy the perfect
set property [Kec95, 29.1]. The modern wisdom is that any reasonably definable
subset of a Polish space satisfies the perfect set property (see [Kan03], page 145
as well as Theorem 27.9 and the following discussion). Considering sets defined
as quotients of Polish spaces by definable equivalence relations, we have Silver’s
dichotomy [Gao09, 5.3.5]: for any co-analytic equivalence relation E (in particular,
a Borel equivalence relation), either there are countably many E-classes or there is
a perfect set of E-inequivalent elements.

Example 1.3. Let X be the Polish space of all linear orderings of N. Define Eω1

on X by x Eω1 y if x, y are isomorphic, or if both are ill-founded. Eω1 is an analytic
equivalence relation with ℵ1 many equivalence classes.

Fix an uncountable ordinal α, let Pα = Col(ω, |α|), and let τα be a Pα-name for
a member of X of order-type α. Then (Pα, τα) is a non-trivial virtual Eω1

-class.
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Lemma 1.4. Let P be a forcing poset and τ and P-name so that P 
 τ ∈ X. Given
p ∈ P, let P � p be the poset of all conditions stronger than p. Assume that there
is no p ∈ P for which (P � p, τ) is a stable virtual E-class. Then there is a perfect
set Y ⊆ X of E-inequivalent elements.

Proof. Given p ∈ P, by the assumption (p, p) does not force, with respect to P×P,
that τl E τr, so there is a condition (q1, q2) extending (p, p) and forcing that τl 6E τr.
So for any p ∈ P we may find q1, q2 extending p so that (q1, q2) 
 τl 6E τr. We can
iterate this fact to build a ‘binary tree of conditions’.

Let (Dn : n ∈ ω), (Cn : n ∈ ω) be sequences of dense open subsets of P and
P × P respectively. We may recursively define conditions ps ∈ P for each s in the
full binary tree 2<ω so that for each s ∈ 2<ω,

• ps ∈ D|s|, where |s| is the length of s,
• ps_0, ps_1 both extend ps;
• (ps_0, ps_1) force that τl 6E τr.
• (ps_0, ps_1) ∈ C|s|+1

A branch in the binary tree b ∈ 2ω corresponds to a sequence of conditions
(pb�n : n ∈ ω). The idea is that this sequence of conditions decide enough infor-
mation about τ to determine a unique point in xb ∈ X. This can be achieved
by a sufficiently rich family (Dn : n ∈ ω). Furthermore, a sufficiently rich family
(Cn : n ∈ ω) will ensure that for distinct branches b, b′, xb 6E xb′ .

One way to do this is as follows. Fix a ‘sufficiently elementary’ countable model
M and let (Dn : n ∈ ω), (Cn : n ∈ ω) be an enumeration of all dense open subsets
in M of P, P× P respectively. �

For a countable first order language L consider Mod(L), the Polish space of
all L-structures with universe N, and ∼=L the isomorphism relation on Mod(L)
(see [Gao09, 3.6]). Given a theory T we let Mod(T ) be the subspace of all L-
structures which are models of T , and ∼=T the isomorphism relation restricted to
Mod(T ).

The equivalence relation ∼=T is generally analytic, so is not covered by Silver’s
dichotomy. Vaught’s conjecture asserts that a violation of CH cannot be defined in
this way, that is, either ∼=T has countably many countable models, up to isomor-
phism, or there is a perfect set of pairwise non-isomorphic models of T (see [Gao09,
p.261]).

Proposition 1.5. Suppose T is a counterexample to Vaught conjecture. That is

(1) Mod(T ) has uncountably many equivalence classes;
(2) there is no perfect set of ∼=T -in-equivalent elements.

Then there is an unpinned stable virtual ∼=T -class.

Proof. We use the fact that item (1) above is absolute, that is, true in any generic
extension. Work in a P = Col(ω,R) generic extension. As there are uncount-
ably many Mod(T )-equivalence classes, and only countably many from the ground
model, there is some member of Mod(T ) which is not equivalent to any ground
model member. That is, we may find a P-name τ so that for any x ∈ Mod(T ) in
the ground model, P 
 τ 6∼=T x̌. By Lemma 1.4 and item (2), there is some p ∈ P
so that (P � p, τ) is a stable virtual ∼=T -class, which is not trivial by the choice of τ .

The absoluteness of (1) follows as it can be presented as a Π1
2 statement. The

most obvious attempt to phrase it does not quite work: ‘for any sequence x ∈
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(Mod(T ))N there is y ∈ Mod(T ) so that for all n ∈ N y is not isomorphic to x(n)’,
is a Π1

3 formula. An equivalent Π1
2 statement is ‘for any countable list of of Lω1,ω

sentences (ψ1, ψ2, . . . ) there is y ∈ Mod(T ) with Scott sentence different from ψi
for each i ∈ N’. See also [Lar17, Remark 10.4]

�

Given an Lω1,ω sentence φ, let Mod(φ) the Polish space of all L-structures with
universe N, which satisfy φ, and ∼=φ the isomorphism relation on Mod(φ). The
Lω1,ω-Vaught conjecture asserts that ∼=φ either has countably many equivalence
classes, or else there is a perfect set of Mod(φ)-inequivalent members of Mod(φ).

The isomorphism relation on models with universe N may be viewed as induced
by an action of S∞, the group of all permutations of N. Equipped with the point-
wise convergence topology, this is a Polish group. Given a Polish group G and
a continuous action a : G y X on a Polish space X, let Ea be the induced orbit
equivalence relation on X,

x E y ⇐⇒ ∃g ∈ G(g · x = y).

The topological Vaught conjecture asserts that Ea either has countably many equiv-
alence classes, or else there is a perfect set of Ea-inequivalent members of X. Say
that a group G satisfies Vaught’s conjecture if this holds for any continuous action
of G.

Proposition 1.6. Suppose a : G y X is a counterexample to the topological
Vaught conjecture. Then there is an unpinned stable virtual Ea-class.

The proof proceeds as Proposition 1.5, after proving the absoluteness of “Ea is
a counterexample to the topological Vaught conjecture”. See [Hjo01, Claim (2) on
p.133].

1.1. Pinned equivalence relations.

Definition 1.7. Say that E is pinned if every stable virtual E-class is pinned.

We begin with a few simple examples.

Example 1.8. The equality relation on R, =R, is pinned.

Proof. If (P, τ) is a stable virtual =R-class, G1, G2 are mutually P-generics over the
ground model, then

x := τ [G1] = τ [G2] ∈ V [G1] ∩ V [G2] = V.

We see that P 
 τ E x̌. �

Example 1.9. Let Γ be a countable group, a : Γ y X a Borel action, and E = Ea
the induced orbit equivalence relation. Then E is pinned.

Proof. If (P, τ) is a stable virtual E-class, G1, G2 are mutually P-generics over V ,
then

A := [τ [G1]]E = [τ [G2]]E ∈ V [G1] ∩ V [G2] = V.

In this calculation we used the fact that, as Γ is a countable group, the orbit
[τ [G1]]E = Γ · τ [G1] is the same whether calculated in V [G1] or V [G1 × G2]. Fix
some x ∈ A. Then x ∈ V and P 
 τ E x̌. �
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Example 1.10. Let Γn, n ∈ N, be countable groups, an : Γn y Xn Borel actions.
Consider the pointwise product action a :

∏
n∈N Γn y

∏
n∈NXn, and let E = Ea

be the induced orbit equivalence relation on
∏
n∈NXn. Then E is pinned.

Proof. Fix a stable virtual E-class (P, τ), and fix G1, G2 mutually P-generics over
V . Define

An := Γn · τ [G1]n = Γn · τ [G2]n,

where τ [Gi]n ∈ Xn is the n’th coordinate of the sequence τ [Gi]. Then

A := (An : n ∈ N) ∈ V [G1] ∩ V [G2] = V.

Working in V , fix a sequence x ∈
∏
nAn. Then P 
 τ E x̌. �

As we have seen in Example 1.3, Eω1
is not pinned. By Proposition 1.5, a coun-

terexample to Vaught’s conjecture gives rise to an unpinned equivalence relation.
Another central example is the following.

Example 1.11. Consider the natural action a : S∞ y RN, defined by g·x = x◦g−1.
Let E = Ea be the induced orbit equivalence relation on RN. Then E is not pinned.

Proof. Let P = Col(ω,R), and let τ be a P-name which is forced to be a member of
RN enumerating the ground model reals. Working in a generic extension, if G1, G2

are P-generics over V , then τ [G1], τ [G2] are two enumerations of the same set, so
there is a permutation g ∈ S∞ so that τ [G1]◦g = τ [G2]. Therefore (P, τ) is a stable
virtual E-class. For any x ∈ RN in the ground model, a countable set of reals, it is
forced that {xn : n ∈ N} is a strict subset of {τn : n ∈ N}, and so τ 6E x̌. So (P, τ)
is not trivial. �

A Polish group G is CLI if it admits a complete left invariant metric. See [Gao09,
Chapter 2] for a thorough discussion on CLI Polish groups. We mention here that:

• any abelian Polish group is CLI;
• given countable groups Γn, n ∈ N, the product group

∏
n∈N Γn is CLI.

