Classification by countable sequences of countable sets of reals

Assaf Shani

Harvard University

2020 CMS winter meeting December 2020

Motivation

Given an equivalence relation E on X, a **complete classification** is a map $c: X \to I$ such that for all $x, y \in X$,

$$x E y \iff c(x) = c(y)$$

We say that I is a set of **complete invariants** for E.

Question

Given an equivalence relation E, what is the optimal complete classification of E?

This is preserved under Borel reductions: Let *E* and *F* be equivalence relations on Polish *X* and *Y* respectively, $g: X \to Y$ a Borel reduction

$$x E y \iff g(x) F g(y).$$

Then if $c: Y \rightarrow I$ is a complete classification of $F, c \circ g$ is a complete classification of E.

A complete classification of *E* is a map $c: X \longrightarrow I$ such that for any $x, y \in X$, *xEy* iff c(x) = c(y).

Example

=⁺ is defined on \mathbb{R}^{ω} so that the map $x \mapsto \{x(i); i \in \omega\}$ is a complete classification. The invariants are all countable sets of reals. <u>However</u>, given an invariant *A*, it might be very hard to *verify* that *A* is countable (to enumerate *A*).

Example

Suppose Γ is a countable group acting on X. The induced orbit equivalence relation can be classified by $x \mapsto \Gamma \cdot x$. The invariants are countable sets of reals, with the additional property that given such invariant A we can *definably* enumerate A. Let *E* be a countable Borel equivalence relation on *X*. Define E^{ω} on X^{ω} by $x E^{\omega} y \iff (\forall n \in \omega)x(n) E y(n)$. E^{ω} can be classified by $x \mapsto \langle [x(n)]_E | n < \omega \rangle$. The invariants are sequences of *definably countable* sets of reals.

Vague question

What kind of equivalence relations can be classified by countable sequences of definably countable sets of reals?

 E^{ω} E

 $=_{\mathbb{R}}$

Vague answer

There is a natural candidate for an equivalence relation, maximal with this property.

Classification by sequences of definably countable sets

Definition

- ► Consider $(=^+)^{\omega}$ on $(\mathbb{R}^{\omega})^{\omega}$, where $x (=^+)^{\omega} y$ if and only if $\{x(n)(i); i \in \omega\} = \{y(n)(i); i \in \omega\}$ for every *n*.
- ► Define $D \subseteq (\mathbb{R}^{\omega})^{\omega}$ by $D = \{f \in (\mathbb{R}^{\omega})^{\omega}; \forall n, i, j(f(n)(i) \text{ is computable from } f(n+1)(j))\}$. Define the equivalence relation \mathbf{E}_{Π} on D to be $(=^{+})^{\omega} \upharpoonright D$.

An invariant is a sequence of sets of reals $\langle A_n | n < \omega \rangle$ such that, using a member of A_{n+1} as a parameter, we can definably enumerate A_n .

Theorem (S.)

- 1. For any countable E, E_{Π} is strictly above E^{ω} in the Borel reducibility hierarchy. (And is incomparable with the \mathbb{Z} -jumps $E^{[\mathbb{Z}]}$ defined by Clemens and Coskey.)
- 2. E_{Π}^{ω} is Borel bi-reducible to E_{Π} (and is "maximal").

Pinned equivalence relations below $=^+$

Zr-jump of Clemens & Coskey [2/] i classifiable using segunce of ctbl sets countable Borel F Cquivalence relation

"Definition"

Suppose *E* is classifiable by countable structures via $x \mapsto A_x$. *E* is **pinned** if, for any set *A*, if there is some *x* in *some* generic extension, such that $A = A_x$, then $A = A_x$ for some *x* (in the ground model).

Example

- 1. =⁺ is not pinned. The set of reals \mathbb{R} is not A_x (not countable), but it *is* A_x where x is an enumeration of \mathbb{R} in a collapse generic extension.
- If E is a countable Borel equivalence relation, then E, E^ω, and E^[Z] are all pinned. Also E_Π is pinned.
 (Given an invariant A = ⟨A_n | n < ω⟩, take x = ⟨x_n | n < ω⟩ with x_n ∈ A_n, then A = A_x.)

Theorem (Hjorth '99 - Thompson '06)

Let G be a Polish group, the following are equivalent:

- G admits a complete left-invariant metric (CLI);
- ► all orbit equivalence relations induced by *G*-actions are pinned.

For example, if *E* is a countable Borel equivalence relation, then E^{ω} and $E^{[\mathbb{Z}]}$ are induced by CLI group actions.

Question

Is E_{Π} Borel reducible to a CLI action?

Remark

Panagiotopoulos and Lupini ('18) introduced a different obstruction to being reducible to a CLI action. It is not known whether or not it is equivalent to being pinned.

Proof that E_{Π} is not Borel reducible to E^{ω}

Recall: E_{Π} is defined to have natural invariants of the form $\langle A_n \mid n < \omega \rangle$ such that for each *n* there is a member of A_{n+1} which is an enumeration of A_n .

The irreducibility proof relies on finding model of ZF separating the following very weak choice principles:

- 1. There is a countable sequence of countable sets of reals with not choice function, yet
- 2. for any CBER *E*, any countable sequence of *E*-classes admits a choice function.

Moreover the sequence in (1) looks like an invariant for E_{Π} . In this model E_{Π} is not pinned, yet E^{ω} is pinned for any CBER E (also $E^{[\mathbb{Z}]}$ are all pinned).

Recall: the "basic Cohen model".

 $a_0, a_1, a_2...$ generic sequence of Cohen reals. $A = \{a_n; n \in \omega\}$. Let V(A) be the minimal transitive ZF extension of V which contains the set A.

Separation of fragments of choice

<u>The "basic Cohen model"</u>: $a_0, a_1, a_2...$ generic Cohen reals, $A = \{a_n; n \in \omega\}, V(A) = \text{def. closure of } A \text{ over } V.$

- Choice fails in V(A) (A cannot be enumerated);
- ► V(A) does satisfy countable choice for countable sets of reals.

Choice for countable sets of reals vs choice for E-classes.

- ▶ Let $a^0 = a_0^0, a_1^0, a_2^0, ...$ generic Cohen reals, $A_0 = \langle a_n^0 | n \in \omega \rangle$.
- Let π₀, π₁, π₂, ... be Cohen generic permutations of ω.
 Define a¹_n = a⁰ ∘ π_i. A₁ = {a¹_n; n ∈ ω}.
- ... A_{n+1} is a set of mutually generic enumerations of A_n .

Theorem

In $V(\langle A_n | n < \omega \rangle)$: $\prod_n A_n = \emptyset$ (so E_{Π} is not pinned), yet for any CBER E, and any sequence $\langle B_n | n < \omega \rangle$ of E classes, $\prod_n B_n \neq \emptyset$ (so E^{ω} is pinned).

Thanks for listening!