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Tame Polish groups

Let a : G y X be a continuous action of a Polish group G on a
Polish space X .
The action induces an orbit equivalence relation Ea on X defined
by x Ea y ⇐⇒ ∃g ∈ G (g · x = y).

Definition
A Polish group G is tame if for any continuous action a : G y X ,
Ea ⊆ X × X is Borel.

Theorem (Becker-Kechris)

G is tame ⇐⇒ ∃α < ω1(Ea is Π0
α for any continuous a : G y X )

Example

I If G is compact, all continuous actions are Π0
1.

I If G is locally compact, all continuous actions are Σ0
2.
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Abelian product groups

G is tame if for any continuous action a, Ea is Borel.

Theorem (Solecki ’95)
Not tame Tame

Zω, (Z<ωp )ω (Z(p∞))ω,
∏

p Z(p∞), (⊕pZp)ω,
∏

p Z<ωp

Where Z(p∞) '
{
z ∈ C; ∃n(zp

n
= 1)

}
.

(Z(p∞) has no infinite descending chain of subgroups.)

More generally:
Let H0,H1, ... be ctbl abelian groups. Then

∏
n Hn is tame iff:

I For all but finitely many n, Hn is torsion.

I For any prime p, for all but finitely many n, the p-component
of Hn is of the form F × Z(p∞), for some finite F .

Ding-Gao ’17 characterized all tame abelian non-archimedean
Polish groups.
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Potential complexity

Definition
Given equivalence relations E and F on Polish space X ,Y , say that
E is Borel reducible to F , E ≤B F , if there is a Borel map
f : X → Y satisfying x E x ′ ⇐⇒ f (x) F f (x ′).

Definition
For a potential class Γ, say that E is potentially Γ if E ≤B F for
some F in Γ.

Example

=R, the equality relation on R, is Π0
1 and not potentially Σ0

1.

Theorem (Ding-Gao ’17, extending Solecki ’95)

Suppose that G is a tame abelian non-archimedean Polish group.
Then all actions of G are potentially Π0

6.

Ding and Gao noted that the existing examples were potentially
Π0

3, and conjectured that Π0
3 is the optimal bound.
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Main result

Theorem ( Ding-Gao ’17, extending Solecki ’95)

Suppose that G is a tame abelian non-archimedean Polish group.
Then all actions of G are potentially Π0

6.

Ding and Gao noted that the existing examples were potentially
Π0

3, and conjectured that Π0
3 is the optimal bound.

Theorem (Allison - S.)

The optimal bound is D(Π0
5).

X ∈ D(Γ) ⇐⇒ ∃A,B ∈ Γ(X = A \ B).

We will prove below: there is an action of a tame abelian product
group which is not potentially Π0

3, and sketch the arguments for a
non Π0

5 action.
(The latter action is by Z<ω ×

∏
p Z<ωp × (

⊕
p Zp)ω × (Z(q∞))ω)
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Classification of potential complexities

Suppose E is induced by an action of a closed subgroup of S∞.

Theorem (Hjorth-Kechris-Louveau ’98)

The potential complexity of E is either

∆0
1, Π0

1, Σ0
2, Π0

3, D(Π0
3), Π0

4, D(Π0
4), Π0

5, D(Π0
5), Π0

6, ...

For example, if E is Σ0
5 then E is potentially D(Π0

4).

Let =R be the equality relation on R.
Define =+ (the first Friedman-Stanley jump) on Rω by
x =+ y ⇐⇒ A1

x := {x(n); n ∈ ω} = {y(n); n ∈ ω}=: A1
y .

Define =++ (the second Friedman-Stanley jump) on (Rω)ω by

x =++ y ⇐⇒ A2
x :=

{
A1
x(n); n ∈ ω

}
=
{
A1
y(n); n ∈ ω

}
=: A2

y .

Theorem (Hjorth-Kechris-Louveau ’98)

For n ≥ 2, E is potentially Π0
n if and only if E ≤B=+(n−2).

We need to find an action which is not Borel reducible to =+++
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Classification by countable structures

Let F be an equivalence relation on Y . A complete classification
of F is a map c : Y −→ I such that for any x , y ∈ Y ,

x F y ⇐⇒ c(x) = c(y).

Complete classifications: (using hereditarily countable structures)

I =R on R: x 7→ x ;

I E a countable Borel equivalence relation: x 7→ [x ]E ;

I Eω for countable E : x 7→ 〈[x(n)]E | n < ω〉;
I =+ on Rω: x 7→ A1

x = {x(n); n ∈ ω};
I =++ on (Rω)ω: x 7→ A2

x =
{
A1
x(n); n ∈ ω

}
;

I =+++ on ((Rω)ω)ω: x 7→ A3
x =

{
A2
x(n); n ∈ ω

}
.

7 / 17



Borel reducibility and symmetric models

Theorem (S. ’19)

Suppose E and F are Borel equivalence relations, classifiable by
countable structures (and fix a collection of invariants).
Assume further that E is Borel reducible to F .
Let A be an E -invariant in some generic extension of V .
Then there is an F -invariant B s.t. B ∈ V (A) and

V (A) = V (B).

Furthermore, B is definable in V (A) using only A and parameters
from V .

I For example, to prove E is not Borel reducible to =R, need to
show V (A) 6= V (B) when B is a (definable) real.

I To show E 6≤=+, need to show V (A) 6= V (B) when B is a
(definable) set of reals.
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A simple example

Example

Let P be Cohen forcing to add a real in 2ω by finite approximations.
Let x ∈ 2ω be generic and A = [x ]E0 its E0-invariant.

