Classifying invariants and Borel equivalence relations

Assaf Shani

Harvard University

JMM, Boston, January 2023

Classification problems

A classification problem is captured by a pair (X, E) where

- X is a collection of mathematical objects;
- ► E is an equivalence relation on X. (e.g. isomorphism.)

A complete classification is a map $c \colon X \to I$, s.t.

 $x E y \iff c(x) = c(y)$, for any $x, y \in X$. Example

• Compact orientable surface \mapsto its genus $\in \mathbb{N}$.

We want the *classifying invariants* as simple as possible.

Ergodic theory examples: MPTs up to isomorphism/conjugacy.

- ▶ (Ornstein 1970) Bernoulli shift \mapsto its entropy $\in [0, \infty)$.
- (Halmos-von Neumann 1942) Discrete spectrum ergodic MPT
 → eigenvalues of its Koopman operator ∈ P_{№0}C.

 $\begin{array}{cccc} I = & \mathbb{N} & \mathbb{R} / \mathbb{C} & \mathcal{P}_{\aleph_0}(\) & & \mathcal{P}_{\aleph_0}\mathcal{P}_{\aleph_0}(\) \\ \text{Invariants:} & \text{Numerical Countable sets of} & \dots \end{array}$

Borel equivalence relations, on Polish spaces

- ► X is a Polish space: a separable completely metrizable space.
- ► $E \subseteq X \times X$ is Borel, or analytic (a projection of a Borel $\subseteq X \times X \times \mathbb{R}$).

Generally: countable or separable mathematical structures can be coded as a Polish space. E.g., all the examples above. The natural equivalence relations are analytic, sometimes Borel.

G a **Polish group**, e.g. S_{∞} = permutations of \mathbb{N} . *a*: $G \cap X$ continuous action on a Polish space. The induced orbit equivalence relation E_a on X:

$$x E_a y \iff g \cdot x = y$$
 for some $g \in G$.

 E_a is analytic, sometimes Borel.

Borel reducibility

E, *F* equivalence relations on Polish spaces *X*, *Y*. Definition (Friedman - Stanley 1989, Harrington - Kechris - Louveau 1990)

E is **Borel reducible** to *F*, denoted $E \leq_B F$, if there is a Borel function $f: X \to Y$ s.t. for any $x_1, x_2 \in X$,

 $x_1 E x_2 \iff f(x_1) F f(x_2).$

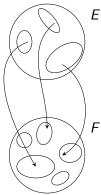
Classifying invariants for F can be used for E.

Definition

E is **concretely classifiable** (numerical invariants) if there is a Borel measurable map $c \colon X \to \mathbb{R}$ so that

$$x E y \iff c(x) = c(y).$$

<u>That is</u>: if $E \leq_B =_{\mathbb{R}}$ (the equality relation on \mathbb{R}). (Equivalently: can replace \mathbb{R} by \mathbb{C} , $\mathbb{R}^{\mathbb{N}}$, any Polish space.)



E is concretely classifiable $\iff E \leq_B =_{\mathbb{R}}$ Definition (Friedman - Stanley 1989) Given E on X, its jump E^+ is defined on the space $X^{\mathbb{N}}$ by $\langle x_0, x_1, ... \rangle E^+ \langle y_0, y_1, ... \rangle \iff \forall n \exists m(x_n E y_m) \& \forall n \exists m(y_n E x_m)$ ▶ Define \cong_2 as $=_{\mathbb{D}}^+$. $\langle x_0, x_1, \ldots \rangle \cong_2 \langle y_0, y_1, \ldots \rangle \iff \{x_n; n \in \mathbb{N}\} = \{y_n; n \in \mathbb{N}\}$ • E is classifiable by countable sets of reals if $E <_B \cong_2$ ▶ Define $\cong_{\alpha+1}$ as \cong_{α}^+ . $\blacktriangleright =_{\mathbb{R}} <_{B} \cong_{2} <_{B} \cong_{3} <_{B} \cong_{4} <_{B} \cdots <_{B} \cong_{\alpha} <_{B} \cdots$ $\blacktriangleright \mathbb{R} \quad \mathcal{P}_{\aleph_0} \mathbb{R} \quad \mathcal{P}^2_{\aleph_0} \mathbb{R} \quad \mathcal{P}^3_{\aleph_0} \mathbb{R} \quad \dots$ Theorem (Friedman - Stanley 1989) For Borel E, $E <_B E^+$. (Jump operator.)

