Actions of tame abelian product groups

Assaf Shani

Joint work with Shaun Allison

CMU

UCLA Logic Seminar, May 2020

Let a: $G \curvearrowright X$ be a continuous action of a Polish group G on a Polish space X .

The action induces an *orbit equivalence relation* E_a on X defined by $x E_a y \iff \exists g \in G(g \cdot x = y)$.

Definition

A Polish group G is tame if for any continuous action a: $G \curvearrowright X$, $E_a \subset X \times X$ is Borel.

Theorem (Becker-Kechris)

G is tame $\iff \exists \alpha < \omega_1(E_a \text{ is } \Pi_\alpha^0 \text{ for any continuous } a \colon G \curvearrowright X)$

Example

- If G is compact, all continuous actions are Π^0_1 .
- If G is locally compact, all continuous actions are Σ^0_2 .

G is tame if for any continuous action a , E_a is Borel.

Theorem (Solecki '95)

Not tame Tame \mathbb{Z}^{ω} , $(\mathbb{Z}_{\rho}^{<\omega})^{\omega} \bigm| (\mathbb{Z}(\rho^{\infty}))^{\omega}$, $\prod_{\rho} \mathbb{Z}(\rho^{\infty})$, $(\oplus_{\rho} \mathbb{Z}_{\rho})^{\omega}$, $\prod_{\rho} \mathbb{Z}_{\rho}^{<\omega}$ Where $\mathbb{Z}(p^{\infty}) \simeq \{ z \in \mathbb{C}; \exists n(z^{p^n} = 1) \}.$ $(\mathbb{Z}(p^{\infty})$ has no infinite descending chain of subgroups.)

More generally:

Let $H_0, H_1, ...$ be ctbl abelian groups. Then $\prod_n H_n$ is tame iff:

- \blacktriangleright For all but finitely many *n*, H_n is torsion.
- \triangleright For any prime p, for all but finitely many n, the p-component of H_n is of the form $F \times \mathbb{Z}(p^{\infty})$, for some finite F.

Ding-Gao '17 characterized all tame abelian non-archimedean Polish groups.

Definition

Given equivalence relations E and F on Polish space X, Y , say that E is Borel reducible to F, $E \leq_B F$, if there is a Borel map $f: X \to Y$ satisfying $x \in X' \iff f(x) \in f(x')$.

Definition

For a potential class Γ, say that E is potentially Γ if $E \leq_B F$ for some F in Γ.

Example

 $=_{\mathbb{R}}$, the equality relation on \mathbb{R} , is Π^0_1 and not potentially $\Sigma^0_1.$

Theorem (Ding-Gao '17, extending Solecki '95)

Suppose that G is a tame abelian non-archimedean Polish group. Then all actions of G are potentially Π^0_6 .

Ding and Gao noted that the existing examples were potentially Π^0_3 , and conjectured that Π^0_3 is the optimal bound.

Theorem (Ding-Gao '17, extending Solecki '95)

Suppose that G is a tame abelian non-archimedean Polish group. Then all actions of G are potentially Π^0_6 .

Ding and Gao noted that the existing examples were potentially Π_3^0 , and conjectured that Π_3^0 is the optimal bound.

Theorem (Allison - S.)

The optimal bound is $D(\Pi_5^0)$.

$$
X\in D(\Gamma) \iff \exists A,B\in \Gamma(X=A\setminus B).
$$

We will prove below: there is an action of a tame abelian product group which is not potentially Π^0_3 , and sketch the arguments for a non Π_{5}^{0} action.

(The latter action is by $\Z^{<\omega}\times \prod_\rho \Z_\rho^{<\omega} \times (\bigoplus_\rho \Z_\rho)^\omega \times (\Z(\mathfrak{q}^\infty))^\omega)$

Classification of potential complexities

Suppose E is induced by an action of a closed subgroup of S_{∞} . Theorem (Hjorth-Kechris-Louveau '98) The potential complexity of E is either

 $Δ_1^0, Π_1^0, Σ_2^0, Π_3^0, D(Π_3^0), Π_4^0, D(Π_4^0), Π_5^0, D(Π_5^0), Π_6^0, ...$

For example, if E is Σ^0_5 then E is potentially $D(\Pi^0_4)$.

