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Tame Polish groups

Let a: G ~ X be a continuous action of a Polish group G on a
Polish space X.

The action induces an orbit equivalence relation E, on X defined
by x E;y < 3ge€ G(g-x=y).

Definition

A Polish group G is tame if for any continuous action a: G ~ X,
E; C X x X is Borel.

Theorem (Becker-Kechris)
G is tame <= 3a < wi(E; is MY for any continuous a: G ~ X)

Example

» If G is compact, all continuous actions are 9.

» If G is locally compact, all continuous actions are 9.
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Abelian product groups

Theorem (Solecki '95)
Not tame Tame

Z#, (Zg°) | (Z(p™))”, T, Z(p™), (©pZp)”, 11, 25"
Where Z(p™) ~ {z € C; In(z"" = 1)}.
(Z(p*°) has no infinite descending chain of subgroups.)
More generally:
Let Hp, Hi, ... be ctbl abelian groups. Then [, H, is tame iff:

» For all but finitely many n, H, is torsion.

» For any prime p, for all but finitely many n, the p-component
of Hp is of the form F x Z(p*°), for some finite F.

Ding-Gao '17 characterized all tame abelian non-archimedean
Polish groups.

3/17



Potential complexity

Definition

Given equivalence relations E and F on Polish space X,Y, say that
E is Borel reducible to F, E <g F, if there is a Borel map

f: X — Y satisfying x E X' < f(x) F f(x').

Definition
For a potential class I, say that E is potentially [ if E <g F for
some F inT.

Example
=g, the equality relation on R, is M? and not potentially ¥9.

Theorem (Ding-Gao '17, extending Solecki '95)
Suppose that G is a tame abelian non-archimedean Polish group.
Then all actions of G are potentially M2.

Ding and Gao noted that the existing examples were potentially

MY, and conjectured that MY is the optimal bound.
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Main result

Theorem ( Ding-Gao '17, extending Solecki '95)

Suppose that G is a tame abelian non-archimedean Polish group.
Then all actions of G are potentially M2.

Ding and Gao noted that the existing examples were potentially
I'Ig, and conjectured that I'Ig is the optimal bound.

Theorem (Allison - S.)
The optimal bound is D(MNY).

XeD(lN < JABeTl(X=A\B).
We will prove below: there is an action of a tame abelian product
group which is not potentially I'Ig, and sketch the arguments for a

non MY action.
(The latter action is by Z< x [, Z5% x (D, Zp)” x (Z(q>))*)
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Classification of potential complexities

Suppose E is induced by an action of a closed subgroup of S..

Theorem (Hjorth-Kechris-Louveau '98)
The potential complexity of E is either

A%, N? ¥9, N3, p(nY), ng, p(ng), N2, p(n?), ng, ...

For example, if E is £ then E is potentially D(NY).

Let =g be the equality relation on R.

Define =" (the first Friedman-Stanley jump) on R¥ by

x =Ty < AL :={x(n); new}={y(n); newt=:A,.

Define = (the second Friedman-Stanley jump) on (R“)“ by
_ 2. _ a1 . _ A . _A2

x=Tty «— A = {Ax(n), ne w} = {Ay(n), ne w} = Ay.

Theorem (Hjorth-Kechris-Louveau '98)

For n > 2, E is potentially M if and only if £ <g=t(n-2),

We need to find an action which is not Borel reducible to =1+
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Classification by countable structures

Let F be an equivalence relation on Y. A complete classification
of Fisamap c: Y — /| such that for any x,y € Y,

xFy < c(x) = c(y).

Complete classifications: (using hereditarily countable structures)
» =g on R: x — x;
» E a countable Borel equivalence relation: x — [x]g;
» EY for countable E: x — {[x(n)]g | n < w);
» =T on R¥: x = Al = {x(n); n € w};
» =Tt on (R¥)*: x> A2 = {A}((n); ne w};

» =1+F on (R¥)¥)“: x = A3 = {Ai(n); ne w}.
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Borel reducibility and symmetric models

Theorem (S. '19)

Suppose E and F are Borel equivalence relations, classifiable by
countable structures (and fix a collection of invariants).
Assume further that E is Borel reducible to F.

Let A be an E-invariant in some generic extension of V.

Then there is an F-invariant B s.t. B € V(A) and

Furthermore, B is definable in V(A) using only A and parameters
from V.

» For example, to prove E is not Borel reducible to =g, need to
show V/(A) # V(B) when B is a (definable) real.