Classification by countable structures

 $\begin{array}{l} \langle x_0, x_1, \ldots \rangle \ E^+ \ \langle y_0, y_1, \ldots \rangle \iff \forall n \exists m(x_n \ E \ y_m) \& \forall n \exists m(y_n \ E \ x_m) \\ \text{e.g.:} \ \langle x_0, x_1, \ldots \rangle \cong_2 \ \langle y_0, y_1, \ldots \rangle \iff \{x_n; \ n \in \mathbb{N}\} = \{y_n; \ n \in \mathbb{N}\} \end{array}$

- *E* is classifiable by countable sets of reals if $E \leq_B \cong_2 2$
- $=_{\mathbb{R}} <_B \cong_2 <_B \cong_3 <_B \cong_4 <_B \cdots <_B \cong_\alpha <_B \ldots$

Definition

E is **classifiable by countable structures** if it is Borel reducible to the isomorphism relation for some class of countable objects. E.g.: countable graphs, countable groups ...

► Equivalently: if E is Borel reducible to an orbit equivalence relation induced by S_∞ (or a closed subgroup of S_∞).

Fact

E a Borel equivalence relation. The following are equivalent.

- *E* is classifiable by countable structures;
- *E* is Borel reducible to \cong_{α} for a countable ordinal α .

Classification using countable structures

Borel equivalence relations Classifiable by countable structures

 $(S_{\infty} \text{ actions})$

Friedman-Stanley 1989

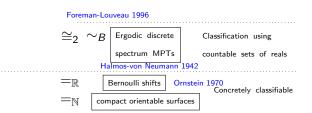
Isomorphism for well founded trees of rank $\leq lpha+2$

 \cong_4

 $\cong_{\alpha} \sim_{B}$

.

 \cong_3

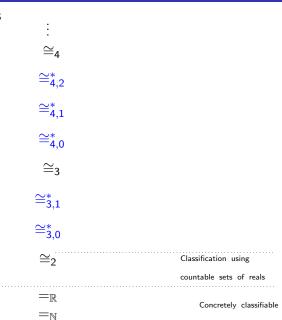


A finer hierarchy of classifying invariants

Borel equivalence relations Classifiable by countable structures

 $(S_\infty ext{ actions})$

Hjorth-Kechris-Louveau 1998 $\cong_{n,k}^*$, $n \ge 3$, $0 \le k \le n-2$



Let E be a Borel equivalence relation on a Polish space X.

Definition

E is **potentially** Γ if there is an equivalence relation *F* on a Polish space *Y* so that $F \subseteq Y \times Y$ is Γ and *E* is Borel reducible to *F*.

Example

Consider the equality relation $=_{\mathbb{R}}$ on the reals. Then $=_{\mathbb{R}}$ is Π_1^0 but not potentially Σ_1^0 .

Definition

 Γ is *the* potential complexity of *E* if it is minimal such that *E* is potentially Γ .

The equivalence relations of Hjorth-Kechris-Louveau

Hjorth-Kechris-Louveau (1998) completely classified the possible *potential complexities* of Borel equivalence relations which are induced by closed subgroups of S_{∞} .

(A set is in $D(\Gamma)$ if it is the difference of two sets in Γ) For each class they found a maximal element.

Theorem (Hjorth-Kechris-Louveau 1998)

 ${\it E}$ induced by a closed subgroup of ${\it S}_\infty.$ Then

- 1. *E* is potentially Π_{n+1}^0 iff $E \leq_B \cong_n (n \geq 2)$;
- 2. *E* is potentially Σ_{n+1}^{0} iff *E* is potentially $D(\Pi_{n}^{0})$ iff $E \leq_{B} \cong_{n,n-2}^{*} (n \geq 3)$.

