Classification by countable sequences of countable sets of reals

Assaf Shani

Harvard University

2020 CMS winter meeting December 2020

Motivation

Given an equivalence relation E on X , a **complete classification** is a map $c: X \rightarrow I$ such that for all $x, y \in X$,

$$
x E y \iff c(x) = c(y)
$$

We say that I is a set of **complete invariants** for E .

Question

Given an equivalence relation E , what is the optimal complete classification of E?

This is preserved under Borel reductions: Let E and F be equivalence relations on Polish X and Y respectively, $g: X \rightarrow Y$ a Borel reduction

$$
x E y \iff g(x) F g(y).
$$

Then if $c: Y \rightarrow I$ is a complete classification of F, $c \circ g$ is a complete classification of E.

A complete classification of E is a map $c: X \longrightarrow I$ such that for any $x, y \in X$, xEy iff $c(x) = c(y)$.

Example

 $=^+$ is defined on \mathbb{R}^ω so that the map $x \mapsto \{x(i); \ i \in \omega\}$ is a complete classification. The invariants are all countable sets of reals. However, given an invariant A, it might be very hard to *verify* that A is countable (to enumerate A).

Example

Suppose Γ is a countable group acting on X. The induced orbit equivalence relation can be classified by $x \mapsto \Gamma \cdot x$. The invariants are countable sets of reals, with the additional property that given such invariant A we can *definably* enumerate A.

Let E be a countable Borel equivalence relation on X . Define E^{ω} on X^{ω} by $x \in \omega$ $y \iff (\forall n \in \omega) x(n) \in y(n)$. E^{ω} can be classified by $x \mapsto \langle [x(n)]_E \mid n < \omega \rangle$. The invariants are sequences of *definably countable* sets of reals.

Vague question

What kind of equivalence relations can be classified by countable sequences of definably countable sets of reals?

Vague answer

There is a natural candidate for an equivalence relation, maximal with this property.

? E^{ω} E =R

Classification by sequences of definably countable sets

Definition

- \blacktriangleright Consider $(=^+)^\omega$ on $(\mathbb{R}^\omega)^\omega$, where x $(=^+)^\omega$ y if and only if $\{x(n)(i); i \in \omega\} = \{y(n)(i); i \in \omega\}$ for every n.
- Define $D \subseteq (\mathbb{R}^{\omega})^{\omega}$ by $D =$ $\{f \in (\mathbb{R}^{\omega})^{\omega}$; $\forall n, i, j(f(n)(i) \text{ is computable from } f(n+1)(j))\}$. Define the equivalence relation E_{Π} on D to be $(=^{\dagger})^{\omega} \restriction D$.

An invariant is a sequence of sets of reals $\langle A_n | n \langle \omega \rangle$ such that, using a member of A_{n+1} as a parameter, we can definably enumerate A_n .

Theorem (S.)

- 1. For any countable E, E_{Π} is strictly above E^{ω} in the Borel reducibility hierarchy. (And is incomparable with the \mathbb{Z} -jumps $E^{[\mathbb{Z}]}$ defined by Clemens and Coskey.)
- 2. E_{Π}^{ω} is Borel bi-reducible to E_{Π} (and is "maximal").

Pinned equivalence relations below $=$ ⁺

Zroump of
Clemens &
Coskey $[27]$ r classifiable
Insing segunce
of ctbl sets countable Borel F *equivalence*
relation

"Definition"

Suppose E is classifiable by countable structures via $x \mapsto A_x$. E is **pinned** if, for any set A, if there is some x in some generic extension, such that $A = A_x$, then $A = A_x$ for some x (in the ground model).

Example

- 1. $=$ ⁺ is not pinned. The set of reals R is not A_x (not countable), but it is A_x where x is an enumeration of $\mathbb R$ in a collapse generic extension.
- 2. If E is a countable Borel equivalence relation, then E, E^{ω} , and $E^{[\mathbb{Z}]}$ are all pinned. Also E_{Π} is pinned. (Given an invariant $A = \langle A_n | n \langle \omega \rangle$, take $x = \langle x_n | n \langle \omega \rangle$ with $x_n \in A_n$, then $A = A_{x}$.)

Theorem (Hjorth '99 - Thompson '06)

Let G be a Polish group, the following are equivalent:

- \triangleright G admits a complete left-invariant metric (CLI);
- \triangleright all orbit equivalence relations induced by G-actions are pinned.

For example, if E is a countable Borel equivalence relation, then E^{ω} and $E^{[\mathbb{Z}]}$ are induced by CLI group actions.

Question

Is E_{Π} Borel reducible to a CLI action?

Remark

Panagiotopoulos and Lupini ('18) introduced a different obstruction to being reducible to a CLI action. It is not known whether or not it is equivalent to being pinned.

Proof that E_{Π} is not Borel reducible to E^{ω}

Recall: E_{Π} is defined to have natural invariants of the form $\langle A_n | n < \omega \rangle$ such that for each *n* there is a member of A_{n+1} which is an enumeration of A_n .

The irreducibility proof relies on finding model of ZF separating the following very weak choice principles:

- 1. There is a countable sequence of countable sets of reals with not choice function, yet
- 2. for any CBER E, any countable sequence of E-classes admits a choice function.

Moreover the sequence in (1) looks like an invariant for E_{Π} . In this model E_{Π} is not pinned, yet E^{ω} is pinned for any CBER E (also $E^{[\mathbb{Z}]}$ are all pinned).

Recall: the "basic Cohen model".

 $a_0, a_1, a_2...$ generic sequence of Cohen reals. $A = \{a_n; n \in \omega\}.$ Let $V(A)$ be the minimal transitive ZF extension of V which contains the set A.

Separation of fragments of choice

The "basic Cohen model": a_0, a_1, a_2, \ldots generic Cohen reals, $A = \{a_n; n \in \omega\}, V(A) =$ def. closure of A over V.

- \triangleright Choice fails in $V(A)$ (A cannot be enumerated);
- \triangleright $V(A)$ does satisfy countable choice for countable sets of reals.

Choice for countable sets of reals vs choice for E-classes.

- ► Let $a^0 = a_0^0, a_1^0, a_2^0, ...$ generic Cohen reals, $A_0 = \langle a_n^0 | n \in \omega \rangle$.
- In Let $\pi_0, \pi_1, \pi_2, \dots$ be Cohen generic permutations of ω . Define $a_n^1 = a^0 \circ \pi_i$. $A_1 = \{a_n^1; n \in \omega\}$.
- \blacktriangleright ... A_{n+1} is a set of mutually generic enumerations of A_n .

Theorem

In $V(\langle A_n | n < \omega \rangle)$: $\prod_n A_n = \emptyset$ (so E_{Π} is not pinned), yet for any CBER E, and any sequence $\langle B_n | n \langle \omega \rangle$ of E classes, $\prod_n B_n \neq \emptyset$ (so E^{ω} is pinned).

Thanks for listening!