» To show E £="7, need to show V(A) # V(B) when B is a
(definable) set of reals.
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A simple example

Example

Let IP be Cohen forcing to add a real in 2% by finite approximations.
Let x € 2“ be generic and A = [x]g, its Ep-invariant.

Claim (Lévy)

If ris a real in V(A) (or r C V) which is definable from A and
parameters in V alone then r € V.

It follows that V(A) # V/(r), and so Ey £=r.

Proof of claim: For any p, g € P there is an automorphism 7 of P
such that 7 preserves A and 7q and p are compatible (Z5“ acts
ergodically on P!). So if r is definable from A, any statement v € r

for v € V is decided by the empty condition. [J

In other words: the type of [x]g, over V does not depend on x.
This is just rephrasing of “Z5“ ~ 2“ is generically ergodic”.
The same works for any gen. ergodic action, e.g. I ~ 2",
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How to get some £g=" proof

Proposition
I" acts ergodically on P (Vp,q € Py € (v - q || p)), x is P-generic
over V. Then
1. if B C V is definable from A=T - x then B¢ V.
(so if B is a definable real, V(A) # V(B).)
2. if P adds no reals, then for any B C R, if B is definable from
A then V(A) # V(B).

» (A, | n <w) asequence of pairs, |Ap| = 2. . o o o

» P = finite choice functions in [[, An. Z5“ ~ P ergodically.

» For IP to add no reals, we must have [, A, =0 in V!
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A non Mg action of Zz5* x '

Fix a ctbl group I', X = (2")2. (e.g. T = Z(g™) for some fixed q).
I" acts diagonally on X (generically ergodic).
Zy acts by flipping (generically free). (The actions commute.)
Let x € X“ be Cohen generic, a, =T - x(n), A, = Zs - an,
A= (A, | n<w). Each A, is a set of two generic [-orbits.
jz 2 Zz zz " (let x'(n) = flip of x(n), &, =T - x'(n))

Proposition (In V(A))
If p,q € [[,.n Ak then p, g are indiscernibles over Aand V.

Corollary
Let IP be the poset of all finite choice functions in J],_ Ax.

Forcing with P over V/(A) adds no reals (nor subsets of V).

So if a € [y, Ak is P-generic over V(A), A=Z5% - a = all finite
alterations of a, B C R is definable from A, then V(A) # V(B).
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A non M3 action of Z5* x ' - continued

If a €[], Ak is P-generic over V(A), A= Z5* - a = all finite
alterations of a, B C R is definable from A, then V(A) # V(B).
The commuting actions of [ and Z, on X give us an action

a: Zs¥ xT¥ ~ X,

If I = Z(p*) for some prime p, then Z5* x [ is tame.

Note that the map sending x € X“ to Z5“ - (an | n < w) where
ap =T -x(n), is a complete classification of Ej.

The set A above is a generic E,-invariant, and so E;, £g=".

E, is "Eo with {0,1} replaced by I-orbits”.
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Complex actions of the wild group (Z;)“

Step 0 a®: T ~ X gen. ergodic and 3°: Zy ~ X gen. free
Step 1 a! = (89)<% x (a0)¥: Z5¥ x ¥ ~ X¥.
and we have A': Z» ~ X%, diagonal action of /3°
Step 2 a? = (B1)<¥ x (a!)“ acting on (X*)~.
(2 is the diagonal action of 8. ... and repeat
For each n there is a model V,, with A = (A, | n < w) such that
A, is a 87 x a"-orbit, that is, a set of two a"-orbits, such that
the poset P for adding a choice function through A adds no sets in
P"(R) to V,.
» Z5“ acts ergodically on P, so if a € [],, An is P-generic then
A =75 ais an a""linvariant and as before
Vi(A) # Vp(B) for any =T"-invariant B. So E ni1 £g=""
» The models V|, are constructed inductively such that
Vi, € Vp41 have same subsets of V,,_1 and so the reals, sets
of reals, etc., are eventually stabilized.
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Non M3 actions of @, Z, x I and Z x T*
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Non M9 action of @, Z, x [],Z5* x [
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Optimal bounds

Theorem (Allison - S.)
Optimal bounds for tame abelian product groups [],, Hp

Property Main example | Optimal
bound
Vn(H, is finite) ng
V>n ctbl I 9
Vn A(H, >To>T1 > ..) Z(p>™)” ng
V>n Fx..t D(NY)
Vp, n({y € Hp; |y| = p}is finite) | (©pZp)~ X ... T ng
VpvY>®n Fx..t D(NY)
Vn(H, is torsion) 11,25 .1 ng
V>on Fx..t D(n?)
Thanks!
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