Actions of tame abelian product groups

Assaf Shani

Joint work with Shaun Allison

CMU

UCLA Logic Seminar, May 2020 Let $a: G \curvearrowright X$ be a continuous action of a Polish group G on a Polish space X.

The action induces an *orbit equivalence relation* E_a on X defined by $x E_a y \iff \exists g \in G(g \cdot x = y)$.

Definition

A Polish group G is *tame* if for any continuous action $a: G \curvearrowright X$, $E_a \subseteq X \times X$ is Borel.

Theorem (Becker-Kechris)

G is tame $\iff \exists lpha < \omega_1(E_a \text{ is } \Pi^0_{lpha} \text{ for any continuous } a \colon G \frown X)$

Example

- If G is compact, all continuous actions are Π_1^0 .
- If G is locally compact, all continuous actions are Σ⁰₂.

G is tame if for any continuous action a, E_a is Borel.

Theorem (Solecki '95)

Not tame Tame \mathbb{Z}^{ω} , $(\mathbb{Z}_{p}^{<\omega})^{\omega} | (\mathbb{Z}(p^{\infty}))^{\omega}$, $\prod_{p} \mathbb{Z}(p^{\infty})$, $(\oplus_{p} \mathbb{Z}_{p})^{\omega}$, $\prod_{p} \mathbb{Z}_{p}^{<\omega}$ Where $\mathbb{Z}(p^{\infty}) \simeq \{z \in \mathbb{C}; \exists n(z^{p^{n}} = 1)\}$. $(\mathbb{Z}(p^{\infty}) \text{ has no infinite descending chain of subgroups.})$ More generally:

Let $H_0, H_1, ...$ be ctbl abelian groups. Then $\prod_n H_n$ is tame iff:

- For all but finitely many n, H_n is torsion.
- For any prime p, for all but finitely many n, the p-component of H_n is of the form F × ℤ(p[∞]), for some finite F.

Ding-Gao '17 characterized all tame abelian non-archimedean Polish groups.

Definition

Given equivalence relations E and F on Polish space X, Y, say that E is Borel reducible to F, $E \leq_B F$, if there is a Borel map $f: X \to Y$ satisfying $x E x' \iff f(x) F f(x')$.

Definition

For a potential class Γ , say that E is potentially Γ if $E \leq_B F$ for some F in Γ .

Example

 $=_{\mathbb{R}}$, the equality relation on \mathbb{R} , is Π_1^0 and not potentially Σ_1^0 .

Theorem (Ding-Gao '17, extending Solecki '95)

Suppose that G is a tame abelian non-archimedean Polish group. Then all actions of G are potentially Π_6^0 .

Ding and Gao noted that the existing examples were potentially Π_3^0 , and conjectured that Π_3^0 is the optimal bound.

Theorem (Ding-Gao '17, extending Solecki '95)

Suppose that G is a tame abelian non-archimedean Polish group. Then all actions of G are potentially Π_6^0 .

Ding and Gao noted that the existing examples were potentially Π_3^0 , and conjectured that Π_3^0 is the optimal bound.

Theorem (Allison - S.)

The optimal bound is $D(\Pi_5^0)$.

$$X \in D(\Gamma) \iff \exists A, B \in \Gamma(X = A \setminus B).$$

We will prove below: there is an action of a tame abelian product group which is not potentially Π_3^0 , and sketch the arguments for a non Π_5^0 action.

(The latter action is by $\mathbb{Z}^{<\omega} \times \prod_p \mathbb{Z}_p^{<\omega} \times (\bigoplus_p \mathbb{Z}_p)^{\omega} \times (\mathbb{Z}(q^{\infty}))^{\omega})$

Classification of potential complexities

Suppose *E* is induced by an action of a closed subgroup of S_{∞} . Theorem (Hjorth-Kechris-Louveau '98) *The* potential complexity of *E* is either

 $\Delta_1^0,\, \Pi_1^0,\, \Sigma_2^0,\, \Pi_3^0,\, D(\Pi_3^0),\, \Pi_4^0,\, D(\Pi_4^0),\, \Pi_5^0,\, D(\Pi_5^0),\, \Pi_6^0,\ldots$

For example, if E is Σ_5^0 then E is potentially $D(\Pi_4^0)$.