Question: What about potential complexities of other ERs?

Hjorth-Kechris-Louveau (1998) completely classified the possible *potential complexities* of Borel equivalence relations which are induced by closed subgroups of S_{∞} .

(A set is in $D(\Gamma)$ if it is the difference of two sets in Γ) For each class they found a maximal element.

Theorem (Hjorth-Kechris-Louveau 1998)

E induced by an abelian closed subgroup of S_{∞} . Then

- 1. E is potentially Π_{n+1}^0 iff $E \leq_B \cong_n (n \geq 2)$;
- 2. *E* is potentially $\sum_{n=1}^{0}$ iff
 - *E* is potentially $D(\Pi_n^0)$ iff $E \leq_B \cong_{n,0}^* (n \geq 3)$.

The equivalence relations of Hjorth-Kechris-Louveau

Definition (Hjorth-Kechris-Louveau 1998) A classifying invariant for $\cong_{3,1}^*$ is a pair (A, R) such that ► $A \in \mathcal{P}^2_{\aleph_0}(\mathbb{R})$ (i.e., a \cong_3 -invariant – a set of sets of reals); ▶ $R \subseteq A \times A \times \mathbb{R}$, given X, Y in A, there is r s.t. R(X, Y, r), $R(X, Y_1, r) \wedge R(X, Y_2, r) \implies Y_1 = Y_2.$ For $\cong_{\mathbf{3}0}^*$: replace \mathbb{R} with \mathbb{N} . Theorem (Hjorth-Kechris-Louveau 1998) $\cong_{n-1} <_B \cong_{n=0}^* \leq_B \cong_{n=n-3}^* <_B \cong_{n=n-2}^* <_B \cong_n.$

Theorem (S. 2021) For any $3 \le n$, k < n-2, $\cong_{n,k}^* <_B \cong_{n,k+1}^*$.

 $\cong_{5,3}^*$ $\cong_{5.2}^{*}$ $\cong_{5.1}^{*}$ $\cong_{5.0}^{*}$ \cong_4 $\cong_{4,2}^*$ $\cong_{4.1}^{*}$ \cong_{40}^{*} \cong_3 $\cong_{3.1}^{*}$ $\cong_{3.0}^{*}$

In joint work with F. Calderoni, D. Marker, and L. Motto Ros, we studied countable Archimedean ordered groups, up to order-isomorphism, denoted \cong_{ArGp} .

Archimedean property for an ordered group (G, +, <): For any positive group elements x, y there is $n \in \mathbb{N}$ s.t. $x < n \cdot y$

Theorem (Calderoni, Marker, Motto Ros, and S.)

•
$$\cong_{\operatorname{ArGp}}$$
 is Borel reducible to $\cong_{3,1}^*$.

• $\cong_{\operatorname{ArGp}}$ is not Borel reducible to $\cong_{3,0}^*$.

In particular

 $\cong_{\operatorname{ArGp}}$ is classifiable using countable sets of countable sets of reals, $\cong_{\operatorname{ArGp}}$ is not classifiable using countable sets of reals, and the potential complexity of $\cong_{\operatorname{ArGp}}$ is $D(\Pi_3^0)$. Archimedean property for an ordered group (G, +, <): For any positive group elements x, y there is $n \in \mathbb{N}$ s.t. $x < n \cdot y$

Theorem (Hölder 1901)

Any Archimedean ordered group is isomorphism to a subgroup of $(\mathbb{R},+).$

Lemma (Hion's Lemma 1954) $G, H \leq \mathbb{R}, \phi: G \rightarrow H$ ordered preserving isomorphism. Then

there is $\lambda > 0$ with $\phi(x) = \lambda \cdot x$, for all $x \in G$.

Archimedean ordered groups: classifying invariants

 $G, H \leq \mathbb{R}, \phi: G \to H$ ordered preserving homomorphism. Then $\phi(x) = \lambda \cdot x$, for all $x \in G$, for a fixed $\lambda > 0$.