• the group S∞ is not CLI.

A big success towards the topological approach to Vaught’s conjecture is a theorem
of Sami [Sam94] that all abelian Polish groups satisfy the Vaught conjecture. This
was strengthened by Becker, who proved that all CLI groups satisfy the Vaught
conjecture.

Theorem 1.12 (Hjorth [Hjo99], see [Kan08b, 17.4]). Let G be a CLI Polish group,
a : Gy X a continuous action. Then Ea is pinned.

The theorem, together with Proposition 1.6, implies Becker’s theorem.

Corollary 1.13 (Becker). Every CLI group satisfies the Vaught conjecture.

2. Different virtual classes

So far we focused on whether unpinned stable virtual classes exist or not. Next,
following [LZ20], we study the space of all stable virtual classes: “the virtual realm”.

Definition 2.1 (Larson-Zapletal [LZ20, 2.1.4]). Let (P, τ) and (Q, σ) be stable
virtual E-classes. Assume further that in any generic extension, given two filters
G ⊆ P, H ⊆ Q which are generic over the ground model

τ [G] E σ[H].
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In this case say that (P, τ) and (Q, σ) are E-equivalent1, denoted (P, τ) E (Q, σ).
Again a product forcing argument shows that (P, τ) E (Q, σ) if and only if

P×Q 
 τ E σ,

where we identify τ, σ with the corresponding P×Q-names which interpret the left
and right generics, respectively. See [LZ20, 2.1.5].

Example 2.2. • If (P, τ) is pinned, x ∈ X in the ground model is such that
P 
 τ E x̌, then (P, τ) E (Q, x̌), where Q is the trivial (or any) forcing.
• In Example 1.3, (Pα, τα), (Pβ , τβ) are not equivalent for α 6= β. On the

other hand, if P = Col(ω,R), and τ is a P-name for linear order of N whose
order type is ω1 of the ground model, then (Pω1

, τω1
) Eω1

(P, τ).

We now revisit Proposition 1.5. By collapsing more and more, we may get many
different virtual classes, similar to Example 1.3.

Lemma 2.3. Suppose E = Ea is a counterexample to the topological Vaught
conjecture. Let S be a set of stable virtual E-classes. Then there is a stable virtual
E-class (P, τ) which is not equivalent to any (Q, σ) ∈ S.

Proof. Fix a cardinal κ larger than |S| and |P(Q)| for any Q ∈ S, and let P =
Col(ω, κ). Working in a P-generic extension, for each (Q, σ) ∈ S we may find a
filter G(Q,σ) ⊆ Q which is generic over the ground model. Since E has uncountably
many classes, in the generic extension, we may find x ∈ X so that x 6E σ[G(Q,σ)]
for any (Q, σ) ∈ S.

In the ground model, we may find a name τ so that

P 
 τ 6E σ[Ġ(Q,σ)],

where, for (Q, σ) ∈ S, Ġ(Q,σ) is a P-name for a filter in Q generic over the ground
model. It follows that P×Q 
 τ 6E σ. Finally, as in Proposition 1.5, there must be
some p ∈ P so that (P � p, τ) is a stable virtual class. (P � p, τ) is not equivalent to
any (Q, σ) from S, as required. �

Given a virtual E-class (P, τ), say that P is the support of (P, τ).

Definition 2.4 ( [LZ20, 2.5.1]). Define κ(E) to be the smallest cardinal κ so that
every stable virtual E-class is equivalent to one supported by a poset of cardinality
< κ. If no such κ exists, κ(E) =∞. κ(E) is called the pinned cardinal of E.

We may rephrase Lemma 2.3 as follows.

Corollary 2.5. If E = Ea is a counterexample to the topological Vaught conjec-
ture, then κ(E) =∞.

For Borel equivalence relations, the pinned cardinal is bounded.

Theorem 2.6 ( [LZ20, 2.5.6]). If E is a Borel equivalence relation, then κ(E) <
iω1 . More precisely, if E is Π0

α, then κ(E) ≤ i+
α .

Together with Proposition 1.6, we recover a corollary of Silver’s dichotomy.

Corollary 2.7. If E = Ea is a Borel orbit equivalence relation, then E satisfies
Vaught’s conjecture.

1In [LZ20] the extension of E to virtual classes is denoted by Ē. Furthermore, there the pairs
(P, τ) are called pins, and a virtual E-class refers to the Ē-equivalence class of (P, τ).
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An ultimate extension of the above discussion is the following theorem of Hjorth.

Theorem 2.8 (Hjorth [Hjo97]). Suppose E = Ea is a counterexample to the
topological Vaught conjecture, a : G y X. Then there is a closed subgroup G′ of
G and a continuous homomorphism from G′ onto S∞.

It is known that if G is CLI then it does not satisfy the conclusion of the theorem.
Hjorth took this further and characterized when the topological Vaught conjecture
fails on analytic sets. The proof of the theorem relies heavily on the existence of
many inequivalent stable virtual equivalence classes (Corollary 2.5).

2.1. Some set theoretic questions about pinned cardinals.

Pinned cardinals. From a set theoretic point of view, understanding which cardinals
are “definable”, in some reasonable sense, is of interest. As equivalence relations
on Polish spaces are of particular interest, and are considered natural objects, we
consider κ(E) as interesting cardinals.

Question 2.9. Which cardinals κ are equal to κ(E) for some analytic equivalence
relation E?

For example, for 0 < α < ω1, the cardinals ℵα and i+
α are realized as pinned

cardinals of Borel equivalence relations. See [LZ20, 2.5.15] and [LZ20, 2.5.18].
Larson and Zapletal [LZ20, 2.5.10] proved that a measurable cardinal κ reflects

the statement “κ(E) < ∞” for analytic equivalence relations E. That is, if E is
analytic and κ(E) <∞, then κ(E) < κ.

Question 2.10. What is the least cardinal κ so that for any analytic equivalence
relation E, if κ(E) <∞ then κ(E) < κ?

Larson and Zapletal proved that the answer is between the first ω1-Erdos and the
first measurable cardinal. Moreover, if one restricts to orbit equivalence relations
E, the answer is precisely the first ω1-Erdos cardinal. See [LZ20, 2.5.8] and [LZ20,
2.5.9].

Supports for stable virtual classes. All the virtual classes above came from collaps-
ing some cardinal to be countable.

Question 2.11. Which forcing notions P can support a non-trivial stable virtual
class for an analytic equivalence relation E?

For orbit equivalence relations, such supporting poset must collapse.

Theorem 2.12 ( [LZ20, 2.6.6]). If (P, τ) is an unpinned stable virtual Ea-class,
for an orbit equivalence relation Ea, then P collapses ℵ1 to be countable.

For non-orbit equivalence relations the situation is more subtle. For example,
Namba forcing supports a non-trivial stable virtual class for a (necessarily non-
orbit) analytic equivalence relation [LZ20, 2.6.8]. On the other hand, no reasonable
forcing2, in particular no proper forcing, can support a non-trivial stable virtual
class for any analytic equivalence relation [LZ20, 2.6.2].

2Reasonable is a technical notion, introduced by Foreman and Magidor [FM95], while studying
definable counterexamples to the continuum hypothesis.
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3. Virtual classes for isomorphism relations

Let us focus on isomorphism relations for countable structures: ∼=φ on Mod(φ)
where φ is an Lω1,ω sentence (or a countable first order theory). These are the
orbit equivalence relations which are induced by S∞. Much of the early work on
analytic equivalence relations was focused on isomorphism relations, and was deeply
connected to model theory.

Example 3.1. LetM be an L-structure, on some domainM . Let PM = Col(ω,M)
and let τM be a PM-name for a structure on N isomorphic to M. Then (PM, τM)
is a stable virtual ∼=L-equivalence class.

If the set M is countable, we may find x ∈ Mod(L) which is isomorphic to M,
and therefore (PM, τM) is pinned. The converse is not necessarily true. Let L be
{=} and M some uncountable set. Then (PM, τM) is pinned, as τ is forced to be
isomorphic to the structure N.

Example 3.2. In the language of linear orders, the stable virtual classes from
Example 1.3 are of the form (PM, τM) where M = (α,∈), for an ordinal α. For
uncountable α, (PM, τM) is unpinned.

Example 3.3. Let L = {Un : n ∈ N}, where each Un is an unary predicate. Given
a subset A ⊆ 2N, consider the structure M(A) with domain A so that M(A) |=
Un(x) ⇐⇒ x(n) = 1. Then (PM(A), τM(A)) is a stable virtual ∼=L-class, which is
pinned if and only if A is countable.

An L-structureM with universe N may be identified with a sequence x ∈ (2N)N,
where x(n)(m) = 1 ⇐⇒ M |= Um(n). The isomorphism relation ∼=L is induced
by the natural S∞ action on (2N)N, permuting the indices, which is identified with
Example 1.11.

Definition 3.4 (see [URL17]). Let (P, τ) be a stable virtual ∼=L-class. Say that
(P, τ) is grounded if there is some (possibly uncountable) model M (in the ground
model) so that

P 
 τ ∼=M.

Note that in this case (P, τ) and (PM, τM) are ∼=L-equivalent. Say that an equiva-
lence relation E is grounded if every stable virtual E-class is grounded.

