Classifying invariants and Borel equivalence relations

Assaf Shani

Harvard University

JMM, Boston, January 2023

Classification problems

A **classification problem** is captured by a pair (X, E) where

- \triangleright X is a collection of mathematical objects;
- \triangleright E is an equivalence relation on X. (e.g. isomorphism.)

A complete classification is a map $c: X \rightarrow I$, s.t.

 $x E y \iff c(x) = c(y)$, for any $x, y \in X$. Example

 \triangleright Compact orientable surface \mapsto its genus $\in \mathbb{N}$.

We want the *classifying invariants* as simple as possible.

Ergodic theory examples: MPTs up to isomorphism/conjugacy.

- \blacktriangleright (Ornstein 1970) Bernoulli shift \mapsto its entropy $\in [0, \infty)$.
- \blacktriangleright (Halmos-von Neumann 1942) Discrete spectrum ergodic MPT \rightarrow eigenvalues of its Koopman operator $\in \mathcal{P}_{\aleph_0}\mathbb{C}$.

 $I = \mathbb{N} \qquad \mathbb{R}/\mathbb{C} \qquad \qquad \mathcal{P}_{\aleph_0}(\)$ () $\mathcal{P}_{\aleph_0}\mathcal{P}_{\aleph_0}(\)$ Invariants: Numerical Countable sets of

Borel equivalence relations, on Polish spaces

- \triangleright X is a Polish space: a separable completely metrizable space.
- \blacktriangleright $E \subset X \times X$ is Borel, or analytic (a projection of a Borel $\subseteq X \times X \times \mathbb{R}$).

Generally: countable or separable mathematical structures can be coded as a Polish space. E.g., all the examples above. The natural equivalence relations are analytic, sometimes Borel.

G a **Polish group**, e.g. S_{∞} = permutations of N. a: $G \curvearrowright X$ continuous action on a Polish space. The induced orbit equivalence relation E_a on X:

$$
x E_a y \iff g \cdot x = y \text{ for some } g \in G.
$$

 E_a is analytic, sometimes Borel.

Borel reducibility

 E, F equivalence relations on Polish spaces X, Y . Definition (Friedman - Stanley 1989, Harrington - Kechris - Louveau 1990)

E is **Borel reducible** to F, denoted $E \leq_B F$, if there is a Borel function $f: X \to Y$ s.t. for any $x_1, x_2 \in X$,

 $x_1 E x_2 \iff f(x_1) F f(x_2)$.

Classifying invariants for F can be used for E .

Definition

 E is concretely classifiable (numerical invariants) if there is a Borel measurable map $c: X \to \mathbb{R}$ so that

$$
x E y \iff c(x) = c(y).
$$

That is: if $E \leq_B =_{\mathbb{R}}$ (the equality relation on \mathbb{R}). (Equivalently: can replace $\mathbb R$ by $\mathbb C$, $\mathbb R^{\mathbb N}$, any Polish space.)

E is concretely classifiable $\iff E \leq_B \equiv_R$ Definition (Friedman - Stanley 1989) Given E on X, its jump E^+ is defined on the space $X^{\mathbb{N}}$ by $\langle x_0, x_1, ...\rangle \not\in^+ \langle y_0, y_1, ...\rangle \iff \forall n \exists m (x_n \not\in y_m) \& \forall n \exists m (y_n \not\in x_m)$ ► Define \cong_2 as $=$ ^{$+$} \mathbb{R} . $\langle x_0, x_1, \ldots \rangle \cong_2 \langle y_0, y_1, \ldots \rangle \iff \{x_n; n \in \mathbb{N}\} = \{y_n; n \in \mathbb{N}\}\$ ► E is classifiable by countable sets of reals if $E \leq_B \approx_2$ ► Define $\cong_{\alpha+1}$ as \cong_{α}^+ . ► $=_{\mathbb{R}}$ $\lt_B \cong_2$ $\lt_B \cong_3$ $\lt_B \cong_4$ \lt_B $\cdots \lt_B \cong_\alpha$ \lt_B \ldots $\blacktriangleright \mathbb{R}$ $\mathcal{P}_{\aleph_0}^2 \mathbb{R}$ $\mathcal{P}_{\aleph_0}^3 \mathbb{R}$... Theorem (Friedman - Stanley 1989) For Borel E, $E <_{B} E^{+}$. (Jump operator.)