Definition

Given $G \leq \mathbb{R}$, define $G/a = \{g/a; g \in G\}$, $A_G = \{G/a; 0 < a \in G\} \in \mathcal{P}^2_{\aleph_0}(\mathbb{R}).$

Proposition

The map $G \mapsto A_G$ is a complete classification of $\cong_{\operatorname{ArGp}}$. Proof.

Suppose $x \mapsto \lambda \cdot x$ isomorphism $G \to H$. For any $a \in G \setminus \{0\}$, $G/a = \lambda \cdot G/\lambda \cdot a = H/\lambda \cdot a \in A_H$. So $A_G \subseteq A_H$. Therefore $A_G = A_H$. Moreover: Given X = G/a, Y = G/b in A_G $(a, b \in G)$.

let
$$r = b/a (\in G/a)$$
, then $Y = X/r.(\iff R(X, Y, r))$

This is a $\cong_{3,1}^*$ -classifying invariant.

In joint work with F. Calderoni, D. Marker, and L. Motto Ros, we studied countable Archimedean ordered groups, up to order-isomorphism, denoted \cong_{ArGp} .

Archimedean property for an ordered group (G, +, <): For any positive group elements x, y there is $n \in \mathbb{N}$ s.t. $x < n \cdot y$

Theorem (Calderoni, Marker, Motto Ros, and S.)

- $\cong_{\operatorname{ArGp}}$ is Borel reducible to $\cong_{3,1}^*$.
- $\cong_{\operatorname{ArGp}}$ is not Borel reducible to $\cong_{3,0}^*$.

Question

Is $\cong_{3,1}^* \leq_B \cong_{\operatorname{ArGp}}$? ($\cong_{3,0}^* \leq_B \cong_{\operatorname{ArGp}}$?) (We proved $\cong_2 \leq_B \cong_{\operatorname{ArGp}}$) More generally, how to construct a Borel reduction from $\cong_{n,k}^*$? Find a simpler combinatorial presentation of $\cong_{n,k}^*$.

The Γ-jumps of Clemens and Coskey

Let *E* be an equivalence relation on *X* and Γ a countable group. Definition (Clemens - Coskey 2022) The Γ -jump of *E*, $E^{[\Gamma]}$, is defined on X^{Γ} by

$$x E^{[\Gamma]} y \iff (\exists \gamma \in \Gamma) (\forall \alpha \in \Gamma) x(\gamma^{-1} \alpha) E y(\alpha).$$

Iterated **Γ**-jumps:

$$J_1^{[\Gamma]} = (=_{\{0,1\}})^{[\Gamma]}, \ J_2^{[\Gamma]} = (J_1^{[\Gamma]})^{[\Gamma]}, \ \dots \ J_{\alpha}^{[\Gamma]} \dots$$

Theorem (Clemens - Coskey 2022)

- ▶ Iso. on ctbl scattered linear orders of rank $1 + \alpha$ is $\sim_B J_{\alpha}^{[\mathbb{Z}]}$.
- ► *E* Borel, induced by $\Gamma \wr \Gamma = \Gamma \rtimes \Gamma^{\Gamma}$, then $E \leq_B J_{\alpha}^{[\Gamma]}$ for some α . ► $F \mapsto F^{[\Gamma]}$
 - ► Is a (proper) jump operator for, e.g., $\Gamma = \mathbb{Z}$, or $\mathbb{Z}_p^{<\mathbb{N}}$;
 - ▶ Not a (proper) jump operator for $\mathbb{Z}(p^{\infty})$ (quasi-cyclic p-group)

Question (Clemens-Coskey)

For which Γ is $E \mapsto E^{[\Gamma]}$ a jump operator? For $\Gamma = \bigoplus_{p \text{ prime}} \mathbb{Z}_p$?