Note that a pinned equivalence relation is grounded.

Example 3.5. In Example 3.3, it can be shown that for any stable virtual ∼=L-class
(P, τ), there is a set A ⊆ 2N so that P 
 τ 'M(A). So ∼=L is grounded.

In Example 1.3 it can be shown that for any stable virtual Eω1-class (P, τ), either
τ is forced to be ill-founded, or there is an ordinal α so that P 
 τ ' (α,∈). So
Eω1

is grounded. More generally, isomorphism relations for rigid structures are
grounded [LZ20, 2.4.5].

More subtle instances of grounded isomorphism relations are given in [URL17],
such as the isomorphism relations for the theories REF(bin) and REF(inf).

3.1. A theorem of Kaplan and Shelah and some applications. For an iso-
morphism relation ∼=φ, as it is an orbit equivalence relation, a support P for an
unpinned stable virtual E-class must collapse ℵ1, by Theorem 2.12.

Theorem 3.6 ( [KS16, Corollary 4.3]). Let (P, τ) be a stable virtual class for an
isomorphism relation. If (P, τ) is not grounded, then P collapses ℵ2 to be countable.
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The proof goes through a translation between the question of a stable virtual
isomorphism class being grounded and the following question: let T be a first order
theory with dense isolated types, must T have an atomic model. The answer is
positive if |T | ≤ ℵ1. This was proven in the 1970’s independently by Knight,
Kueker, and Shelah (see [KS16, Proposition 4.2]). Laskowski and Shelah [LS93]
constructed a theory of size ℵ2 with dense isolated types but no atomic model.

We present a few applications of Theorem 3.6. The theorem will be applied in
the following form.

Corollary 3.7. If (Col(ω, ω1), τ) is a stable virtual isomorphism class then there
is a structure M (of size ≤ ℵ1) so that Col(ω, ω1) 
 τ ∼= M̌ .

3.1.1. Harrington’s theorem. Going back to Vaught’s conjecture, we recover the
following theorem due to Harrington. See also [Lar17] and [KMS16].

Theorem 3.8 (Harrington). Suppose ∼=φ is a counterexample to the Lω1,ω-Vaught
conjecture. Then φ has models of size ℵ1 with arbitrary high Scott rank below ω2.

Proof. Fix an ordinal α < ω2. Let P = Col(ω, ω1). We repeat the arguments from
Proposition 1.5, relying on the absoluteness of the statements involved.

In a P-generic extension, α is countable, and φ has uncountably many models
up to isomorphism, so we may find one with Scott rank greater than α. Let τ be
a P-name for such model. By Lemma 1.4, there is some p ∈ P so that (P � p, τ) is
a stable virtual ∼=φ-class.

By Theorem 3.6, (P � p, τ) is grounded, so there is a structure M so that
p 
 τ ' M. As M is forced to be countable by P, then |M| ≤ ℵ1. Finally, the
Scott rank of M is greater than α after forcing with P, and therefore also in the
ground model. �

3.1.2. Abelian torsion groups and Ulm invariants.
Countable Abelian torsion groups are classified by their Ulm-invariants. We

focus on reduced torsion abelian p-groups for a fixed p. Specifically, the map

C 7→ σ(C) = (σ(λ, k) : λ < κ(C), k ∈ N) ,

is a complete classification. Here σ(λ, k) is the number of groups of order pk ap-
pearing in a decomposition of Cλ/Cλ+1 as a direct sum of cyclic groups.

Observation 3.9. The map C 7→ σ(C) is absolute for generic extensions. That is,
σ(C) remains the same when calculated in a forcing extension.

Given a sequenceA = (σ(λ, k) : λ < κ, k ∈ N), where κ is an ordinal and σ(λ, k) ≤
ω, we may ask if A is a classifying invariant for the classification above, that is,
if there is a reduced abelian p-group C so that σ(C) = A. The countable case is
answered by a theorem of Zippin.

Theorem 3.10 (Zippin). Assume that

• κ is countable;
• for any λ < κ there is some k so that σ(λ, k) 6= 0;
• for λ+ 1 < κ there are infinitely many k so that σ(λ, k) 6= 0.

Then there is a countable reduced abelian p-group C so that σ(C) = (σ(λ, k) : λ < κ, k ∈ N).

Zippin’s result was extended by Kulikov and Fuchs to groups of size ℵ1.

Theorem 3.11. Assume that
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• κ < ω2;
• for any λ < κ there is some k so that σ(λ, k) 6= 0;
• for λ+ 1 < κ there are infinitely many k so that σ(λ, k) 6= 0.

Then there is a reduced abelian p-group C of size≤ ℵ1 so that σ(C) = (σ(λ, k) : λ < κ, k ∈ N).

We recover this result directly from Zippin’s theorem and Theorem 3.6.

Proof. Let P = Col(ω, ω1). Since κ is countable after forcing with P, it follows from
Zippin’s theorem that there is a P-name τ for a countable reduced abelian p-group so
that P 
 σ(τ) = (σ(λ, k) : λ < κ, k ∈ N). That is, (P, τ) is a stable virtual ∼=p-class.
By Theorem 3.6, there is a reduced abelian group C so that P 
 τ ∼= C. By the
absoluteness of the Ulm invariants, it follows that σ(C) = (σ(λ, k) : λ < κ, k ∈ N),
as desired. �

3.1.3. Scott sets and models of PA. Given a model M of Peano Arithmetic, seen
as an end extension of the standard model, its standard system SSy(M) is the
collection of sets of the form Y ∩ N where Y is definable in M (with parameters).
The standard system of a model of PA always satisfies the following properties.

Definition 3.12. A set S ⊆ P(N) is a Scott set if

• If A ∈ S and B is Turing reducible to A then B ∈ S;
• S is a Boolean algebra;
• If T ∈ S codes an infinite binary tree then there is b ∈ S coding an infinite

branch of T .

It is an open question whether any Scott set can be realized as the standard
system of a model of PA. For countable sets, Scott proved that it is the case.

Theorem 3.13 (Scott). Any countable Scott set can be realized as the standard
system of a model of PA.

Knight and Nadel extended the result to sets of size ℵ1.

Theorem 3.14 (Knight and Nadel [KN82b]). Any Scott set of size ℵ1 can be
realized as the standard system of a model of PA.

See [Git08] for more background on this problem, and results beyond ℵ1. Here
we provide a quick proof of Knight and Nadel’s theorem, using Scott’s theorem and
Theorem 3.6. First, we introduce a related question.

Fix a countable language. Fix a recursive coding of formulas as natural numbers.
We therefore identify theories and types as subsets of N. Similarly, via a fixed
recursive coding of binary sequences, we may identify binary trees as subsets of N.

Definition 3.15. Given a Scott set S, say that a model M is S-saturated if

• For any a1, . . . , an ∈M , tp(a1, . . . , an) ∈ S;
• For any a1, . . . , an ∈M and any type p(x, y1, . . . , yn) ∈ S, if p(x, a1, . . . , an)

is consistent then it is realized in M .

Fact 3.16. Given a Scott set S and an S-saturated model M of PA, the standard
system of M is precisely S.

Scott’s Theorem 3.13 follows from the following.

Theorem 3.17 (Scott, see [Wil80]). If S is a countable Scott set and T is a first
order theory coded in S, then there is an S-saturated model of T .
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This immediately extends to size ℵ1, using Theorem 3.6.

Theorem 3.18. If S is a Scott set of size ≤ ℵ1 and T is a first order theory coded
in S, then there is an S-saturated model of T .

Proof. We will use the fact that a countable S-saturated model is unique up to
isomorphism. This is because S-saturated models are ω-homogeneous. Let P =
Col(ω, ω1). Since S is a countable Scott set after forcing with P, there is a P-name
τ for a countable S-saturated model of T . It follows that (P, τ) is a stable virtual
isomorphism class. By Theorem 3.6, there is a model M so that P 
 τ ∼= M . Now
M is the desired S-saturated model of T . �

Theorem 3.18 was proved in the context of models of PA by Knight and Nadel [KN82a].
Note that if T is PA, the theorem produces a model of PA whose standard system
is S, concluding the proof of Theorem 3.14.

4. Borel reducibility

Given equivalence relations E and F on Polish spaces X and Y , say that E is
Borel reducible to F , denoted E ≤B F , if there is a Borel measurable f : X → Y
so that

x1 E x2 ⇐⇒ f(x1) F f(x2), for any x1, x2 ∈ X.
In this case, f induces a well defined injective map on the quotient spaces X/E ↪→
Y/F . So ‘E ≤B F ’ is often thought of as ‘the “Borel cardinality” of X/E is less
than or equal to the “Borel cardinality” of Y/F .

For an equivalence relation E so that all E-classes are Borel (this includes all
Borel equivalence relations and all orbit equivalence relations), the statement ‘E has
countably many equivalence classes’ is equivalent to ‘E ≤B =N’, where =N is the
equality relation on N. The statement ‘E has perfectly many classes’ is equivalent
to ‘=R ≤B E’. The study of Borel reducibility is an extension of the study of
cardinalities of quotients of Polish spaces, beyond questions about the continuum
hypothesis.

