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Classification problems

A classification problem is captured by a pair (X ,E ) where
I X is a collection of mathematical objects;
I E is an equivalence relation on X . (e.g. isomorphism.)

EA

B
C

A complete classification is a map c : X → I , s.t.

x E y ⇐⇒ c(x) = c(y), for any x , y ∈ X .
Example

I Compact orientable surface 7→ its genus ∈ N.

We want the classifying invariants as simple as possible.

Ergodic theory examples: MPTs up to isomorphism/conjugacy.

I (Ornstein 1970) Bernoulli shift 7→ its entropy ∈ [0,∞).

I (Halmos-von Neumann 1942) Discrete spectrum ergodic MPT
7→ eigenvalues of its Koopman operator ∈ Pℵ0C.

I = N R /C Pℵ0( ) Pℵ0Pℵ0( )
Invariants: Numerical Countable sets of . . .



Borel equivalence relations, on Polish spaces

I X is a Polish space: a separable completely metrizable space.

I E ⊆ X × X is Borel, or analytic (a projection of a Borel
⊆ X × X × R).

Generally: countable or separable mathematical structures can be
coded as a Polish space. E.g., all the examples above.
The natural equivalence relations are analytic, sometimes Borel.

G a Polish group, e.g. S∞ = permutations of N.
a : G y X continuous action on a Polish space.
The induced orbit equivalence relation Ea on X :

x Ea y ⇐⇒ g · x = y for some g ∈ G .

Ea is analytic, sometimes Borel.



Borel reducibility

E

F

E ,F equivalence relations on Polish spaces X ,Y .

Definition (Friedman - Stanley 1989,
Harrington - Kechris - Louveau 1990)

E is Borel reducible to F , denoted E ≤B F , if there is
a Borel function f : X → Y s.t. for any x1, x2 ∈ X ,

x1 E x2 ⇐⇒ f (x1) F f (x2).

I Classifying invariants for F can be used for E .

Definition
E is concretely classifiable (numerical invariants) if
there is a Borel measurable map c : X → R so that

x E y ⇐⇒ c(x) = c(y).

That is: if E ≤B =R (the equality relation on R).

(Equivalently: can replace R by C, RN, any Polish space.)



Classifying invariants

E is concretely classifiable ⇐⇒ E ≤B =R

Definition (Friedman - Stanley 1989)

Given E on X , its jump E+ is defined on the space XN by

〈x0, x1, ...〉 E+ 〈y0, y1, ...〉 ⇐⇒ ∀n∃m(xn E ym) &∀n∃m(yn E xm)

I Define ∼=2 as =+
R .

〈x0, x1, ...〉 ∼=2 〈y0, y1, ...〉 ⇐⇒ {xn; n ∈ N} = {yn; n ∈ N}
I E is classifiable by countable sets of reals if E ≤B

∼=2.

I Define ∼=α+1 as ∼=+
α .

I =R <B
∼=2 <B

∼=3 <B
∼=4 <B · · · <B

∼=α <B . . .

I R Pℵ0R P2
ℵ0
R P3

ℵ0
R . . .

Theorem (Friedman - Stanley 1989)

For Borel E , E <B E+. (Jump operator.)



Classification by countable structures

〈x0, x1, ...〉 E+ 〈y0, y1, ...〉 ⇐⇒ ∀n∃m(xn E ym) &∀n∃m(yn E xm)
e.g.: 〈x0, x1, ...〉 ∼=2 〈y0, y1, ...〉 ⇐⇒ {xn; n ∈ N} = {yn; n ∈ N}

- E is classifiable by countable sets of reals if E ≤B
∼=2.

- =R <B
∼=2 <B

∼=3 <B
∼=4 <B · · · <B

∼=α <B . . .

Definition
E is classifiable by countable structures if it is Borel reducible
to the isomorphism relation for some class of countable objects.
E.g.: countable graphs, countable groups ...

I Equivalently: if E is Borel reducible to an orbit equivalence
relation induced by S∞ (or a closed subgroup of S∞).