Classification by countable structures

 $\langle x_0, x_1, ...\rangle \n\in^+ \langle y_0, y_1, ...\rangle \iff \forall n \exists m (x_n \in y_m) \& \forall n \exists m (y_n \in x_m)$ e.g.: $\langle x_0, x_1, ...\rangle \cong_2 \langle y_0, y_1, ...\rangle \iff \{x_n; n \in \mathbb{N}\} = \{y_n; n \in \mathbb{N}\}\$

- E is classifiable by countable sets of reals if $E \leq_B \cong_2$
- $-$ = $\mathbb{R} \leq B \leq 2$ $\leq B \leq 3$ $\leq B \leq 4$ $\leq B \cdots \leq B \leq \alpha$ $\leq B \cdots$

Definition

E is classifiable by countable structures if it is Borel reducible to the isomorphism relation for some class of countable objects. E.g.: countable graphs, countable groups ...

Equivalently: if E is Borel reducible to an orbit equivalence relation induced by S_{∞} (or a closed subgroup of S_{∞}).

Fact

E a Borel equivalence relation. The following are equivalent.

- \triangleright E is classifiable by countable structures;
- ► E is Borel reducible to \cong_{α} for a countable ordinal α .

Classification using countable structures

Borel equivalence relations Classifiable by countable structures

 $(S_{\infty}$ actions)

Friedman-Stanley 1989

Isomorphism for well founded trees of rank $\leq \alpha + 2$

$$
\cong_{\alpha} ~\sim_B
$$

∼=3

∼=4

. . .

A finer hierarchy of classifying invariants

Borel equivalence relations Classifiable by countable structures

 $(S_{\infty}$ actions)

Hjorth-Kechris-Louveau 1998 $\cong_{n,k}^*$, $n \geq 3$, $0 \leq k \leq n-2$

Let E be a Borel equivalence relation on a Polish space X .

Definition

E is **potentially** Γ if there is an equivalence relation F on a Polish space Y so that $F \subseteq Y \times Y$ is Γ and E is Borel reducible to F.

Example

Consider the equality relation $=_{\mathbb{R}}$ on the reals. Then $=_{\mathbb{R}}$ is Π^0_1 but not potentially $\Sigma^0_1.$

Definition

 Γ is the potential complexity of E if it is minimal such that E is potentially Γ.

The equivalence relations of Hjorth-Kechris-Louveau

Hjorth-Kechris-Louveau (1998) completely classified the possible potential complexities of Borel equivalence relations which are induced by closed subgroups of S_{∞} .

 $Δ_1$ Π⁰₁ Σ⁰₂ Π⁰₃ $D(Π⁰₃) Π⁰₄ $D(Π⁰₄)$ Π$ 0 5 ... $=$ N $=$ R E_{∞} \cong ₂ \cong _{3,1} \cong ₃ \cong _{4,2} \cong ₄ ∼= ∗ 4,2

(A set is in $D(\Gamma)$ if it is the difference of two sets in Γ) For each class they found a maximal element.

Theorem (Hjorth-Kechris-Louveau 1998)

E induced by a closed subgroup of S_{∞} . Then

- 1. *E* is potentially $\mathsf{\Pi}^0_{n+1}$ iff $E \leq_B \cong_n (n \geq 2)$;
- 2. E is potentially $\mathbf{\Sigma}_{n+1}^{0}$ iff *E* is potentially $D(\Pi_n^0)$ iff $E \leq_B \cong_{n,n-2}^* (n \geq 3)$.

Question: What about potential complexities of other ERs?

Hjorth-Kechris-Louveau (1998) completely classified the possible potential complexities of Borel equivalence relations which are induced by closed subgroups of S_{∞} .

 Δ_1 Π_1^0 Σ_2^0 Π_3^0 $D(\Pi_3^0)$ Π_4^0 $D(\Pi_4^0)$ Π_5^0 ... $z^{\pm} = w$ $z = w$ $z^* = w$ ∼= ∗ 4,0

(A set is in $D(\Gamma)$ if it is the difference of two sets in Γ) For each class they found a maximal element.