Let $=_{\mathbb{R}}$ be the equality relation on \mathbb{R} . Define $=^+$ (the first Friedman-Stanley jump) on \mathbb{R}^ω by $x =^+ y \iff A_x^1 := \{x(n); n \in \omega\} = \{y(n); n \in \omega\} =: A_y^1.$ Define $=^{++}$ (the second Friedman-Stanley jump) on $(\mathbb{R}^\omega)^\omega$ by $x =$ ⁺⁺ $y \iff A_x^2 := \left\{ A_{x(n)}^1; n \in \omega \right\} = \left\{ A_{y(n)}^1; n \in \omega \right\} =: A_y^2.$

Theorem (Hjorth-Kechris-Louveau '98) For $n\geq 2$, E is potentially Π_n^0 if and only if $E\leq_B =^{+(n-2)}$. We need to find an action which is not Borel reducible to $=^{+++}$ Let F be an equivalence relation on Y. A complete classification of F is a map c: $Y \rightarrow I$ such that for any $x, y \in Y$,

$$
x F y \iff c(x) = c(y).
$$

Complete classifications: (using hereditarily countable structures)

$$
\blacktriangleright \equiv_{\mathbb{R}} \text{on } \mathbb{R}: x \mapsto x;
$$

► E a countable Borel equivalence relation: $x \mapsto [x]_E$;

\n- \n
$$
\varepsilon \in \mathbb{C}
$$
\n for countable\n $E: x \mapsto \langle [x(n)]_E \mid n < \omega \rangle;$ \n
\n- \n $\varepsilon \mapsto \varepsilon \in \mathbb{C}$ \n for $\mathbb{R}^{\omega}: x \mapsto A_x^1 = \{x(n); n \in \omega\};$ \n
\n- \n $\varepsilon \mapsto \varepsilon + \varepsilon \in \mathbb{C}$ \n
\n- \n $\varepsilon \mapsto A_x^2 = \{A_{x(n)}^1: n \in \omega\};$ \n
\n- \n $\varepsilon \mapsto \varepsilon + \varepsilon \in \mathbb{C}$ \n
\n- \n $\varepsilon \mapsto \varepsilon + \varepsilon \in \mathbb{C}$ \n
\n- \n $\varepsilon \mapsto \varepsilon + \varepsilon \in \mathbb{C}$ \n
\n- \n $\varepsilon \mapsto \varepsilon + \varepsilon \in \mathbb{C}$ \n
\n- \n $\varepsilon \mapsto \varepsilon + \varepsilon \in \mathbb{C}$ \n
\n- \n $\varepsilon \mapsto \varepsilon + \varepsilon \in \mathbb{C}$ \n
\n

Theorem (S. '19)

Suppose E and F are Borel equivalence relations, classifiable by countable structures (and fix a collection of invariants). Assume further that E is Borel reducible to F . Let A be an E-invariant in some generic extension of V. Then there is an F-invariant B s.t. $B \in V(A)$ and

 $V(A) = V(B)$.

Furthermore, B is definable in $V(A)$ using only A and parameters from V.

- For example, to prove E is not Borel reducible to $=_{\mathbb{R}}$, need to show $V(A) \neq V(B)$ when B is a (definable) real.
- ► To show $E \nleq^+$, need to show $V(A) \neq V(B)$ when B is a (definable) set of reals.

Example

Let $\mathbb P$ be Cohen forcing to add a real in 2^{ω} by finite approximations. Let $x \in 2^{\omega}$ be generic and $A = [x]_{E_0}$ its E_0 -invariant.

Claim (Lévy)

If r is a real in $V(A)$ (or $r \subseteq V$) which is definable from A and parameters in V alone then $r \in V$.

It follows that $V(A) \neq V(r)$, and so $E_0 \nleq \equiv \mathbb{R}$.