Fact
E a Borel equivalence relation. The following are equivalent.

I E is classifiable by countable structures;

I E is Borel reducible to ∼=α for a countable ordinal α.



Classification using countable structures

=N

=R

∼=2

∼=3

∼=4

∼=α

...

Borel equivalence relations
Classifiable by
countable structures

(S∞ actions)

Concretely classifiable

Classification using

countable sets of reals

Friedman-Stanley 1989

∼B
Isomorphism for well founded

trees of rank ≤ α + 2

∼B Ergodic discrete

spectrum MPTs

Foreman-Louveau 1996

Halmos-von Neumann 1942

compact orientable surfaces

Bernoulli shifts Ornstein 1970



A finer hierarchy of classifying invariants

=N

=R

∼=2

∼=3

∼=4

∼=∗3,0

∼=∗3,1

∼=∗4,0

∼=∗4,1

∼=∗4,2

...
Borel equivalence relations
Classifiable by
countable structures

(S∞ actions)

Hjorth-Kechris-Louveau 1998
∼=∗n,k , n ≥ 3, 0 ≤ k ≤ n − 2

Concretely classifiable

Classification using

countable sets of reals



Potential complexity

Let E be a Borel equivalence relation on a Polish space X .

Definition
E is potentially Γ if there is an equivalence relation F on a Polish
space Y so that F ⊆ Y × Y is Γ and E is Borel reducible to F .

Example

Consider the equality relation =R on the reals.
Then =R is Π0

1 but not potentially Σ0
1.

Definition
Γ is the potential complexity of E if it is minimal such that E is
potentially Γ.



The equivalence relations of Hjorth-Kechris-Louveau

Hjorth-Kechris-Louveau (1998) completely classified the possible
potential complexities of Borel equivalence relations which are
induced by closed subgroups of S∞.

∆1 Π0
1 Σ0

2 Π0
3 D(Π0

3) Π0
4 D(Π0

4) Π0
5 ...

=N =R E∞ ∼=2
∼=3

∼=4
∼=∗3,1 ∼=∗4,2

(A set is in D(Γ) if it is the difference of two sets in Γ)
For each class they found a maximal element.

Theorem (Hjorth-Kechris-Louveau 1998)

E induced by a closed subgroup of S∞. Then

1. E is potentially Π0
n+1 iff E ≤B

∼=n (n ≥ 2);

2. E is potentially Σ0
n+1 iff

E is potentially D(Π0
n) iff E ≤B

∼=∗n,n−2 (n ≥ 3).

Question: What about potential complexities of other ERs?



The equivalence relations of Hjorth-Kechris-Louveau

Hjorth-Kechris-Louveau (1998) completely classified the possible
potential complexities of Borel equivalence relations which are
induced by closed subgroups of S∞.

∆1 Π0
1 Σ0

2 Π0
3 D(Π0

3) Π0
4 D(Π0

4) Π0
5 ...

=N =R E∞ ∼=2
∼=3

∼=4
∼=∗3,0 ∼=∗4,0

(A set is in D(Γ) if it is the difference of two sets in Γ)
For each class they found a maximal element.

Theorem (Hjorth-Kechris-Louveau 1998)

E induced by an abelian closed subgroup of S∞. Then

1. E is potentially Π0
n+1 iff E ≤B

∼=n (n ≥ 2);

2. E is potentially Σ0
n+1 iff

E is potentially D(Π0
n) iff E ≤B

∼=∗n,0 (n ≥ 3).



The equivalence relations of Hjorth-Kechris-Louveau

∼=∗5,2

∼=∗5,3

∼=∗5,1
∼=∗5,0
∼=4

∼=∗4,2
∼=∗4,1
∼=∗4,0
∼=3

∼=∗3,1
∼=∗3,0
∼=2

Definition (Hjorth-Kechris-Louveau 1998)

A classifying invariant for ∼=∗3,1 is a pair (A,R) such that

I A ∈ P2
ℵ0

(R) (i.e., a ∼=3-invariant – a set of sets of reals);

I R ⊆ A× A× R, given X ,Y in A, there is r s.t. R(X ,Y , r),

R(X ,Y1, r) ∧ R(X ,Y2, r) =⇒ Y1 = Y2.