Theorem (Hjorth-Kechris-Louveau 1998)

E induced by an abelian closed subgroup of S_{∞} . Then

- 1. *E* is potentially $\mathbf{\Pi}_{n+1}^0$ iff $E \leq_B \cong_n (n \geq 2)$;
- 2. E is potentially $\mathbf{\Sigma}_{n+1}^{0}$ iff
	- *E* is potentially $D(\Pi_n^0)$ iff $E \leq_B \cong_{n,0}^* (n \geq 3)$.

The equivalence relations of Hjorth-Kechris-Louveau

Definition (Hjorth-Kechris-Louveau 1998) A classifying invariant for $\cong^*_{3,1}$ is a pair (\bar{A},\bar{R}) such that

- ► $A \in \mathcal{P}_{\aleph_0}^2(\mathbb{R})$ (i.e., a \cong ₃-invariant a set of sets of reals);
- ► $R \subseteq A \times A \times \mathbb{R}$, given X, Y in A, there is r s.t. $R(X, Y, r)$,

$$
R(X, Y_1, r) \wedge R(X, Y_2, r) \implies Y_1 = Y_2.
$$

For $\cong_{3,0}^*$: replace $\mathbb R$ with $\mathbb N$.

Theorem (Hjorth-Kechris-Louveau 1998) \approx_{n-1} \lt _B $\approx_{n,0}$ \leq _B $\approx_{n,n-3}$ \lt _B $\approx_{n,n-2}$ \lt _B \approx_{n} . Theorem (S. 2021) For any $3 \le n$, $k < n - 2$, $\cong_{n,k}^* <_{B} \cong_{n,k+1}^*$.

 \cong ₂

In joint work with F. Calderoni, D. Marker, and L. Motto Ros, we studied countable Archimedean ordered groups, up to order-isomorphism, denoted \cong_{ArGo} .

Archimedean property for an ordered group $(G, +, <)$: For any positive group elements x, y there is $n \in \mathbb{N}$ s.t. $x < n \cdot y$

Theorem (Calderoni, Marker, Motto Ros, and S.)

$$
\blacktriangleright \cong_{\text{ArGp}}
$$
 is Borel reducible to $\cong_{3,1}^*.$

► \cong ArG_p is not Borel reducible to \cong ^{*}_{3,0}.

In particular

 \cong _{ArGp} is classifiable using countable sets of countable sets of reals, \cong _{ArGp} is not classifiable using countable sets of reals, and the potential complexity of \cong_{ArGp} is $D(\Pi_3^0)$.

Archimedean property for an ordered group $(G, +, <)$: For any positive group elements x, y there is $n \in \mathbb{N}$ s.t. $x < n \cdot y$

Theorem (Hölder 1901)

Any Archimedean ordered group is isomorphism to a subgroup of $(\mathbb{R}, +).$

Lemma (Hion's Lemma 1954) $G, H \leq \mathbb{R}, \phi: G \rightarrow H$ ordered preserving isomorphism. Then

there is $\lambda > 0$ with $\phi(x) = \lambda \cdot x$, for all $x \in G$.

Archimedean ordered groups: classifying invariants

 $G, H \leq \mathbb{R}, \phi: G \rightarrow H$ ordered preserving homomorphism. Then $\phi(x) = \lambda \cdot x$, for all $x \in G$, for a fixed $\lambda > 0$.

Definition

Given $G \leq \mathbb{R}$, define $G/a = \{g/a; g \in G\}$, $A_G = \{ G/a; 0 < a \in G \} \in \mathcal{P}_{\aleph_0}^2(\mathbb{R}).$

Proposition

The map $G \mapsto A_G$ is a complete classification of \cong_{ArGp} . Proof.

Suppose $x \mapsto \lambda \cdot x$ isomorphism $G \to H$. For any $a \in G \setminus \{0\}$, $G/a = \lambda \cdot G/\lambda \cdot a = H/\lambda \cdot a \in A_H$. So $A_G \subseteq A_H$. Therefore $A_G = A_H$. Moreover: Given $X = G/a$, $Y = G/b$ in A_G (a, $b \in G$),

let
$$
r = b/a \ (\in G/a)
$$
, then $Y = X/r \ (\iff R(X, Y, r))$

This is a $\cong_{3,1}^*$ -classifying invariant.