The celebrated E0-dichotomy, due to Harrington, Kechris, and Louveau, shows
that for Borel equivalence relations there is an “next cardinality” after =R. A
classification problem E is said to be concretely classifiable if E ≤B =R. That
is, if there is a Borel measurable complete classification using real numbers as
invariants.

Theorem 4.1 ( [HKL90]). Let E be a Borel equivalence relation. If E is not
concretely classifiable, then E0 ≤B E.

For an introduction to Borel reducibility, the reader is referred to the books
[Gao09,Kan08b], as well as the surveys [MR21,For18,KTD12,HK01,Kec99]. Here
we focus on applications of virtual classes to Borel reducibility.

Lemma 4.2. Let E and F be analytic equivalence relations on Polish spaces X
and Y respectively. Assume that f : X → Y is a Borel reduction of E to F . Let
(P, τ) be a stable virtual E-class. Let σ be a P-name forced to be equal to f(τ).
Then (P, σ) is a stable virtual F -class. Moreover, (P, τ) is pinned if and only if
(P, σ) is pinned.

Corollary 4.3. If F is pinned and E ≤B F then E is pinned.
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More generally:

Corollary 4.4 ( [LZ20, 2.5.4]). If E ≤B F then κ(E) ≤ κ(F ).

Remark 4.5. For Lemma 4.2, and the corollaries, the assumption that the reduc-
tion is Borel was only used to conclude that this map is well defined, and is still a
reduction, in any generic extension. We will consider reductions with this property
which may not be Borel.

4.1. The Friedman-Stanley jump operation. Given an equivalence relation E
on X, the Friedman-Stanley jump of E is the equivalence relation E+ on XN

defined by

x E+ y ⇐⇒ ∀n∃m(x(n) E y(n)) and ∀n∃m(y(n) E x(m)),

equivalently, if {[x(n)]E : n ∈ N} = {[y(n)]E : n ∈ N}. The quotient E+/XN may
be identified with Pℵ0(E/X), the countable powerset of E/X.

Friedman and Stanley [FS89] proved that this is a jump operator on Borel equiv-
alence relations. That is, E <B E+ for any Borel equivalence relation E.

Example 4.6. Let =+ be (=R)+, defined on RN by x =+ y ⇐⇒ {x(n) : n ∈ N} =
{y(n) : n ∈ N}. =+ is Borel bireducible with orbit equivalence relation from Ex-
ample 1.11, and the isomorphism relation from Example 3.3. By Theorem 1.12 and
Corollary 4.3, we have:

Corollary 4.7. =+ is not Borel reducible to any orbit equivalence relation induced
by a CLI group.

The iterated Friedman-Stanley jumps, =+α, are defined recursively, where =+1 is
=+, =+(α+1) is (=+α)+, and we take products at limit stages (see [Gao09, 12.2.6]).
The Friedman-Stanley jumps play a central role in the theory of equivalence rela-
tions. A classification problem is considered classifiable using countable sets of reals
as complete invariants if it is Borel reducible to =+; “classifiable using countable
sets of countable sets of reals as complete invariants” if it is Borel reducible to =+2;
and so on.

5. Potential invariants

For our treatment of equivalence relations which are classifiable by countable
structures, their central property is the existence of an absolute complete classifi-
cation. Recall that, for an equivalence relation E on X, a complete classification is
a map c : X → I so that

x1 E x2 ⇐⇒ c(x1) = c(x2), for all x1, x2 ∈ X.

Definition 5.1. Say that c is an absolute complete classification if

(1) The map c : X → I is defined in some set theoretic way (c(x) = A ⇐⇒
ψ(x,A), for some set theoretic formula ψ.).

(2) In any ZF extension V ⊆ N , ψ still defines a map which is a complete
classification of E.

(3) Given ZF models V ⊆ N ⊆ W , if x,A are in N and N |= ψ(x,A), then
W |= ψ(x,A).

Similarly, a map c : X → I is an absolute E-invariant map if the it satisfies the
above with ‘complete classification’ replaced by ‘E-invariant’, that is, x1 E x2 =⇒
c(x1) = c(x2).
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The third condition says that the calculation of the invariant of x, A = c(x), does
not change as we move to a generic extension. This is the crucial aspect making such
classifications “reasonable”. For example, it prevents the classification x 7→ [x]E
from being “reasonable” when E is not a countable equivalence relation. In a sense,
it is a generous way of saying that the invariant c(x) can be computed from x. That
is, the computation is local, and does not depend on things unrelated to x, like
some set theoretic truths in the universe.

For an isomorphism relation ∼=L, the map

M 7→ ϕM ,

sending a model to its Scott sentence, is an absolute complete classification as
above. Furthermore, in this case the invariants ϕM can be coded by hereditarily
countable sets.

In more concrete scenarios, there is often a nice absolute complete classification,
using hereditarily countable sets as invariants, of a more simple combinatorial na-
ture. The seemingly technical conditions (2) and (3) above are always trivial to
verify.

Example 5.2. The map RN → Pℵ0(R), x 7→ {x(n) : n ∈ N}, is an absolute com-
plete classification of =+.

Consider the second Friedman-Stanley jump =++ defined on the space (RN)N.
The map (RN)N → Pℵ0Pℵ0(R),

x 7→ {{x(n)(m) : m ∈ ω} : n ∈ ω}

is an absolute complete classification of =++.
Similarly, there is an absolute complete classification of =+α using invariants in

Pαℵ0(R). See also [Sha23, 7.4].

Remark 5.3. Let E and F be analytic equivalence relation on Polish spaces X and
Y respectively. Suppose F admits an absolute complete classification y 7→ By as
above. Assume further that E is Borel reducible to F . Then E admits an absolute
complete classification as well (with the same type of invariants).

Definition 5.4. Let E be an equivalence relation on a Polish space X and x 7→ Ax
an absolute complete classification of E. Say that a set A is a potential E-
invariant if in some forcing extension there is an x in X such that A = Ax. If A is
a potential invariant for E, say that A is trivial if there is an x in the ground model
such that A = Ax. In a given model in which there is some x so that A = Ax, we
will say that A is realized.

Example 5.5. In Example 5.2, the potential invariants for =+ (with this fixed
absolute classification) are precisely all sets of reals. The potential invariants for
=+α are all sets in Pα(R).

Potential invariants directly correspond to stable virtual classes, as explained
below. This approach to study virtual classes is essentially equivalent to the one
taken by Ulrich, Rast, and Laskowski [URL17]. See [PS24, Section 4].

Lemma 5.6. For E as above, there is a one-to-one correspondence between

• stable virtual E-classes (P, τ), and
• potential invariants A,
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such that (P, τ) is pinned if and only if A is trivial. More specifically, a potential
invariant A corresponds to (P, τ) if and only if P 
 Aτ = Ǎ.

Proof. Let (P, τ) be a stable virtual E-class. Let Gl ×Gr be P× P-generic and let
xl, xr be the interpretations of τ according to Gl,Gr respectively. Since xl and xr
are E-related, it follows that A = Axl

= Axr . Furthermore, this set A is in the
intersection V [Gl] ∩ V [Gr], which is equal to V by mutual genericity. If (P, τ) is
pinned there is x ∈ V such that x E xl. In particular, Ax = Axl

= A, so A is a
trivial. Conversely, if there is x ∈ V with A = Ax then x witnesses that (P, τ) is
pinned: given any P-generic G over V , Aτ [G] = A = Ax, so τ [G] is E-related to x.

Now let A be a potential invariant for E. By assumption there is a poset Q, a
generic G and x ∈ V [G] such that A = Ax. Let τ be a Q-name such that τ [G] = x.
Fix a condition q ∈ Q such that q forces that Aτ = A and define P = Q � p. Now
(P, τ) is a stable virtual E-class such that P 
 Aτ = A.

�

A corollary of the proof is that the map (P, τ) 7→ A described there is a com-
plete classification of all stable virtual E-classes, up to E-equivalence, where the
classifying invariants are precisely the potential invariants for E.

Corollary 5.7. For E as above, the pinned cardinal κ(E) is the smallest cardinal
κ such that any potential E-invariant is trivial in a generic extension by a poset of
size < κ.

Example 5.8. For α < ω1, κ(=+α) = i+
α . In particular, for α < β, =+β 6≤B =+α.

See [LZ20, 2.5.5] for a proof of the full Friedman-Stanley theorem using these
ideas. The original proof of Friedman and Stanley used Borel determinacy.

6. Cardinal arithmetic considerations

In this section we consider some applications of Corollary 4.4 where the desired
inequality between the pinned cardinals is not proved outright, but is consistent.
This will suffices to conclude Borel irreducibility, as the latter is absolute.

6.1. Below =+. The first example of an unpinned Borel equivalence relation was
=+, specifically, appearing in Hjorth’s proof that =+ is not Borel reducible to a
CLI group action (see Example 4.6). Kechris asked if =+ is the minimal example.

Question 6.1 (see [Kan08b, Question 17.6.1]). If E is an unpinned Borel equiva-
lence relation, must =+ be Borel reducible to E?