For ∼=∗3,0: replace R with N.

Theorem (Hjorth-Kechris-Louveau 1998)
∼=n−1 <B

∼=∗n,0 ≤B
∼=∗n,n−3 <B

∼=∗n,n−2 <B
∼=n.

Theorem (S. 2021)

For any 3 ≤ n, k < n − 2, ∼=∗n,k <B
∼=∗n,k+1.



Classification of countable Archimedean ordered groups

In joint work with F. Calderoni, D. Marker, and L. Motto Ros, we
studied countable Archimedean ordered groups, up to
order-isomorphism, denoted ∼=ArGp.

Archimedean property for an ordered group (G ,+, <):
For any positive group elements x , y there is n ∈ N s.t. x < n · y

Theorem (Calderoni, Marker, Motto Ros, and S.)

I ∼=ArGp is Borel reducible to ∼=∗3,1.

I ∼=ArGp is not Borel reducible to ∼=∗3,0.

In particular
∼=ArGp is classifiable using countable sets of countable sets of reals,
∼=ArGp is not classifiable using countable sets of reals,
and the potential complexity of ∼=ArGp is D(Π0

3).



Archimedean ordered groups

Archimedean property for an ordered group (G ,+, <):
For any positive group elements x , y there is n ∈ N s.t. x < n · y

Theorem (Hölder 1901)

Any Archimedean ordered group is isomorphism to a subgroup of
(R,+).

Lemma (Hion’s Lemma 1954)

G ,H ≤ R, φ : G → H ordered preserving isomorphism. Then

there is λ > 0 with φ(x) = λ · x , for all x ∈ G .



Archimedean ordered groups: classifying invariants

G ,H ≤ R, φ : G → H ordered preserving homomorphism.
Then φ(x) = λ · x , for all x ∈ G , for a fixed λ > 0.

Definition
Given G ≤ R, define G/a = {g/a; g ∈ G},

AG = {G/a; 0 < a ∈ G}∈ P2
ℵ0

(R).

Proposition

The map G 7→ AG is a complete classification of ∼=ArGp.

Proof.
Suppose x 7→ λ · x isomorphism G → H.
For any a ∈ G \ {0}, G/a = λ · G/λ · a = H/λ · a ∈ AH .
So AG ⊆ AH . Therefore AG = AH .

Moreover: Given X = G/a, Y = G/b in AG (a, b ∈ G ),

let r = b/a (∈ G/a), then Y = X/r .(⇐⇒ R(X ,Y , r))

This is a ∼=∗3,1-classifying invariant.



Classification of countable Archimedean ordered groups

In joint work with F. Calderoni, D. Marker, and L. Motto Ros, we
studied countable Archimedean ordered groups, up to
order-isomorphism, denoted ∼=ArGp.

Archimedean property for an ordered group (G ,+, <):
For any positive group elements x , y there is n ∈ N s.t. x < n · y

Theorem (Calderoni, Marker, Motto Ros, and S.)

I ∼=ArGp is Borel reducible to ∼=∗3,1.

I ∼=ArGp is not Borel reducible to ∼=∗3,0.

Question
Is ∼=∗3,1 ≤B

∼=ArGp? (∼=∗3,0 ≤B
∼=ArGp?) (We proved ∼=2 ≤B

∼=ArGp)
More generally, how to construct a Borel reduction from ∼=∗n,k?
Find a simpler combinatorial presentation of ∼=∗n,k .



The Γ-jumps of Clemens and Coskey

Let E be an equivalence relation on X and Γ a countable group.

Definition (Clemens - Coskey 2022)

The Γ-jump of E , E [Γ], is defined on X Γ by

x E [Γ] y ⇐⇒ (∃γ ∈ Γ)(∀α ∈ Γ)x(γ−1α) E y(α).