The $\Gamma\text{-jump}$ for different Γ

- Iso. on ctbl scattered linear orders of rank $1 + \alpha \underset{r=1}{\text{is}} \sim_B J_{\alpha}^{[\mathbb{Z}]}$.
- *E* Borel, induced by $\Gamma \wr \Gamma = \Gamma \rtimes \Gamma^{\Gamma}$, then $E \leq_B J_{\alpha}^{[\Gamma]}$ for some α .
- Proper jump: <u>YES</u> for $\mathbb{Z}, \mathbb{Z}_p^{<\mathbb{N}}$; <u>NO</u> for $\mathbb{Z}(p^{\infty})$; <u>???</u> for $\bigoplus_{p \text{ prime}} \mathbb{Z}_p$

Remark

 $J_1^{[\Gamma]} = (=_{\{0,1\}})^{[\Gamma]}$ is the orbit ER induced by the shift $\Gamma \curvearrowright \{0,1\}^{\Gamma}$. By a theorem of Gao and Jackson (2015), $J_1^{[\Gamma]} \sim_B J_1^{[\Delta]}$ for any *abelian* Γ, Δ .

Question (Clemens - Coskey)

Is this also true for $J_2^{[\Gamma]}, J_2^{[\Delta]}$? To what extent does $E \mapsto E^{[\Gamma]}$ depend on Γ ?

Theorem (S.)

E.g.: if Γ, Δ are two of \mathbb{Z} , $\bigoplus_{p \text{ prime}} \mathbb{Z}_p$, or $\mathbb{Z}_p^{<\mathbb{N}}$ for a prime p, Then $J_2^{[\Gamma]}$ is not Borel reducible to $J_{\alpha}^{[\Delta]}$, for any α .

$\cong_{\alpha,\mathbf{0}}^*$ - classifying invariants for Γ -jumps

 $x E^{[\Gamma]} y \iff (\exists \gamma \in \Gamma) (\forall \alpha \in \Gamma) x(\gamma^{-1}\alpha) E y(\alpha)$ - Propoer jump operation for $\mathbb{Z}, \mathbb{Z}_p^{<\mathbb{N}}$.

Remark If *E* is Π_n^0 then $E^{[\Gamma]}$ is Σ_{n+1}^0 .

Example (\mathbb{Z} -jump of \cong_2) We can think of $\cong_{2}^{[\mathbb{Z}]}$ as follows: A space of \mathbb{Z} -sequences of countable sets of reals $\vec{A} = \langle \dots, A_{-1}, A_0, A_1, \dots \rangle$. \mathbb{Z} acts by shifting. Note: a sequence of sets of reals can be coded as a set of reals. Classifying invariants (of "type" $\cong_{3,0}^{*}$): a set of sets of reals $\left\{ k \cdot \vec{A}; k \in \mathbb{Z} \right\}$, with a relation $R(\vec{A}, \vec{B}, k) \iff k \cdot \vec{A} = \vec{B}$. Corollary

This also shows $\cong_n <_B \cong_{n+1,0}$, given that $\cong_n <_B \cong_n^{[\mathbb{Z}]}$.

Potential complexity of Γ -jumps

In fact, there is a relationship between the equivalence relations $J_{\alpha}^{[\mathbb{Z}_{2}^{\leq \mathbb{N}}]}$ and the ERs constructed by Hjorth-Kechris-Louveau to realize $D(\mathbf{\Pi}_{n}^{0})$ as a potential complexity.

Theorem (Clemens - Coskey 2022)

Potential complexities for $\mathbb{Z}_2^{<\mathbb{N}}$:

$$\int_{2}^{[\mathbb{Z}_{2}^{<\mathbb{N}}]} \int_{3}^{[\mathbb{Z}_{2}^{<\mathbb{N}}]} \int_{4}^{[\mathbb{Z}_{2}^{<\mathbb{N}}]}$$

 $\Pi_3^0 \qquad D(\Pi_3^0) \qquad \Pi_4^0 \qquad D(\Pi_4^0) \qquad \Pi_5^0 \qquad D(\Pi_5^0) \ \dots$

Question (Clemens - Coskey)

What are the precise potential complexities of $J_{\alpha}^{[\mathbb{Z}]}$?

Remark

- (Clemens Coskey) potential complexity of $J_2^{[\mathbb{Z}]}$ is Π_3^0 ;
- (S.) potential complexity of $J_2^{[\mathbb{Z}^2]}$ is $D(\Pi_3^0)$;