Classifying invariants for E_1 A tail of a generic real

Assaf Shani

Harvard University

Caltech Logic Seminar May 2022

Complete classifications

Let E be an equivalence relation on X.

A complete classification of *E* is a map $c: X \to I$

$$x E y \iff c(x) = c(y).$$

Some "bad" examples:

- $c \colon X/E \to X$ choice function $c([x]_E) \in [x]_E$. (Not definable)
- $x \mapsto [x]_{E}$. (Hard to describe c(x) from x)

Say that c is **absolute** if:

- c is definable.
- c remains a complete classification in generic extensions.
- $c(x)^V = c(x)^{V[G]}$ for $x \in V$. ("local computation")
- *E*,*F* E.R.s on Polish spaces *X*, *Y*. *f* : *X* \rightarrow *Y* is a **reduction** if $x E y \iff f(x) F f(y)$.
- *E* is **Borel reducible** to *F*, $E \leq_B F$, if there is a Borel reduction. \implies Classifying invariants for *F* can be used to classify *E*.

A very partial picture of Borel equivalence relations

Generically absolute classifications

Definition: $c: X \to I$ a definable complete classification of *E*. Say that *c* is **generically absolute** if

▶ it remains a complete classification in a Cohen-real extension.

•
$$c(x)^V = c(x)^{V[G]}$$
 for $x \in V$.

Main point: allow some non-orbit relations to "be classifiable" too, while preserving the intuitions about classifications by countable structures. Theorem

- 1. E_1 is generically classifiable, using b many E_0 -classes.
- 2. E_1 does not admit an absolute classification.

3. E_1 is not gen. class. using < add(B) many E_0 -classes.

Question: is (1) optimal? (Cichon-Pawlikowsky: $\mathfrak{b}^{V[Cohen]} = \mathbf{add}(\mathcal{B})^V$)

- Generic classifiability respects Borel reducibility.
- A Turbulent ER has no generically absolute classification.
- ► For natural CBCS ERs, same possible classifying invariants.

Conjecture E admits a generically absolute classification if and only if it does not reduce a turbulent^{*} ER.

Classifying invariants for E_1

$$\begin{array}{l} - \ E_1 \ \text{on} \ (2^{\omega})^{\omega}, \ x \ E_1 \ y \iff (\exists n)(\forall m > n)x(m) = y(m). \\ - \ \text{Fix} \ x \in (2^{\omega})^{\omega}. \ \text{Given} \ f \in \omega^{\omega}, \ \text{Let} \ [x \upharpoonright f] \\ \text{be the set of all finite changes of } x \upharpoonright f. \\ x \ This \ is \ E_1 - invariant. \ ([x \upharpoonright f] \ \text{is an} \ E_0 - \text{class.}) \\ \text{Fix} \ \langle f_{\alpha} \mid \alpha < \mathfrak{b} \rangle, \ <^* - \text{unbdd}, \ f_{\alpha} \ \text{increasing.} \\ \text{Claim:} \ x \mapsto \langle [x \upharpoonright f_{\alpha}] \mid \alpha < \mathfrak{b} \rangle \ \text{is a complete} \\ \text{classification of} \ E_1. \\ \text{Moreover, this is true in any} \\ \text{model in which} \ \langle f_{\alpha} \mid \alpha < \mathfrak{b} \rangle \ \text{is unbounded.} \\ (\text{In particular, in a Cohen-real extension.}) \end{array}$$

Proof.

- Suppose $[x \upharpoonright f_{\alpha}] = [y \upharpoonright f_{\alpha}]$ for all $\alpha < \mathfrak{b}$. Fix *n*, $Z \subseteq \mathfrak{b}$ unbdd, so $x \upharpoonright f_{\alpha}$ and $y \upharpoonright f_{\alpha}$ agree past *n* for $\alpha \in Z$. - Find $k \ge n$ with $\{f_{\alpha}(k); \alpha \in Z\}$ unbounded in ω . (otherwise $\langle f_{\alpha} \mid \alpha \in Z \rangle$ is bounded). - Now x and y agree past k, so $x E_1 y$.

0

An intersection model

Let $x \in \mathbb{R}^{\omega}$ be Cohen generic. Define the tail intersection model

$$M = \bigcap_{n < \omega} V[\langle x_n, x_{n+1}, ... \rangle].$$

This model was used by Kanovei-Sabok-Zapletal (2013) and Larson-Zapletal (2020), while studying E_1 .

What this model looks like was left open. In particular: does it satisfy choice?

Theorem

- A. Choice fails in M. (for b-sequences of E_0 -classes)
- 1. E_1 is generically classifiable. (Using b many of E_0 -classes.)
- B. M = V(A) for a set (of reals) A.
- 2. E_1 does not admit an absolute classification.
- C. Some analysis of reals in *M*. (Q: Does $M \models DC_{<add(B)}$?)
- 3. E_1 is not gen. class. using < add(B) many E_0 -classes. Thanks for listening!