Claim (Lévy)

If r is a real in V (A) (or r ⊆ V ) which is definable from A and
parameters in V alone then r ∈ V .

It follows that V (A) 6= V (r), and so E0 6≤=R.

Proof of claim: For any p, q ∈ P there is an automorphism π of P
such that π preserves A and πq and p are compatible (Z<ω2 acts
ergodically on P!). So if r is definable from A, any statement v ∈ r
for v ∈ V is decided by the empty condition. �
In other words: the type of [x ]E0 over V does not depend on x .

This is just rephrasing of “Z<ω2 y 2ω is generically ergodic”.
The same works for any gen. ergodic action, e.g. Γ y 2Γ.
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How to get some 6≤B=+ proof

Proposition

Γ acts ergodically on P (∀p, q ∈ P∃γ ∈ Γ(γ · q ‖ p)), x is P-generic
over V . Then

1. if B ⊆ V is definable from A = Γ · x then B ∈ V .
(so if B is a definable real, V (A) 6= V (B).)

2. if P adds no reals, then for any B ⊆ R, if B is definable from
A then V (A) 6= V (B).

I 〈An | n < ω〉 a sequence of pairs, |An| = 2.
• • • • ...
• • • • ...

I P = finite choice functions in
∏

n An. Z<ω2 y P ergodically.

I For P to add no reals, we must have
∏

n An = ∅ in V !
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A non Π0
3 action of Z<ωp × Γω

Fix a ctbl group Γ, X = (2Γ)2. (e.g. Γ = Z(q∞) for some fixed q).
Γ acts diagonally on X (generically ergodic).
Z2 acts by flipping (generically free). (The actions commute.)
Let x ∈ Xω be Cohen generic, an = Γ · x(n), An = Z2 · an,
Ā = 〈An | n < ω〉. Each An is a set of two generic Γ-orbits.
a0 a1 a2 a3 ...
a′0 a′1 a′2 a′3 ...

(let x ′(n) = flip of x(n), a′n = Γ · x ′(n))

Proposition (In V (Ā))

If p, q ∈
∏

k<N Ak then p, q are indiscernibles over Ā and V .

Corollary

Let P be the poset of all finite choice functions in
∏

k<ω Ak .
Forcing with P over V (Ā) adds no reals (nor subsets of V ).

So if a ∈
∏

k<ω Ak is P-generic over V (Ā), A = Z<ω2 · a = all finite
alterations of a, B ⊆ R is definable from A, then V (A) 6= V (B).
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A non Π0
3 action of Z<ωp × Γω - continued

If a ∈
∏

k<ω Ak is P-generic over V (Ā), A = Z<ω2 · a = all finite
alterations of a, B ⊆ R is definable from A, then V (A) 6= V (B).
The commuting actions of Γ and Z2 on X give us an action
a : Z<ω2 × Γω y Xω.
If Γ = Z(p∞) for some prime p, then Z<ω2 × Γω is tame.
Note that the map sending x ∈ Xω to Z<ω2 · 〈an | n < ω〉 where
an = Γ · x(n), is a complete classification of Ea.

The set A above is a generic Ea-invariant, and so Ea 6≤B=+.

Ea is “E0 with {0, 1} replaced by Γ-orbits”.
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Complex actions of the wild group (Z<ωp )ω

Step 0 α0 : Γ y X gen. ergodic and β0 : Z2 y X gen. free

Step 1 α1 = (β0)<ω × (α0)ω : Z<ω2 × Γω y Xω.
and we have β1 : Z2 y Xω, diagonal action of β0

Step 2 α2 = (β1)<ω × (α1)ω acting on (Xω)ω.
β2 is the diagonal action of β1. ... and repeat

For each n there is a model Vn with Ā = 〈An | n < ω〉 such that
An is a βn × αn-orbit, that is, a set of two αn-orbits, such that
the poset P for adding a choice function through Ā adds no sets in
Pn(R) to Vn.

I Z<ω2 acts ergodically on P, so if a ∈
∏

n An is P-generic then
A = Z<ω2 · a is an αn+1-invariant and as before
Vn(A) 6= Vn(B) for any =+n-invariant B. So Eαn+1 6≤B=+n

I The models Vn are constructed inductively such that
Vn ⊆ Vn+1 have same subsets of Vn−1 and so the reals, sets
of reals, etc., are eventually stabilized.
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Non Π0
3 actions of

⊕
p Zp × Γω and Z× Γω
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Non Π0
4 action of

⊕
p Zp ×

∏
p Z<ωp × Γω

15 / 17



Non Π0
5 action of Z<ω × (

⊕
p Zp)ω ×

∏
p Z<ωp × Γω
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Optimal bounds

Theorem (Allison - S.)

Optimal bounds for tame abelian product groups
∏

n Hn

Property Main example Optimal
bound

∀n(Hn is finite) Π0
1

∀∞n ctbl Γ Σ0
2

∀n 6 ∃(Hn > Γ0 > Γ1 > ...) Z(p∞)ω Π0
3

∀∞n Γ× ... ↑ D(Π0
3)

∀p, n({γ ∈ Hn; |γ| = p} is finite) (⊕pZp)ω × ... ↑ Π0
4

∀p∀∞n Γ× ... ↑ D(Π0
4)

∀n(Hn is torsion)
∏

p Z<ωp × ... ↑ Π0
5

∀∞n Γ× ... ↑ D(Π0
5)

Thanks!
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