Let $=_{\mathbb{R}}$ be the equality relation on \mathbb{R} . Define $=^+$ (the first Friedman-Stanley jump) on \mathbb{R}^{ω} by $x =^+ y \iff A_x^1 := \{x(n); n \in \omega\} = \{y(n); n \in \omega\} =: A_y^1$. Define $=^{++}$ (the second Friedman-Stanley jump) on $(\mathbb{R}^{\omega})^{\omega}$ by $x =^{++} y \iff A_x^2 := \{A_{x(n)}^1; n \in \omega\} = \{A_{y(n)}^1; n \in \omega\} =: A_y^2$.

Theorem (Hjorth-Kechris-Louveau '98)

For $n \ge 2$, E is potentially $\prod_{n=1}^{0}$ if and only if $E \le_B =^{+(n-2)}$. We need to find an action which is not Borel reducible to $=^{+++}$ Let *F* be an equivalence relation on *Y*. A **complete classification** of *F* is a map $c: Y \longrightarrow I$ such that for any $x, y \in Y$,

$$x F y \iff c(x) = c(y).$$

Complete classifications: (using hereditarily countable structures)

$$\blacktriangleright =_{\mathbb{R}} \text{ on } \mathbb{R}: x \mapsto x;$$

• *E* a countable Borel equivalence relation: $x \mapsto [x]_E$;

•
$$E^{\omega}$$
 for countable $E: x \mapsto \langle [x(n)]_E | n < \omega \rangle;$
• $=^+$ on $\mathbb{R}^{\omega}: x \mapsto A_x^1 = \{x(n); n \in \omega\};$
• $=^{++}$ on $(\mathbb{R}^{\omega})^{\omega}: x \mapsto A_x^2 = \{A_{x(n)}^1; n \in \omega\};$
• $=^{+++}$ on $((\mathbb{R}^{\omega})^{\omega})^{\omega}: x \mapsto A_x^3 = \{A_{x(n)}^2; n \in \omega\}$

Theorem (S. '19)

Suppose *E* and *F* are Borel equivalence relations, classifiable by countable structures (and fix a collection of invariants). Assume further that *E* is Borel reducible to *F*. Let *A* be an *E*-invariant in some generic extension of *V*. Then there is an *F*-invariant *B* s.t. $B \in V(A)$ and

V(A)=V(B).

Furthermore, B is definable in V(A) using only A and parameters from V.

- For example, to prove E is not Borel reducible to =_ℝ, need to show V(A) ≠ V(B) when B is a (definable) real.
- To show E ≤=⁺, need to show V(A) ≠ V(B) when B is a (definable) set of reals.

Example

Let \mathbb{P} be Cohen forcing to add a real in 2^{ω} by finite approximations. Let $x \in 2^{\omega}$ be generic and $A = [x]_{E_0}$ its E_0 -invariant.

Claim (Lévy)

If r is a real in V(A) (or $r \subseteq V$) which is definable from A and parameters in V alone then $r \in V$.

It follows that $V(A) \neq V(r)$, and so $E_0 \not\leq =_{\mathbb{R}}$.

Proof of claim: For any $p, q \in \mathbb{P}$ there is an automorphism π of \mathbb{P} such that π preserves A and πq and p are compatible ($\mathbb{Z}_2^{<\omega}$ acts ergodically on \mathbb{P} !). So if r is definable from A, any statement $v \in r$ for $v \in V$ is decided by the empty condition. \Box In other words: the type of $[x]_{E_0}$ over V does not depend on x. This is just rephrasing of " $\mathbb{Z}_2^{<\omega} \curvearrowright 2^{\omega}$ is generically ergodic". The same works for any gen. ergodic action, e.g. $\Gamma \curvearrowright 2^{\Gamma}$.