This was refuted by Zapletal in [Zap11]. We present a counterexample. Consider
the graph G defined on 2N by3

x G y ⇐⇒ x ≤T y or y ≤T x,

where ≤T is the Turing reducibility relation on 2N. One can verify that:

(1) G has a clique of size ℵ1;
(2) G does not have cliques of size ℵ2.

3Zapletal used a different graph, see [Zap11, Fact 2.2]. This version was suggested by Clinton
Conley.
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Let C ⊆ (2N)N be the set of all x ∈ (2N)N such that {x(n) : n ∈ N} is a G-clique.
Consider the Borel equivalence relation E defined as (=2N)+ � C, the restriction of
(=2N)+ to the (invariant) Borel set C.

Note that the map x 7→ {x(n) : n ∈ ω} remains an absolute complete classifi-
cation of E. The potential invariants are precisely all sets of reals A ⊆ 2N which
form a G-clique. In particular, all the potential invariants are of size ≤ ℵ1, and
so κ(E) ≤ ℵ+1 . Also, any uncountable G-clique A ⊆ 2N is a non-trivial potential
invariant. It follows that E is not pinned, and κ(E) = ℵ+1 . We claim that E is a
counterexample to Question 6.1.

Claim 6.2. =+ is not Borel reducible to E.

Proof. This follows from Corollary 4.4. More specifically, move to a forcing exten-
sion in which CH fails: i1 > ℵ1. In this extension, κ(E) = ℵ+1 < i+

1 = κ(=+),
and therefore =+ 6≤B E. Finally, the statement ‘=+≤B E’ is absolute for forcing
extensions, and therefore =+ is not Borel reducible to E in the ground model as
well. �

6.2. A comic relief. For x ∈ 2N, let x′ be its Turing jump. Recall the following
fact from computability theory.

Theorem 6.3. There exists a sequence of reals x0, x1, . . . so that xn ≥T x′n+1.

Define x ≺ y ⇐⇒ x′ ≤T y. Define a graph G on 2N by

x G y ⇐⇒ x ≺ y or y ≺ x.

Define C ⊆ (2N)N as all G-cliques (a Borel set), and E as (=2N)+ � C, as above.
Let (xα : α < ω1) be a ≤T -increasing sequence so that xα+1 = (xα)′. Then

{xα : α < ω1} is a non-trivial potential invariant for E, and so E is not pinned.
In particular, E 6≤B =R (recall Example 1.8). Since E is Borel, it follows from
Theorem 4.1 that E0 ≤B E.

Proof of Theorem 6.3. Assume for contradiction that the theorem fails, then the
relation ≺ is wellfounded. For x ∈ X, let Ax be an enumeration of {xn : n ∈ N}
of order type o.t.(≺� {xn : n ∈ N}). Then x 7→ Ax is an absolute complete classifi-
cation of E, using (2N)<ω1 as invariants. The latter may be coded as members of
2<ω1 . We conclude that E0 admits an absolute complete classification using sets of
ordinals as invariants, which is a contradiction, as we will prove in Proposition 9.2
below.4 �

6.3. Analytic equivalence relations. In the context of non-Borel analytic equiv-
alence relation, especially non-orbit equivalence relations, the common notion of
reducibility is absolutely ∆1

2-reducibility. Corollary 4.4 still holds: κ(E) ≤ κ(F ) if
there is a is an absolute ∆1

2-reduction from E to F . In fact, this is true if there is
a reduction which is an absolute map as in Definition 5.1, where ‘complete classifi-
cation’ is replaced with ‘reduction’.

Calderoni and Thomas [CT19] studied the isomorphism relation ∼=TA, and the
bi-embeddability relation ≡TA, for torsion abelian groups. They proved ≡TA is

4Another way of reaching the contradiction is to show that the classification x 7→ Ax is an ‘Ulm-
type classification’ (see [HK95]), contradicting the fact that E0 does not admit such classification.



16 ASSAF SHANI

strictly below ∼=TA with respect to absolutely ∆1
2-reducibility.5 Both ≡TA and ∼=TA

are analytic equivalence relations with unbounded pinned cardinal. To distinguish
between them, Calderoni and Thomas used the following local notion.

Definition 6.4 ( [LZ20, 2.5.1]). Let P be a poset. Consider all stable virtual
classes of the form (P, τ), up to E-equivalence. Let λ(E,P) be the cardinality of
this quotient.

From Lemma 4.2 we again see:

Corollary 6.5. If there is an absolute reduction from E to F , then λ(E,P) ≤
λ(F,P)

Suppose now E admits an absolute classification, x 7→ Ax, as in Section 5. Recall
Lemma 5.6, that there is a one-to-one correspondence taking a stable virtual E-class
(P, τ) to a potential invariant A so that P 
 Aτ = Ǎ.

Corollary 6.6. λ(E,P) is the cardinality of the set of all potential invariants for
E which become trivial after forcing with P.

Example 6.7. (1) For Eω1
, the potential invariants are ordinals, the trivial

ones are countable ordinals. The ordinals which become countable after
forcing with Col(ω, κ) are precisely the ordinals below κ+, so λ(Eω1 ,Col(ω, κ)) =
κ+.

(2) For =+ the potential invariants are sets of reals, the trivial ones are the
countable sets of reals. The sets of reals which become countable after forc-
ing with Col(ω, ω1)) are precisely those of size ≤ ℵ1, so λ(=+,Col(ω, ω1)) =

iℵ11 .

We sketch here the proof from [CT19] that there is no absolute reduction from
∼=TA to ≡TA. In fact, they show that there is no absolute reduction from ∼=p to ≡TA,
where ∼=p is the isomorphism relation restricted to torsion abelian p-groups. By the
discussion above, it suffices to show that λ(P,∼=p) > λ(P,≡TA), for some poset P,
in some forcing extension. We show below (Propositions 5.8 and 5.9 in [CT19])
that

(1) λ(∼=p,Col(ω, ω1)) ≥ 2ℵ1 ;

(2) λ(≡TA,Col(ω, ω1)) ≤ ℵℵ02 .

Working in a generic extension in which 2ℵ0 = ℵ1 and 2ℵ1 > ℵ2 we have

λ(∼=p,Col(ω, ω1)) ≥ 2ℵ1 > ℵ2 = ℵℵ02 ≥ λ(≡TA,Col(ω, ω1)),

concluding the desired irreducibility.

6.3.1. Isomorphism for torsion abelian groups.

Corollary 6.8. Under the assumptions above, A = (σ(λ, k) : λ < κ, k ∈ N) is a
potential invariant for ∼=p, which is realized by any forcing which collapses κ to be
countable.

For ξ ∈ 2ω1 , define σξ =
(
σξ(λ, k) : λ < ω1, k ∈ N

)
, σξ(λ, k) ∈ {0, 1}, by

if ξ(λ) = 0, then σξ(λ, k) = 1 ⇐⇒ k is even

5In [CT19] they consider ∆1
2-reductions, under the assumption that there exists a Ramsey

cardinal, which ensures that such maps are absolute.
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if ξ(λ) = 1, then σξ(λ, k) = 1 ⇐⇒ k is odd

Then
{
σξ : ξ ∈ 2ω1

}
are distinct potential invariants for ∼=p which become trivial

after collapsing ω1. We conclude that λ(∼=p,Col(ω, ω1)) ≥ 2ℵ1 .

6.3.2. Bi-embeddability for torsion abelian groups.

7. Symmetric models

We saw that studying virtual equivalence classes in different models of set theory
is useful to prove irreducibility results. For example, we were able to distinguish
between various unpinned equivalence relations, by working in ZFC models with
certain cardinal arithmetic assumptions, distinguishing their pinned cardinals.

Next we will apply similar ideas to distinguish between some equivalence relations
which are pinned. The key is to work in choiceless models, where the equivalence
relations may become unpinned.

Recall the examples from Section 1.1. The proof that =R is pinned (Exam-
ple 1.8), and the proof that a countable equivalence relation is pinned (Example 1.9)
can be carried out in ZF. However, the proof in Example 1.10 used the axiom of
choice. Similarly Theorem 1.12 used the axiom of choice, specifically DC. Below
we use symmetric models in which DC, and various weak fragments of choice, fail.

In Section 7.2 we prove a Borel irreducibility result by considering the axiomatic
strength (as a fragment of choice) of the statement ‘E is pinned’. In Section 8 we
consider finer questions of definability in symmetric models.

7.1. Abstract nonsense. Suppose A is a set in some generic extension of V . Let
V (A) be the minimal transitive model of ZF extending V and containing the set
A. For example, this model can be written as the class directed union of L(A, x)
for x ∈ V . We will sometimes call this the model generated by A (over V ).

There are similar ways of forming symmetric models: L(A), HODtc{A}, HODV,tc{A}.
For the A’s we study here, all these models will have the same relevant properties.
Also in our examples V (A) and HODV,tc{A} will coincide.

We view V (A) as a (minimal) definable closure of A:

Fact 7.1. The following holds in V (A). For any set X, there is some formula
ψ, parameters ā from the transitive closure of A and v ∈ V such that X is the
unique set satisfying ψ(X,A, ā, v). Equivalently, there is a formula ϕ such that
X = {x : ϕ(x,A, ā, v)}.

We will be particularly interested in sets definable from A and parameters in V
alone.

We will primarily work with models V (A) in which the axiom of choice fails.