Iterated Γ-jumps:

J
[Γ]
1 = (={0,1})

[Γ] , J
[Γ]
2 = (J

[Γ]
1 )[Γ] , . . . J

[Γ]
α . . .

Theorem (Clemens - Coskey 2022)

I Iso. on ctbl scattered linear orders of rank 1 + α is ∼B J
[Z]
α .

I E Borel, induced by Γ oΓ = ΓoΓΓ, then E ≤B J
[Γ]
α for some α.

I E 7→ E [Γ]

I Is a (proper) jump operator for, e.g., Γ = Z, or Z<N
p ;

I Not a (proper) jump operator for Z(p∞) (quasi-cyclic p-group)

Question (Clemens-Coskey)

For which Γ is E 7→ E [Γ] a jump operator? For Γ =
⊕

p prime Zp?



The Γ-jump for different Γ

x E [Γ] y ⇐⇒ (∃γ ∈ Γ)(∀α ∈ Γ)x(γ−1α) E y(α)

J
[Γ]
1 = (=0,1)[Γ] , J

[Γ]
2 = (J

[Γ]
1 )[Γ] , . . . J

[Γ]
α . . .

- Iso. on ctbl scattered linear orders of rank 1 + α is ∼B J
[Z]
α .

- E Borel, induced by Γ o Γ = Γ o ΓΓ, then E ≤B J
[Γ]
α for some α.

- Proper jump: YES for Z,Z<N
p ; NO for Z(p∞); ??? for

⊕
p prime Zp

Remark
J

[Γ]
1 = (={0,1})

[Γ] is the orbit ER induced by the shift Γ y {0, 1}Γ.

By a theorem of Gao and Jackson (2015), J
[Γ]
1 ∼B J

[∆]
1 for any

abelian Γ,∆.

Question (Clemens - Coskey)

Is this also true for J
[Γ]
2 , J

[∆]
2 ?

To what extent does E 7→ E [Γ] depend on Γ?

Theorem (S.)

E.g.: if Γ,∆ are two of Z,
⊕

p prime Zp, or Z<N
p for a prime p,

Then J
[Γ]
2 is not Borel reducible to J

[∆]
α , for any α.



∼=∗α,0 - classifying invariants for Γ-jumps

x E [Γ] y ⇐⇒ (∃γ ∈ Γ)(∀α ∈ Γ)x(γ−1α) E y(α)
- Propoer jump operation for Z,Z<N

p .

Remark
If E is Π0

n then E [Γ] is Σ0
n+1.

Example (Z-jump of ∼=2)

We can think of ∼=[Z]
2 as follows:

A space of Z-sequences of countable sets of reals
~A = 〈. . . ,A−1,A0,A1, . . .〉. Z acts by shifting.
Note: a sequence of sets of reals can be coded as a set of reals.
Classifying invariants (of “type” ∼=∗3,0):

a set of sets of reals
{
k · ~A; k ∈ Z

}
,

with a relation R(~A, ~B, k) ⇐⇒ k · ~A = ~B.

Corollary

This also shows ∼=n <B
∼=n+1,0, given that ∼=n <B

∼=[Z]
n .



Potential complexity of Γ-jumps

In fact, there is a relationship between the equivalence relations

J
[Z<N

2 ]
α and the ERs constructed by Hjorth-Kechris-Louveau to

realize D(Π0
n) as a potential complexity.

Theorem (Clemens - Coskey 2022)

Potential complexities for Z<N
2 :

Π0
3 D(Π0

3) Π0
4 D(Π0

4) Π0
5 D(Π0

5) ...

J
[Z<N

2 ]
2 J

[Z<N
2 ]

3 J
[Z<N

2 ]
4

Question (Clemens - Coskey)

What are the precise potential complexities of J
[Z]
α ?

Remark

I (Clemens - Coskey) potential complexity of J
[Z]
2 is Π0

3;

I (S.) potential complexity of J
[Z2]
2 is D(Π0

3);