In joint work with F. Calderoni, D. Marker, and L. Motto Ros, we studied countable Archimedean ordered groups, up to order-isomorphism, denoted \cong_{ArGp} .

Archimedean property for an ordered group $(G, +, <)$: For any positive group elements x, y there is $n \in \mathbb{N}$ s.t. $x < n \cdot y$

Theorem (Calderoni, Marker, Motto Ros, and S.)

- ► \cong ArG_p is Borel reducible to \cong ^{*}_{3,1}.
- ► \cong ArG_p is not Borel reducible to \cong ^{*}_{3,0}.

Question

 $\mathsf{Is} \cong_{3,1}^* \leq_{\mathcal{B}} \cong_{\mathrm{ArGp}} ? \; (\cong_{3,0}^* \leq_{\mathcal{B}} \cong_{\mathrm{ArGp}} ?)$ (We proved $\cong_2 \leq_{\mathcal{B}} \cong_{\mathrm{ArGp}}$) More generally, how to construct a Borel reduction from $\cong_{n,k}^*$? Find a simpler combinatorial presentation of $\cong_{n,k}^*$.

The Γ-jumps of Clemens and Coskey

Let E be an equivalence relation on X and Γ a countable group. Definition (Clemens - Coskey 2022) The Γ-**jump of** E, $E^{[\Gamma]}$, is defined on X^{Γ} by

$$
x E^{[\Gamma]} y \iff (\exists \gamma \in \Gamma)(\forall \alpha \in \Gamma) x (\gamma^{-1} \alpha) E y(\alpha).
$$

Iterated Γ-jumps:

$$
J_1^{[\Gamma]} = (=_{{\{0,1\}}})^{[\Gamma]} , \ J_2^{[\Gamma]} = (J_1^{[\Gamma]})^{[\Gamma]} , \ \ldots \ J_{\alpha}^{[\Gamma]} \ \ldots
$$

Theorem (Clemens - Coskey 2022)

- ► Iso. on ctbl scattered linear orders of rank $1+\alpha$ is $\sim_B\,J^{[{\mathbb{Z}}]}_\alpha.$
- ► E Borel, induced by $\Gamma \wr \Gamma = \Gamma \rtimes \Gamma^{\Gamma}$, then $E \leq_B J_{\alpha}^{[\Gamma]}$ for some α . \blacktriangleright $E \mapsto E^{[\Gamma]}$
	- ► Is a (proper) jump operator for, e.g., $\Gamma = \mathbb{Z}$, or $\mathbb{Z}_p^{<\mathbb{N}}$;
	- ▶ Not a (proper) jump operator for $\mathbb{Z}(p^{\infty})$ (quasi-cyclic p-group)

Question (Clemens-Coskey)

For which Γ is $E \mapsto E^{[\Gamma]}$ a jump operator? For $\Gamma = \bigoplus_{\bm p \text{ prime}} \mathbb{Z}_\bm p$?

The Γ-jump for different Γ

$$
x E^{[\Gamma]} y \iff (\exists \gamma \in \Gamma)(\forall \alpha \in \Gamma) x (\gamma^{-1} \alpha) E y(\alpha)
$$

$$
J_1^{[\Gamma]} = (-_{0,1})^{[\Gamma]}, J_2^{[\Gamma]} = (J_1^{[\Gamma]})^{[\Gamma]}, \dots J_\alpha^{[\Gamma]} \dots
$$

- Iso. on ctbl scattered linear orders of rank $1 + \alpha$ is ∼B $J_{\alpha}^{[\mathbb{Z}]}$.
- E Borel, induced by Γ \restriction Γ = Γ \rtimes Γ^Γ, then $E \leq_B J_\alpha^{[\Gamma]}$ for some α .
- Proper jump: \underline{YES} for $\mathbb{Z},\mathbb{Z}_p^{<\mathbb{N}};$ $\underline{\sf NO}$ for $\mathbb{Z}(p^\infty);$ $\underline{??}$ for $\bigoplus_{p\text{ prime}}\mathbb{Z}_p$

Remark

 $J_1^{[\Gamma]} = (=_\{0,1\})^{[\Gamma]}$ is the orbit ER induced by the shift $\Gamma \curvearrowright \{0,1\}^\Gamma.$ By a theorem of Gao and Jackson (2015), $\mathcal{J}_1^{[\Gamma]} \sim_{B} \mathcal{J}_1^{[\Delta]}$ $I_1^{\lfloor L \Delta \rfloor}$ for any abelian Γ, ∆.