Proposition

 Γ acts ergodically on \mathbb{P} ($\forall p, q \in \mathbb{P} \exists \gamma \in \Gamma(\gamma \cdot q \parallel p)$), x is \mathbb{P} -generic over V. Then

- 1. if $B \subseteq V$ is definable from $A = \Gamma \cdot x$ then $B \in V$. (so if B is a definable real, $V(A) \neq V(B)$.)
- 2. <u>if \mathbb{P} adds no reals</u>, then for any $B \subseteq \mathbb{R}$, if B is definable from A then $V(A) \neq V(B)$.

►
$$\langle A_n | n < \omega \rangle$$
 a sequence of pairs, $|A_n| = 2$.

- $\mathbb{P} = \text{finite choice functions in } \prod_n A_n. \mathbb{Z}_2^{<\omega} \curvearrowright \mathbb{P} \text{ ergodically.}$
- ▶ For \mathbb{P} to add no reals, we must have $\prod_n A_n = \emptyset$ in V!

A non Π_3^0 action of $\mathbb{Z}_p^{<\omega} \times \Gamma^{\omega}$

Fix a ctbl group Γ , $X = (2^{\Gamma})^2$. (e.g. $\Gamma = \mathbb{Z}(q^{\infty})$ for some fixed q). Γ acts diagonally on X (generically ergodic). \mathbb{Z}_2 acts by flipping (generically free). (The actions commute.) Let $x \in X^{\omega}$ be Cohen generic, $a_n = \Gamma \cdot x(n)$, $A_n = \mathbb{Z}_2 \cdot a_n$, $\overline{A} = \langle A_n \mid n < \omega \rangle$. Each A_n is a set of two generic Γ -orbits. $a_0 \quad a_1 \quad a_2 \quad a_3 \dots$ $a_0' \quad a_1' \quad a_2' \quad a_3' \dots$ (let x'(n) = flip of x(n), $a'_n = \Gamma \cdot x'(n)$)

Proposition (In $V(\bar{A})$)

If $p, q \in \prod_{k < N} A_k$ then p, q are indiscernibles over \overline{A} and V.

Corollary

Let \mathbb{P} be the poset of all finite choice functions in $\prod_{k<\omega} A_k$. Forcing with \mathbb{P} over $V(\overline{A})$ adds no reals (nor subsets of V). So if $a \in \prod_{k<\omega} A_k$ is \mathbb{P} -generic over $V(\overline{A})$, $A = \mathbb{Z}_2^{<\omega} \cdot a =$ all finite alterations of $a, B \subseteq \mathbb{R}$ is definable from A, then $V(A) \neq V(B)$. If $a \in \prod_{k < \omega} A_k$ is P-generic over $V(\overline{A})$, $A = \mathbb{Z}_2^{<\omega} \cdot a =$ all finite alterations of $a, B \subseteq \mathbb{R}$ is definable from A, then $V(A) \neq V(B)$. The commuting actions of Γ and \mathbb{Z}_2 on X give us an action $a: \mathbb{Z}_2^{<\omega} \times \Gamma^{\omega} \frown X^{\omega}$. If $\Gamma = \mathbb{Z}(p^{\infty})$ for some prime p, then $\mathbb{Z}_2^{<\omega} \times \Gamma^{\omega}$ is tame. Note that the map sending $x \in X^{\omega}$ to $\mathbb{Z}_2^{<\omega} \cdot \langle a_n \mid n < \omega \rangle$ where $a_n = \Gamma \cdot x(n)$, is a complete classification of E_a .

The set A above is a generic E_a -invariant, and so $E_a \not\leq_B =^+$.

 E_a is " E_0 with $\{0,1\}$ replaced by Γ -orbits".