Fact 7.2. If V satisfies AC and A ⊆ V then V (A) satisfies AC.

In particular, if A is a set of ordinals then V (A) satisfies choice. If x is member
of a Polish space, then x can be coded as a subset of N, and therefore V (x) satisfies
choice as well.

7.2. Eω0 as an unpinned equivalence relation. First let us see how pinned
equivalence relations become unpinned. Let Eω0 on (2ω)ω be defined by pointwise-
equivalence. Note that the map

x 7→ Ax = ([x(n)]E0
: n < ω)
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is a complete classification for Eω0 satisfying the required absoluteness properties.
The invariants are countable sequences of E0-classes. (Being an E0-class is absolute.
Same for other countable equivalence relations.)

Fix x ∈ (2ω)ω a Cohen generic over V . Let An = [x(n)]E0
and A = (An : n < ω).

Remark 7.3. In V (A), A is a potential invariant for Eω0 .

Proposition 7.4. In V (A),
∏
n∈ω An = ∅.

It follows that in V (A), A is a non-trivial potential invariant for Eω0 .

Corollary 7.5. Eω0 is not pinned in V (A).

Recall that if E is a countable equivalence relation then “E is pinned” is provable
in ZF (Example 1.9).

Corollary 7.6. Eω0 is not Borel reducible to any countable Borel equivalence re-
lation.

Proof. In V (A), we see that Eω0 is not Borel reducible to any countable Borel
equivalence relation, by Corollary 4.3. By absoluteness, the same is true in V . �

We now prove Proposition 7.4.

Lemma 7.7. Suppose Z ∈ V (A), Z ⊆ V is definable using x0, ..., xn and A. Then
Z ∈ V [x0, ..., xn].

Proof. Fix a formula φ and a parameter v ∈ V such that, in V (A),

z ∈ Z ⇐⇒ φ(z,A, x0, ..., xn, v).

Claim 7.8. Suppose p, q are conditions agreeing on x0, ..., xn, then p, q cannot force

conflicting statements about φV (Ȧ)(ž, Ȧ, ẋ0, ..., ẋn, v̌).

Proof. Assume to the contrary, that p 
 φV (Ȧ)(z, ...) and q 
 ¬φV (Ȧ)(z, ...). With-
out loss of generality, assume that our generic x ∈ (2ω)ω extends p. Let x′ be the
result of making finite changes to xn+1, xn+2, ... so that x′ extends q. Note that x′

is generic over V . Furthermore, Ȧ[x] = Ȧ[x′] = A, and x′i = xi for i ≤ n.
Working in V [x], we conclude that

φV (A)(z,A, x0, ..., xn, v).

However, working in V [x′] we conclude that

¬φV (A)(z,A, x0, ..., xn, v),

a contradiction. �

Finally, we can define Z in V [x0, ..., xn] as all z ∈ V such that there is some p in

the Cohen forcing which agrees with x0, ..., xn and such that p 
 φV (Ȧ)(ž, Ȧ, ẋ0, ..., ẋn, v̌).
�

Proof of Proposition 7.4. If y ∈
∏
n∈ω An, then y ∈ (2ω)ω can be coded as a subset

of ω×ω, therefore as a subset of V . If additionally y ∈ V (A), we conclude from the
lemma that y ∈ V [x0, . . . , xn] for some n < ω. It follows that xn+1 ∈ V [yn+1] ⊆
V [y] ⊆ V [x0, . . . , xn]. This is a contradition, as xn+1 ∈ 2ω is Cohen-generic over
V [x0, . . . , xn]. �
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This direction is further explored in [Sha22]. For example, for countable Borel
equivalence relations E,F so that E is (µ, F )-ergodic, for some probability measure
µ, there is a symmetric model (a submodel of a random real extension) in which
Eω is unpinned, yet Fω is pinned (see [Sha22, Proposition 3.11]). Also, there is a
model in which Eω is pinned, for any countable Borel equivalence relation E, yet the
axiom ‘countable choice for countable sets of reals’ fails ( [Sha22, Theorem 4.10]).

8. Definability of potential invariants

Let E and F analytic equivalence relations on Polish spacesX and Y respectively,
and f : X → Y a Borel homomorphism from E to F , that is, x E y =⇒ f(x) F
f(y). Then for a stable virtual E-class (P, τ), (P, f(τ)) is a stable virtual F -class.
In other words, there is a map, definable using f as a parameter, sending stable
virtual E-classes to stable virtual F -classes, and this holds uniformly in any generic
extension.

Example 8.1. Assume further that E and F admit absolute classifications x 7→
Ax and y 7→ By respectively. Then stable virtual classes correspond to potential
invariants (see Lemma 5.6). In this case, a Borel homomorphism f from E to
F corresponds to a definable map, using as parameters f,E, F and the complete
classifications, sending potential E-invariants to potential F -invariants.

For concreteness, let us write it here. The map sends a potential E-invariant A
to the unique set B satisfying

‘for some (equivalently, any) x ∈ X in a generic extension,
if A = Ax then B = Bf(x)’.

Furthermore, if f : X → Y is a reduction of E to F , then the map A 7→ B is
injective. Moreover, in this case A can be defined from its image B as follows

‘for some (equivalently, any) y ∈ Y in a generic extension,
if B = By and x ∈ X is such that f(x) F y, then A = Ax’.

Corollary 8.2. For E and F as above, if E ≤B F and A is a potential E-invariant
in some generic extension, and B is the potential F -invariant corresponding to it,
then V (A) = V (B), where V (A) is the minimal transitive extension of V containing
A.

Example 8.3. Let us prove again that EN
0 is not Borel reducible to a countable

Borel equivalence relation, using the symmetric model V (A) from Section 7.2.
Assume for contradiction that there is a Borel reduction from EN

0 to a countable
Borel equivalence relation F . Since F is countable, the map x 7→ [x]F is an absolute
complete classification. By Corollary 8.2 we conclude that V (A) = V (B) where B
is an F -class, that is, B = [y]F for some y ∈ V (B). It follows that V (A) = V (y),
and therefore V (A) satisfies choice, by Fact 7.2, a contradiction to Proposition 7.4.

Similar to Example 8.1, we can extend an absolute E-invariant map to be defined
on potential invariants.

Definition 8.4. Assume that E on X admits an absolute complete classification
x 7→ Ax and c : X → I is a an absolute E-invariant map. We define c on potential
E-invariants as follows. Given a potential E-invariant A, define

c(A) to be the unique B ∈ I so that for some (equivalently, any) x ∈ X in a
generic extension, if A = Ax then B = c(x).
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Note that the map on potential invariants A 7→ c(A) is defined uniformly, using the
parameters used in the absolute definitions of c : X → I and of x 7→ Ax.

9. Ergodicity and unclassifiability

Recall that E0 is defined on 2N as eventual equality between binary sequences.
E0 can be seen as the orbit equivalence relation induced by an action of

⊕
n∈N Z2.

A fundamental result in the theory of classification is that an E0 is not concretely
classifiable, that is, E0 6≤B =R. The standard argument relies on a basic ergodic
theoretic technique.

Fact 9.1. Let Γ be a countable group and X a Polish space. Assume that a : Γ y X
a generically ergodic action, that is, any Borel invariant set is either meager or
comeager. Then any Ea-invariant Borel map X → R is constant on a comeager set.

As each orbit is countable, we conclude that there is not Borel reduction from
Ea to =R.

Similarly, in the measure theoretic context, if Γ is a countable group, a : Γ y X
is an ergodic action on a standard measure space (X, ν) (any invariant Borel set
is either null or conull), then any Ea-invariant map X → R is constant on a full
measure set.

The action of
⊕

n∈N Z2 on 2N described above is generically ergodic, and ergodic

with respect to the coin-flipping measure on 2N.
The goal of this section is to provide a generalized ergodicity criterion which

• implies unclassifiability by more complex invariants, such as sets of real
numbers;
• is simple to apply, like the above ergodicity argument.

First, we view the unclassifiability of E0 through an equivalent forcing point of view.
Recall that a real number may be identified as a subset of ω. The unclassifiability
of E0 is true in greater generality. For example, in L(R) there is no injective map
from 2N/E0 into P(α) for any ordinal α. (See [Hjo95], [CK11]. Also [Sha23, 7.7])

Proposition 9.2. There is no absolute complete classification of E0 using invari-
ants which are sets of ordinals. In fact, any absolute invariant map from E0 to sets
of ordinals must send a comeager subset of 2N to the same set of ordinals.

The proposition relies on the weak homogeneity of Cohen forcing P: given any
two conditions p, q ∈ P there is an automorphism γ of P so that γ · p is compatible
with q. Let x ∈ 2N be a Cohen generic real over L. Feferman showed that there
is no definable well ordering of the reals in L[x]. Levy showed that in fact any
hereditarily ordinal definable set in L[x] is in L (see [Kan06, Section 7]). The
following is a mild generalization, allowing the the parameter [x]E0

in definitions.

Claim 9.3. Let x ∈ 2N be a Cohen generic real over V . If Z ∈ V [x] is a set of
ordinals which is definable using [x]E0

and parameters from V alone, then Z ∈ V .

