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Motivation

Given an equivalence relation E on X , a complete classification
is a map c : X → I such that for all x , y ∈ X ,

x E y ⇐⇒ c(x) = c(y)

We say that I is a set of complete invariants for E .

Question
Given an equivalence relation E , what is the optimal complete
classification of E?

This is preserved under Borel reductions:
Let E and F be equivalence relations on Polish X and Y
respectively, g : X → Y a Borel reduction

x E y ⇐⇒ g(x) F g(y).

Then if c : Y → I is a complete classification of F , c ◦ g is a
complete classification of E .



Motivation

A complete classification of E is a map c : X −→ I such that for
any x , y ∈ X , xEy iff c(x) = c(y).

Example

=+ is defined on Rω so that the map x 7→ {x(i); i ∈ ω} is a
complete classification. The invariants are all countable sets of
reals. However, given an invariant A, it might be very hard to
verify that A is countable (to enumerate A).

Example

Suppose Γ is a countable group acting on X . The induced orbit
equivalence relation can be classified by x 7→ Γ · x .
The invariants are countable sets of reals, with the
additional property that given such invariant A we can definably
enumerate A.



Motivation

Let E be a countable Borel equivalence relation on X .
Define Eω on Xω by x Eω y ⇐⇒ (∀n ∈ ω)x(n) E y(n).
Eω can be classified by x 7→ 〈[x(n)]E | n < ω〉.
The invariants are sequences of definably countable sets of reals.
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Vague question

What kind of equivalence relations can be classified
by countable sequences of definably countable sets of reals?

Vague answer

There is a natural candidate
for an equivalence relation, maximal with this property.



Classification by sequences of definably countable sets

Definition

I Consider (=+)ω on (Rω)ω, where x (=+)ω y if and only if
{x(n)(i); i ∈ ω} = {y(n)(i); i ∈ ω} for every n.

I Define D ⊆ (Rω)ω by D =
{f ∈ (Rω)ω; ∀n, i , j(f (n)(i) is computable from f (n + 1)(j))} .
Define the equivalence relation EΠ on D to be (=+)ω � D.

An invariant is a sequence of sets of reals 〈An | n < ω〉 such that,
using a member of An+1 as a parameter, we can definably
enumerate An.

Theorem (S.)

1. For any countable E , EΠ is strictly above Eω in the Borel
reducibility hierarchy. (And is incomparable with the Z-jumps
E [Z] defined by Clemens and Coskey.)

2. Eω
Π is Borel bi-reducible to EΠ (and is “maximal”).



Pinned equivalence relations below =+



Pinned equivalence relations

“Definition”
Suppose E is classifiable by countable structures via x 7→ Ax . E is
pinned if, for any set A, if there is some x in some generic
extension, such that A = Ax , then A = Ax for some x (in the
ground model).

Example

1. =+ is not pinned. The set of reals R is not Ax (not
countable), but it is Ax where x is an enumeration of R in a
collapse generic extension.

2. If E is a countable Borel equivalence relation, then E , Eω,
and E [Z] are all pinned. Also EΠ is pinned.
(Given an invariant A = 〈An | n < ω〉, take x = 〈xn | n < ω〉
with xn ∈ An, then A = Ax .)



Pinned equivalence relations

Theorem (Hjorth ’99 - Thompson ’06)

Let G be a Polish group, the following are equivalent:

I G admits a complete left-invariant metric (CLI);

I all orbit equivalence relations induced by G-actions are pinned.

For example, if E is a countable Borel equivalence relation, then
Eω and E [Z] are induced by CLI group actions.

Question
Is EΠ Borel reducible to a CLI action?

Remark
Panagiotopoulos and Lupini (’18) introduced a different
obstruction to being reducible to a CLI action. It is not known
whether or not it is equivalent to being pinned.



Proof that EΠ is not Borel reducible to Eω

Recall: EΠ is defined to have natural invariants of the form
〈An | n < ω〉 such that for each n there is a member of An+1

which is an enumeration of An.
The irreducibility proof relies on finding model of ZF separating the
following very weak choice principles:

1. There is a countable sequence of countable sets of reals with
not choice function, yet

2. for any CBER E , any countable sequence of E -classes admits
a choice function.

Moreover the sequence in (1) looks like an invariant for EΠ.
In this model EΠ is not pinned, yet Eω is pinned for any CBER E
(also E [Z] are all pinned).

Recall: the “basic Cohen model”.
a0, a1, a2... generic sequence of Cohen reals. A = {an; n ∈ ω}.
Let V (A) be the minimal transitive ZF extension of V which
contains the set A.



Separation of fragments of choice

The “basic Cohen model”: a0, a1, a2... generic Cohen reals,
A = {an; n ∈ ω}, V (A) = def. closure of A over V .
I Choice fails in V (A) (A cannot be enumerated);
I V (A) does satisfy countable choice for countable sets of reals.

Choice for countable sets of reals vs choice for E -classes.

I Let a0 = a0
0, a

0
1, a

0
2, ... generic Cohen reals, A0 =

〈
a0
n | n ∈ ω

〉
.

I Let π0, π1, π2, ... be Cohen generic permutations of ω.
Define a1

n = a0 ◦ πi . A1 =
{
a1
n; n ∈ ω

}
.

I ... An+1 is a set of mutually generic enumerations of An.

Theorem
In V (〈An | n < ω〉):

∏
n An = ∅ (so EΠ is not pinned),

yet for any CBER E, and any sequence 〈Bn | n < ω〉 of E classes,∏
n Bn 6= ∅ (so Eω is pinned).

Thanks for listening!