Complex actions of the wild group $(\mathbb{Z}_p^{<\omega})^{\omega}$

Step 0 $\alpha^0 \colon \Gamma \curvearrowright X$ gen. ergodic and $\beta^0 \colon \mathbb{Z}_2 \curvearrowright X$ gen. free Step 1 $\alpha^1 = (\beta^0)^{<\omega} \times (\alpha^0)^{\omega} \colon \mathbb{Z}_2^{<\omega} \times \Gamma^{\omega} \curvearrowright X^{\omega}$. and we have $\beta^1 \colon \mathbb{Z}_2 \curvearrowright X^{\omega}$, diagonal action of β^0 Step 2 $\alpha^2 = (\beta^1)^{<\omega} \times (\alpha^1)^{\omega}$ acting on $(X^{\omega})^{\omega}$. β^2 is the diagonal action of β^1 and repeat For each *n* there is a model V_n with $\bar{A} = \langle A_n \mid n < \omega \rangle$ such that

For each *n* there is a model V_n with $A = \langle A_n | n < \omega \rangle$ such that A_n is a $\beta^n \times \alpha^n$ -orbit, that is, a set of two α^n -orbits, such that the poset \mathbb{P} for adding a choice function through \overline{A} adds no sets in $\mathcal{P}^n(\mathbb{R})$ to V_n .

- $\mathbb{Z}_2^{<\omega}$ acts ergodically on \mathbb{P} , so if $a \in \prod_n A_n$ is \mathbb{P} -generic then $A = \mathbb{Z}_2^{<\omega} \cdot a$ is an α^{n+1} -invariant and as before $V_n(A) \neq V_n(B)$ for any $=^{+n}$ -invariant B. So $E_{\alpha^{n+1}} \not\leq_B =^{+n}$
- The models V_n are constructed inductively such that V_n ⊆ V_{n+1} have same subsets of V_{n-1} and so the reals, sets of reals, etc., are eventually stabilized.

Non Π_3^0 actions of $\bigoplus_p \mathbb{Z}_p \times \Gamma^{\omega}$ and $\mathbb{Z} \times \Gamma^{\omega}$

 ⊕Zp acts ergodically (on IP) ~ non pot. 773
 action of
 action of
 $\oplus \mathbb{Z}_p \times \Gamma^{\omega}$ Z acts diagonally Also ergodic, by Chinese remainder theorem ~ non pot. The action of TXTW 14/17

Non Π_4^0 action of $\bigoplus_p \mathbb{Z}_p \times \prod_p \mathbb{Z}_p^{<\omega} \times \Gamma^{\omega}$

1=Zp~.1 (H) K ΔΔΔΔ 2, invariant for action of BZp×TIZp×rw

Non Π_5^0 action of $\mathbb{Z}^{<\omega} \times (\bigoplus_p \mathbb{Z}_p)^{\omega} \times \prod_p \mathbb{Z}_p^{<\omega} \times \Gamma^{\omega}$

A Ð 2/,, ΔΔΔΔΔΔ 1111 __AAAA MII A 4 $\Box = \sigma \oplus 2'_p$ -orbit of a sequence of \triangle Z mats as aniform shift a "non TT_5^2 - Invariant" of a $Z^{s^w} (\mathcal{P}Z_p)^w \times TT_2^{s^w} \times \Gamma^w$ 16/17

Theorem (Allison - S.)

Optimal bounds for tame abelian product groups $\prod_n H_n$

Property	Main example	Optimal bound
$\forall n(H_n \text{ is finite})$		Π_1^0
$\forall^{\infty} n$	ctbl Г	Σ_2^0
$\forall n \not\exists (H_n > \Gamma_0 > \Gamma_1 >)$	$\mathbb{Z}(p^\infty)^\omega$	Π_3^0
$\forall^{\infty} n$	Γ × ↑	$D(\Pi_{3}^{0})$
$\forall p, n(\{\gamma \in H_n; \gamma = p\} \text{ is finite})$	$(\oplus_{p}\mathbb{Z}_{p})^{\omega} imes\uparrow$	Π_4^0
$\forall p \forall^{\infty} n$	Γ × ↑	$D(\Pi_4^0)$
$\forall n(H_n \text{ is torsion})$	$\prod_{p} \mathbb{Z}_{p}^{<\omega} \times \uparrow$	Π_5^0
$\forall^{\infty} n$	Γ × ↑	$D(\Pi_5^0)$

Thanks!