Proof. Fix a name Ż for Z so that it is forced that Ż is definable from [ẋ]E0
and

ground model parameters, where ẋ is the canonical name for the generic real x ∈ 2N.
We will simply define Z in V as the set of all ordinals α for which it is forced that
α̌ ∈ Ż.

To see that it works, it suffices to show that no two conditions can disagree on a
statement of the form α̌ ∈ Ż. For any two conditions p, q there is an automorphism
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γ of Cohen forcing, flipping finitely many bits of x, so that γ · p is compatible with
q. Since [γ · x]E0

= [x]E0
, p and γ · p agree on the statement α̌ ∈ Ż. Since γ · p is

compatible with q, they agree on the statement α̌ ∈ Ż as well. �

Proof of Proposition 9.2. Note that the map x 7→ [x]E0 is an absolute complete
classification of E0. Assume that x 7→ Bx is an absolute E0-invariant map where
Bx is always a set of ordinals. Let x ∈ 2N be a Cohen generic real over V , and
let A = [x]E0

. As in Section 8 conclude that B = Bx is definable from [x]E0
and

parameters in V , and therefore B ∈ V , since B is a set of ordinals. We conclude
that Bẋ = B̌ is forced, and therefore there is a comeager set of x ∈ 2N for which
Bx = B. In particular, x 7→ Bx is not a complete classification. �

We will repeat these ideas in much greater generality below, which will allow us
to prove generalized unclassifiability results.

Definition 9.4. Let P be a forcing poset, τ a P-name. Say that τ is P-ergodic if
for any p, q ∈ P there is an automorphism γ of P so that γ · p is compatible with q
and γ preserves τ , that is, for any P-generic G, τ [G] = τ [γ ·G].

Example 9.5. Let τ be a canonical P-name for the emptyset. Then τ is P-ergodic
if and only if P is weakly homogeneous.

Definition 9.6. Say that a P-name τ is non-trivial if there are two generic filters
G,H so that τ [G] 6= τ [H]. Equivalently, τ is non-trivial if it is not forced to be a
member of the ground model.

Example 9.7. Let (X, ν) be a standard measure space and Γ y X an ergodic
group action by measure preserving transformations. Let P be Random real forcing
on X, ẋ the name for the generic random real. Then Γ · ẋ is P-ergodic.

Example 9.8. Let X be a Polish space and Γ y X a generically ergodic action
by homeomorphisms. Let P be Cohen forcing on X and ẋ the name for the generic
Cohen real. Then Γ · ẋ is P-ergodic.

Theorem 9.9 (ZF). Let P be a forcing poset, Ȧ a P-name for a potential E-

invariant. Assume that Ȧ is P-ergodic. If c : X → I is an absolute E-invariant
map, where in any P-generic extension the members of I are subsets of V , then
there is a fixed B ∈ I in the ground model so that c(Ȧ) = B̌ is forced by P. (We
may apply c to a potential invariant as in Section 8.)

Proof. Let σ be a P-name so that it is forced by P that c(Ȧ) = σ. By assumption,
σ is forced to be a subset of V .

Claim 9.10. For any b in V , if some condition in P forces that b̌ ∈ σ then any
condition in P forces that b̌ ∈ σ.

Given the claim, we may define B to be the set of all b so that b̌ ∈ σ is forced,
and conclude that c(Ȧ) = σ = B̌ is forced by P, as required.

To prove the claim, assume towards a contradiction that there are two conditions
p, q ∈ P so that p 
 b̌ ∈ σ and q 
 b̌ /∈ σ. By assumption, there is an automorphism
γ of P so that γ ·p is compatible with q, and γ preserves Ȧ. Since σ = c(Ȧ) is forced,
γ preserves σ as well. We conclude that γ · p 
 b̌ ∈ σ and q 
 b̌ /∈ σ, contradicting
that they are compatible. �
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There are three types of generalizations here, beyond what is needed for Propo-
sition 9.2, which will be crucial in the applications below:

(1) that A is a potential invariant (not necessarily realized in the given model);
(2) that invariants in I are arbitrary subsets of the ground model (not just

ordinals);
(3) that the result will be applied in specifically designed models of ZF.

A typical application of the theorem will be to prove irreducibility to some =+α,
as follows. Here Pα denotes the iterated powerset operation, and P(N) is identified
with R.

Theorem 9.11. Let P be a forcing poset, Ȧ a non-trivial P-name for a potential
E-invariant. Assume that Ȧ is P-ergodic. Assume further that forcing with P adds
no new subsets of Pα(N). Then there is no absolute complete classification of E
using subsets of Pα(N) as invariants. In particular, E 6≤B =+α+1.

For example, if P is adds no real numbers and Ȧ is an ergodic, non-trivial P-name
for a potential E-invariant, then E 6≤B =+.

Proof. Assume for contradiction that c : X → I is a complete classification of E
where I consists of subsets of Pα(N). By assumption, the invariants in I are
subsets of V in any P-generic extension. By Theorem 9.9 there is a fixed set B in
V so that c(Ȧ) = B̌ is forced by P. Finally, for any two P-generics G,H over V , as

c(Ȧ[G]) = c(Ȧ[H]) and c is a complete classification, we conclude that Ȧ[G] = Ȧ[H],

contradicting the assumption that Ȧ is not trivial. �

9.1. Irreducibility to =+. We present here two examples proving irreducibility
to =+ (unclassifiability by countable sets of reals).

9.1.1. A proof of =++ 6≤B =+. Let P be the poset of all countable partial functions
p : R→ 2, ordered by extension. We identify a generic filter with a ‘generic function’
R → 2, and in turn with a ‘generic subset’ G ⊆ R. Let Ḃ be the P-name for
the set B = {H ⊆ R : H∆G is countable}, all subsets of R which have countable
symmetric difference with G. Note that in the extension V [G], B is a potential
invariant for =++, as it is a set of sets of reals. We will use the following basic
facts:

• Forcing with P does not add reals;
• The generic subset G is not in the ground model.

Claim 9.12. Ḃ is P-ergodic.

Proof. Given p, q ∈ P, consider the automorphism of P acting on r ∈ P by flipping
the value of r(x) for any x ∈ dom p ∩ dom q for which p(x) 6= q(x). Since only

countably many values of G are changed, the automorphism fixes Ḃ. �

We conclude from Theorem 9.9 that there is no absolute complete classification of
=++ using invariants which are subsets of V in any P-generic extension. In any
P-generic extension, since no reals are added, a set of reals is a subset of V .

Corollary 9.13. There is no absolute complete classification of =++ using invari-
ants which are sets of reals. In particular, =++ 6≤B =+.
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9.1.2. Archimedean groups. Let A ⊆ RN be all injective sequences (xn : n ∈ N) so
that x0 = 0 and ({xn : n ∈ N} ,+) is a subgroup of (R,+). A is a closed subset of
RN, equipped with the product topology.

Definition 9.14. Define the equivalence relation ∼A on A as follows.

(xn : n ∈ N) ∼A (yn : n ∈ N) ⇐⇒
∃λ > 0 so that the map x 7→ λ · x is a bijection from {xn : n ∈ N} to {yn : n ∈ N}.

This equivalence relation was studied in [CMRS23]. The main motivation is that
∼A is equivalent to the classification problem for countable Archimedean groups.
(See Proposition 3.1 in [CMRS23] and the discussion following it.) In particular, it
is established in [CMRS23, Section 4] that

=+ <B ∼A <B =++

We provide here a proof of the lower bound.

Proposition 9.15. ∼A is not Borel reducible to =+.

This lower bound was recently used by [EGL24], where they study the complexity
of classification for extremely amenable groups.

We identify a member (xn : n ∈ N) ∈ A with the subgroup G = {xn : n ∈ N}.
Given an additive subgroup G of R, define

G/a = {g/a : g ∈ G} and AG = {G/a : a ∈ G \ {0}}.

Fact 9.16 (See [CMRS23, Proposition 3.14]). The map

(xn : n ∈ N) 7→ A{xn:n∈N}

is an absolute complete classification of ∼A.

We will apply Theorem 9.9 using this classification. Note that a classifying
invariant is a countable set of countable subgroups of (R,+).

Remark 9.17. We note that κ(∼A) = κ(=+) = |R|+, so the methods of sections 4
and 6 cannot be used to prove Proposition 9.15.

Suppose A is a potential ∼A-invariant, using the above classification. Then A is
a set of sets of reals and there is G ∈ A so that A = {G/a : a ∈ G \ {0}} (though A
and G may be uncountable). Since G ⊆ R, after collapsing |R| to be countable we
have some (xn : n ∈ N) ∈ A enumerating G, so that A is the classifying invariant
of (xn : n ∈ N). That is, any potential ∼A-invariant is trivial after collapsing |R|
to be countable. It follows from Corollary 5.7 that κ(∼A) ≤ |R|+. Note that
A = {R} = {R/a : a ∈ R \ {0}} is a potential ∼A-invariant, and so κ(∼A) = |R|+

We introduce some terminology from [CMRS23, 4.3].
Given a set S ⊆ R, define D(S) to be the set of all numbers of the form

al11 ·, . . . , ·alnn , where l1, . . . , ln are integers and a1, . . . , an are in S. Let Y be a
perfect set of reals so that any a1, . . . , an ∈ Y are algebraic independent over
Y \ {a1, . . . , an}. In particular, for any two subsets S1, S2 ⊆ Y ,

D(S1) ∩D(S2) = D(S1 ∩ S2).