Proof of claim: For any $p, q \in \mathbb{P}$ there is an automorphism π of \mathbb{P} such that π preserves A and πq and $\mathsf p$ are compatible $(\mathbb Z_2^{< \omega}$ acts ergodically on $\mathbb{P}!$). So if r is definable from A, any statement $v \in r$ for $v \in V$ is decided by the empty condition. \Box In other words: the type of $[x]_{E_0}$ over V does not depend on x. This is just rephrasing of $\mathbb{Z}_2^{\leq \omega} \curvearrowright 2^{\omega}$ is generically ergodic". The same works for any gen. ergodic action, e.g. $\Gamma \curvearrowright 2^\Gamma.$

Proposition

Γ acts ergodically on $\mathbb{P}(\forall p, q \in \mathbb{P} \exists \gamma \in \Gamma(\gamma \cdot q \parallel p))$, x is \mathbb{P} -generic over V. Then

- 1. if $B \subseteq V$ is definable from $A = \Gamma \cdot x$ then $B \in V$. (so if B is a definable real, $V(A) \neq V(B)$.)
- 2. if P adds no reals, then for any $B \subseteq \mathbb{R}$, if B is definable from A then $V(A) \neq V(B)$.

^I ^hAⁿ [|] ⁿ < ωⁱ a sequence of pairs, [|]An[|] = 2. • • • • ... • • • • ...

- $\blacktriangleright \mathbb{P} =$ finite choice functions in $\prod_n A_n$. $\mathbb{Z}_2^{\leq \omega} \curvearrowright \mathbb{P}$ ergodically.
- For $\mathbb P$ to add no reals, we must have $\prod_n A_n = \emptyset$ in $V!$

A non Π^0_3 action of $\mathbb{Z}_p^{<\omega}\times \Gamma^\omega$

Fix a ctbl group Γ, $X=(2^{\lceil \cdot 2 \rceil})^2.$ (e.g. $\lceil \cdot 2 \rceil \cdot 2^{\infty}$) for some fixed q). Γ acts diagonally on X (generically ergodic). \mathbb{Z}_2 acts by flipping (generically free). (The actions commute.) Let $x \in X^{\omega}$ be Cohen generic, $a_n = \Gamma \cdot x(n)$, $A_n = \mathbb{Z}_2 \cdot a_n$, $\overline{A} = \langle A_n | n \langle \omega \rangle$. Each A_n is a set of two generic Γ-orbits. a_0 a_1 a_2 a_3 ... a_0^2 a a_1^2 a a_2^2 a a_3^2 ... (let $x'(n) =$ flip of $x(n)$, $a'_n = \Gamma \cdot x'(n)$)

Proposition (In $V(\bar{A})$)

If $p, q \in \prod_{k \leq N} A_k$ then p, q are indiscernibles over \bar{A} and V .

Corollary

Let $\mathbb P$ be the poset of all finite choice functions in $\prod_{k<\omega} A_k$. Forcing with $\mathbb P$ over $V(\overline{A})$ adds no reals (nor subsets of V). So if $a\in \prod_{k<\omega}A_k$ is $\mathbb P$ -generic over $V(\bar A)$, $A=\mathbb Z_2^{{<}\omega}\cdot a=$ all finite alterations of a, $B \subseteq \mathbb{R}$ is definable from A, then $V(A) \neq V(B)$.

If $a\in \prod_{k<\omega}A_k$ is $\mathbb P$ -generic over $V(\bar A)$, $A=\mathbb Z_2^{<\omega}\cdot a=$ all finite alterations of a, $B \subseteq \mathbb{R}$ is definable from A, then $V(A) \neq V(B)$. The commuting actions of Γ and \mathbb{Z}_2 on X give us an action $a\colon \mathbb{Z}_2^{\leq \omega} \times \mathsf{\Gamma}^\omega \curvearrowright X^\omega.$ If $\Gamma = \mathbb{Z}(p^{\infty})$ for some prime p , then $\mathbb{Z}_2^{{<}\omega} \times \Gamma^{\omega}$ is tame. Note that the map sending $x \in X^\omega$ to $\bar{\mathbb{Z}}_2^{\leq \omega} \cdot \langle a_n \mid n \leq \omega \rangle$ where $a_n = \Gamma \cdot x(n)$, is a complete classification of E_a .

The set A above is a generic E_a -invariant, and so $E_a \not\leq R=+$.

 E_a is " E_0 with $\{0, 1\}$ replaced by Γ -orbits".