Question (Clemens - Coskey)

Is this also true for $\int_2^{[\Gamma]}$ $J_2^{[\Delta]}$, $J_2^{[\Delta]}$? ^{נكا}ا
.. To what extent does $E\mapsto E^{[\Gamma]}$ depend on $\Gamma?$

Theorem (S.)

E.g.: if Γ, Δ are two of $\mathbb{Z},$ $\bigoplus_{\rho \text{ prime}} \mathbb{Z}_p$, or $\mathbb{Z}_\rho^{<\mathbb{N}}$ for a prime ρ , Then $\int_2^{[\Gamma]}$ $\mathcal{U}^{[\Gamma]}_2$ is not Borel reducible to $\mathcal{J}^{[\Delta]}_{\alpha}$, for any $\alpha.$

\cong_{α}^* $_{\alpha,\mathbf{0}}^*$ - classifying invariants for Γ-jumps

$$
x E^{[\Gamma]} y \iff (\exists \gamma \in \Gamma)(\forall \alpha \in \Gamma) x (\gamma^{-1} \alpha) \in y(\alpha)
$$

- Propoer jump operation for $\mathbb{Z}, \mathbb{Z}_p^{\leq \mathbb{N}}$.

Remark If E is $\mathbf{\Pi}_n^0$ then $E^{[\Gamma]}$ is $\mathbf{\Sigma}_{n+1}^0$.

Example (\mathbb{Z} -jump of \cong_2) We can think of $\cong_2^{[\mathbb{Z}]}$ $2^{\lfloor \frac{n}{2} \rfloor}$ as follows: A space of Z-sequences of countable sets of reals $\vec{A} = \langle \dots, A_{-1}, A_0, A_1, \dots \rangle$. Z acts by shifting. Note: a sequence of sets of reals can be coded as a set of reals. Classifying invariants (of "type" $\cong^*_{3,0}$): a set of sets of reals $\left\{k \cdot \vec{A}; \ k \in \mathbb{Z} \right\},$ with a relation $R(\vec{A}, \vec{B}, k) \iff k \cdot \vec{A} = \vec{B}$. **Corollary**

This also shows $\cong_n <_B \cong_{n+1,0}$, given that $\cong_n <_B \cong_n^{\mathbb{Z}}$.

Potential complexity of Γ-jumps

In fact, there is a relationship between the equivalence relations $\int_{\alpha}^{[{\mathbbm Z}_2^{<\mathbb{N}}]}$ and the ERs constructed by Hjorth-Kechris-Louveau to realize $D(\mathsf{\Pi}^0_n)$ as a potential complexity.

Theorem (Clemens - Coskey 2022) Potential complexities for $\mathbb{Z}_2^{<\mathbb{N}}$:

Π_3^0 $D(\Pi_3^0)$ Π_4^0 $D(\Pi_4^0)$ Π_5^0 $D(\Pi_5^0)$...

 $\int_3^{\left[\mathbb{Z}_2^{\leq \mathbb{N}}\right]}$ 3

 $\int_4^{\left[\mathbb{Z}_2^{<\mathbb{N}}\right]}$ 4

Question (Clemens - Coskey)

 $\int_2^{\left[\mathbb{Z}_2^{<\mathbb{N}}\right]}$ 2

What are the precise potential complexities of $\int_\alpha^{[\mathbb{Z}]} ?$

Remark

- \blacktriangleright (Clemens Coskey) potential complexity of $\int_2^{\lfloor \mathbb{Z} \rfloor}$ $\frac{1}{2}^{\lfloor \mathbb{Z} \rfloor}$ is $\mathsf{\Pi}^0_3;$
- \blacktriangleright (S.) potential complexity of $J_2^{[\mathbb{Z}^2]}$ $D(\Pi_3^0);$ is $D(\Pi_3^0);$