Definition 9.18. Let P be the poset of conditions p = (Sp, Gp) where Sp is a
countable subset of Y and Gp is a countable subset of D(Sp). For p, q ∈ P say that
q extends p if Sq ⊇ Sq and Gq ∩ S(Sp) = Gp.
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P is a partial order with maximal element (∅, ∅). Given a generic filter F ⊆ P, let
G be the additive subgroup of R generated by

⋃
p∈F Gp. Note that in the extension

AG is a potential invariant for ∼A: in any further generic extension in which G is
countable, AG is equal to Ax for any injective enumeration x ∈ A of G.

Claim 9.19. For any generic filter F , G /∈ V . In particular AG /∈ V .

Proof. Fix a condition p ∈ P. We need to find two extensions q1, q2 of p and some
x ∈ R so that q1 
 x̌ ∈ Ġ and q2 
 x̌ /∈ Ġ. Since Sp is countable, we may find some
x ∈ Y \ Sp. By the algebraic independence of the members of Y , it follows that
x /∈ D(Sp). Define

Sq1 = Sq2 = Sp ∪ {x}, Gq1 = Gp ∪ {x}, Gq2 = Gp.

Then q1 = (Sq1 , Gq1) and q2 = (Sq2 , Gq2) are as required. �

Claim 9.20. P is countably closed. In particular, no reals are added when forcing
with P.

Claim 9.21. ȦG is P-ergodic.

Proof. Fix a ∈ Y . Let Pa = {p ∈ P : a ∈ Sp}, a dense open subset of P. Define

πa(p) = (Sp, a ·Gp). Then πa is an automorphism of Pa, which preserves ȦG.
Given any p, q ∈ P, fix some a ∈ Y \ (Sp ∪Sq). By the algebraic independence of

the members of Y , it follows that a ·D(Sp) ∩D(Sq) = ∅, and therefore πa(p) and
q are compatible. �

We conclude from Theorem 9.11 that ∼A is not Borel reducible to =+.

9.2. Forcing over choiceless models. Let P(On) denote all subsets of ordinals,
P2(On) denote all sets of sets of ordinals, and so on. As in Proposition 9.2, often
times an irreducibility to =+ can be strengthened to ‘unclassifiability using sets of
sets of ordinals as invariants’. We show this for =++ in Corollary 9.25 below. First,
note that in Theorem 9.11, we may replace N by some ordinal, and the same proof
works. Furthermore, the proof did not use the axiom of choice.

Theorem 9.22 (ZF). Let P be a forcing poset, Ȧ a non-trivial P-name for a poten-

tial E-invariant. Assume that Ȧ is P-ergodic. Assume further that forcing with P
adds no new subsets of Pα(On). Then there is no absolute complete classification
of E using subsets of Pα(On) as invariants.

When α = 0 we recover Proposition 9.2. When α = 1 we conclude a generaliza-
tion to ‘irreducibility to =+’: unclassifiability by sets of ordinals as invariants.

For α ≥ 1, for the hypothesis in Theorem 9.22 to hold, the axiom of choice must
fail. We present below some instances of this scenario, and how it naturally leads
to an irreducibility result.

9.2.1. Forcing over the basic Cohen model. Let x ∈ RN be Cohen generic over V ,
A = {x(n) : n ∈ N}. We consider V (A) as ‘the basic Cohen model’ (see [Kan08a]).
This model has been extensively studied in the literature. A basic fact is that in
V (A), A is a Dedekind-finite set, that is, there is no sequence of distinct members
of A. In particular, there is no y ∈ RN enumerating A. It follows that A is a
non-trivial potential invariant for =+, in V (A).

Working in V (A), let P be the poset of all finite partial functions p : A → 2,
ordered by extension. We identify a generic filter with a ‘generic function’ A→ 2,
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and in turn with a ‘generic subset’ G ⊆ A. Let Ḃ be a name for the set B =
{H ⊆ A : H4G is finite}, all subsets of A which have finite symmetric difference
with G. Note that, in the extension V (A)[G], B is a potential invariant for =++,
as it is a set of sets of reals.

Claim 9.23. Ḃ is P-ergodic.

We conclude from Theorem 9.9 that, in V (A), there is no absolute complete
classification of =++ using invariants which are subsets of V (A) in any P-generic
extension. The key point here is the following, due to Monro [Mon73].

Lemma 9.24. Forcing with P adds no subsets of V to V (A).

In particular, no sets of ordinals are added. It follows that any set of sets of
ordinals, in a P-generic extension of V (A), is a subset of V (A).

Corollary 9.25. There is no absolute complete classification of =++ using invari-
ants which are sets of sets of ordinals. In particular, =++ 6≤B =+.

This proof naturally applies to another equivalence relation which is strictly
Borel reducible to =++.

Consider the space X = (2N)N× 2N. For (x, t) ∈ X, define Ax = {x(n) : n ∈ N},
G(x,t) = {x(n) : t(n) = 1}, and

B(x,t) =
{
G ⊆ Ax : G4G(x,t) is finite

}
.

Define an equivalence relation E on X so that the map x 7→ Bx is a complete
classification of E.

It is readily seen that =+ ≤B E ≤B =++. E is an example of an equivalence
relation with potential complexity D(Π0

3).6 It follows from the results in [HKL98]
that E <B =++. We show here that the reduction =+<B E is strict as well.

Working again in the basic Cohen model V (A), we see that Ḃ is a name for a
potential invariant for E. The same argument above shows

Corollary 9.26. There is no absolute complete classification of E using invariants
which are sets of sets of ordinals. In particular, E 6≤B =+.

As discussed right before Section 9.2.1, the key point here is Lemma 9.24, wit-
nessing the failure of choice in V (A) in a strong way. We will use the following
Continuity Lemma. See [Fel71, p.133], also [CMRS20, p.19] for a proof in this
presentation of the basic Cohen model.

Lemma 9.27 (Continuity Lemma). Let φ be a formula, ā = a0, ..., an−1 a finite
sequence of distinct members of A, and v ∈ V . Suppose φ(A, ā, v) holds in V (A).
Then there are open sets U0, ..., Un−1 such that ai ∈ Ui and for any b̄ = b0, ..., bn−1
consisting of distinct elements from A, if bi ∈ Ui for all i ≤ n − 1, then φ(A, b̄, v)
holds in V (A).

Proof of Lemma 9.24. Suppose τ is a P-name for a subset of V , τ ∈ V (A). As in
Fact 7.1, let ā ⊆ A be finite, w ∈ V a parameter, and ψ a formula so that in V (A),
τ is defined as the unique solution to ψ(τ,A, ā, w).

We will show that for any condition p ∈ P and any v ∈ V , if p forces v̌ ∈ τ then
p � ā forces the same. It then follows that for any generic filter G ⊆ P over V (A),

6See [HKL98] for a treatment of potential complexity. The equivalence relation E here is Borel
reducible to the equivalence relation ∼=∗

3,1 there. See also [Sha21,Sha].
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the values of τ [G] are determined by the single condition q = G � ā. That is, τ [G]
may be defined in V (A) as the set of all v for which q 
 v̌ ∈ τ .

Fix a condition p ∈ P and v ∈ V so that p 
 v̌ ∈ τ . Assume that the domain
of p is of the form ā, b̄, with b̄ disjoint from ā. By the Continuity Lemma, there
are infinitely many distinct tuples b̄′, disjoint from ā, such that p[b̄′] 
 v ∈ τ as
well, where p[b̄′] is the condition with domain ā, b̄′ defined on b̄′ as p is defined on
b̄. Note that p[b̄′] extends p � ā.

Now for any r extending p � ā, there is some b̄′ such that p[b̄′] 
 v̌ ∈ τ and p[b̄′]
is compatible with r (take b̄′ disjoint from the domain of r). It follows that p � ā
forces v̌ ∈ τ . �
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structures in generic extensions. The Journal of Symbolic Logic, 81(3):814–832, 2016.
[KN82a] Julia Knight and Mark Nadel. Expansions of models and turing degrees. The Journal

of Symbolic Logic, 47(3):587–604, 1982.

[KN82b] Julia Knight and Mark Nadel. Models of arithmetic and closed ideals. The Journal of
Symbolic Logic, 47(4):833–840, 1982.

[KS16] Itay Kaplan and Saharon Shelah. Forcing a countable structure to belong to the ground

model. Mathematical Logic Quarterly, 62(6):530–546, 2016.
[KTD12] Alexander S. Kechris and Robin D. Tucker-Drob. The complexity of classification prob-

lems in ergodic theory, page 265–300. London Mathematical Society Lecture Note

Series. Cambridge University Press, 2012.
[Lar17] Paul B. Larson. Scott processes. In Beyond first order model theory, pages 23–76. CRC

Press, Boca Raton, FL, 2017.
[LS93] M. C. Laskowski and S. Shelah. On the existence of atomic models. The Journal of

Symbolic Logic, 58(4):1189–1194, 1993.
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