Complex actions of the wild group $(\mathbb{Z}_p^{\leq \omega})$ $\genfrac{}{}{0pt}{}{<\omega}{p}^{\omega}$

Step 0 $\alpha^0\colon\mathsf{F}\curvearrowright\mathsf{X}$ gen. ergodic and $\beta^0\colon\mathbb{Z}_2\curvearrowright\mathsf{X}$ gen. free Step 1 $\alpha^1=(\beta^0)^{<\omega}\times (\alpha^0)^\omega\colon \mathbb{Z}_2^{<\omega}\times \mathsf{\Gamma}^\omega\curvearrowright \mathcal{X}^\omega.$ and we have $\beta^1\colon\mathbb{Z}_2\curvearrowright \bar{X}^\omega$, diagonal action of β^0 Step 2 $\alpha^2 = (\beta^1)^{<\omega} \times (\alpha^1)^\omega$ acting on $(X^\omega)^\omega$. β^2 is the diagonal action of β^1 . $...$ and repeat

For each *n* there is a model V_n with $\overline{A} = \langle A_n | n \langle \omega \rangle$ such that A_n is a $\beta^n\times\alpha^n$ -orbit, that is, a set of two α^n -orbits, such that the poset $\mathbb P$ for adding a choice function through A adds no sets in $\mathcal{P}^n(\mathbb{R})$ to V_n .

- ► $\mathbb{Z}_2^{\leq \omega}$ acts ergodically on \mathbb{P} , so if $a \in \prod_n A_n$ is \mathbb{P} -generic then $A = \mathbb{Z}_2^{<\omega} \cdot$ a is an α^{n+1} -invariant and as before $V_n(A) \neq V_n(B)$ for any $=$ ⁺ⁿ-invariant B. So $E_{\alpha^{n+1}} \not\leq_B =$ ⁺ⁿ
- \blacktriangleright The models V_n are constructed inductively such that $V_n \subseteq V_{n+1}$ have same subsets of V_{n-1} and so the reals, sets of reals, etc., are eventually stabilized.

Non Π^0_3 actions of $\bigoplus_p \mathbb{Z}_p \times \mathsf{\Gamma}^\omega$ and $\mathbb{Z} \times \mathsf{\Gamma}^\omega$

гу $\bigoplus_{\rho} Z_{\rho}$ acts ergodically (on IP) \sim non pot. π_3^{ρ} $\bigoplus_{\gamma} Z_{\gamma} \times \Gamma^{\omega}$ Z acts diagonally Also ergodic, by Chinese remainder theorem \rightsquigarrow non pot. τ_3^o action of 7.5 14 / 17

Non Π_4^0 action of $\bigoplus_p \mathbb{Z}_p \times \prod_p \mathbb{Z}_p^{<\omega} \times \Gamma^\omega$

 Δ = $\mathbb{Z}_{p}^{<\omega}$. Ù. $H\mathbb{Z}$ Ľ, $\begin{array}{c}\n\Delta \Delta \Delta \Delta \Delta\n\end{array}$ \mathscr{L}_{ϵ} invariant for action of $QZ_{\rho} \times \prod_{\alpha} Z_{\rho}^{\prime} \times \Gamma^{w}$ 15 / 17

Non Π_5^0 action of $\Z^{<\omega}\times (\bigoplus_p \Z_p)^\omega\times \prod_p \Z_p^{<\omega}\times \Gamma^\omega$

 $\frac{1}{2}$ கி $\overline{\overline{v}}_i$ $\triangle \triangle \triangle \triangle \triangle \triangle \triangle$ $\sum_{i=1}^{n}$ $L.AAA$ $\sum_{i=1}^{n}$ A \Box = a \oplus \mathbb{Z}_p -orbit of a sequence of Δ
Z acts as aniform chift a non π_{s}^{c} -invariant" of a $\mathbb{Z}^{\sim}\times(\mathbb{Q}\mathbb{Z}_{p})^{\sim}\times\mathbb{Z}_{p}^{z_{w}}\times\mathbb{Z}^{n}$ 16 / 17

Theorem (Allison - S.)

Optimal bounds for tame abelian product groups $\prod_n H_n$

Thanks!