The Γ-jump operators of Clemens and Coskey, and actions of Polish wreath products

Assaf Shani

Harvard University

ASL meeting June 2021

Borel homomorphisms and reductions

Let a: $G \curvearrowright X$ be a continuous action of a Polish group G on a Polish space X .

The action induces the *orbit equivalence relation* E_a on X defined by $x E_a y \iff \exists g \in G(g \cdot x = y)$. How much of G does E_a remember? Definition: Let E and F be equivalence relations on Polish spaces X and Y respectively.

- A Borel map $f: X \rightarrow Y$ is a **homomorphism** from E to F, $(f: E \rightarrow_B F)$, if for $x, x' \in X$, $x E x' \implies f(x) F f(x').$
- A Borel map $f: X \rightarrow Y$ is a reduction of E to F if for any $x, x' \in X$, $x E x' \iff f(x) F f(x')$.
- \blacktriangleright **E** is Borel reducible to F, denoted $E \leq_B F$, if there is a Borel reduction of E to F.
- ► E and F are Borel bireducible, $(E \sim_B F)$, if $E \leq_B F$ and $F \leq_B E$.

The Γ-jumps of Clemens and Coskey

Let E be an equivalence relation on X and Γ a countable group. E^{Γ} is defined on X^{Γ} by $x \in \Gamma$ $y \iff (\forall \gamma \in \Gamma) x(\gamma) \in y(\gamma)$. Γ acts on X^{F} by shifts: $\gamma \cdot x(\alpha) = x(\gamma^{-1} \alpha)$.

Definition (Clemens-Coskey)

The Γ-**jump of** E, $E^{[\Gamma]}$, is defined on X^{Γ} by

$$
x E^{[\Gamma]} y \iff (\exists \gamma \in \Gamma) \gamma \cdot x E^{\Gamma} y.
$$

$$
J_0^{[\Gamma]} = \Delta(2); J_{\alpha+1}^{[\Gamma]} = (J_{\alpha}^{[\Gamma]})^{[\Gamma]}; J_{\alpha}^{[\Gamma]} = (\bigoplus_{\beta < \alpha} J_{\beta}^{[\Gamma]})^{[\Gamma]} \text{ for limit } \alpha.
$$

$$
J_1^{[\Gamma]} : \Gamma \curvearrowright 2^{\Gamma}. J_2^{[\Gamma]} : \Gamma \wr \Gamma = \Gamma \rtimes \Gamma^{\Gamma} \curvearrowright (2^{\Gamma})^{\Gamma}.
$$

Theorem (Clemens-Coskey)

 $\, J^{[\Gamma]}_\alpha, \, \alpha < \omega_1,$ are cofinal for Borel ERs induced by Γ ≀ Γ = Γ \rtimes Γ $^\Gamma.$ $E \mapsto E^{[\Gamma]}$ is a jump operator on Borel ERs, for many Γ $(\mathbb{Z}, \mathbb{Z}_2^{\leq \omega}).$ Iso. on ctbl scattered linear orders of rank 1 + α is \sim_B with $\tilde{J}_{\alpha}^{[\mathbb{Z}]}$.

Question (Clemens-Coskey) When is $J^{[\Gamma]}_{\alpha}$ Borel reducible to $J^{[\Delta]}_{\beta}$ $\frac{d^{1/2}}{\beta}$ for some $\beta < \omega_1$?

Theorem (S.)

Assume that for any group homomorphism ϕ from Γ to a quotient of a subgroup of ∆,

- In the image of ϕ is finite;
- In the Kernel of ϕ is isomorphic to Γ .

(For example, $\mathbb Z$ and $\mathbb Z_2^{<\omega}$.) Then any Borel homomorphism $f\colon\mathcal{J}_2^{[\Gamma]}\to_B\mathcal{J}^{[\Delta]}_\beta$ $\beta^{\mathsf{I}[\mathbf{\Delta}]}$ sends a comeager set into a single orbit. $({}^{\shortparallel}J_2^{[\Gamma]}$ $j_{2}^{[\Gamma]}$ is generically $J_{\beta}^{[\Delta]}$ $\beta^{[\Delta]}$ -ergodic" .)

In particular, there is an action of $\Gamma \wr \Gamma$ which is not Borel reducible to any action of $\Delta \wr \Delta$.

- \triangleright Assume that all group homomorphisms from Γ to a quotient of a subgroup of Δ are trivial. (e.g., $\mathbb{Z}_2^{\leq \omega}$, $\mathbb{Z}_3^{\leq \omega}$.)
- \triangleright Let E be a generically ergodic countable Borel equivalence relation, (such as $J_1^{[\Gamma]} = \Delta(2)^{[\Gamma]}$,) and F an analytic equivalence relation.
- ► We show that a homomorphism $E^{[\Gamma]} \rightarrow_B F^{[\Delta]}$ is in fact a homomorphism $E^{[\Gamma]} \rightarrow_B F^{\Delta}$, on a comeager set.
- Assuming $E^{[\Gamma]}$ is generically F-ergodic we conclude that it is also generically $F^{[\Delta]}$ -ergodic.
- Inductively, $E^{[\Gamma]}$ is generically $J_A^{[\Delta]}$ $\frac{d^{1/2}}{\beta}$ -ergodic for all $\beta < \omega_1$.

A symmetric model for $E^{[\Gamma]}$

Let E be a generically ergodic countable Borel equivalence relation on X . Fix $x\in X^{\mathsf{\Gamma}}$, Cohen generic over V , and let

$$
\vec{A} = \langle [x(\alpha)]_E \mid \alpha \in \Gamma \rangle \text{, and } A = \Big\{ \gamma \cdot \vec{A}; \ \gamma \in \Gamma \Big\}.
$$

A is a classifying invariant for $E^{[\Gamma]}$. We study the model $V(A)$. Its key property is the following.

Lemma

In $V(A)$, the members of A are indiscernible over A and parameters in V. That is, given a formula ψ and $v \in V$,

$$
\psi^{V(A)}(A,\vec{A},v) \iff \psi^{V(A)}(A,\gamma \cdot \vec{A},v).
$$

(In particular, \vec{A} is not definable from A.)

Let $\mathbb P$ be the poset of finite conditions p approximating a choice function through some \vec{B} in A . Let τ be the name for $\bigcup \dot{\mathsf{G}}$. Then

$$
\mathbb{P} \times \mathbb{P} \Vdash \tau_{left} \; \mathsf{E}^{[\Gamma]} \; \tau_{right}.
$$

That is, (\mathbb{P}, τ) is an $E^{[\Gamma]}$ -pin. Fix a Borel homomorphism $f: E^{[\Gamma]} \rightarrow_B F^{[\Delta]}$. Then

$$
\mathbb{P} \times \mathbb{P} \Vdash f(\tau_{\text{left}}) \ F^{\left[\Delta\right]} \ f(\tau_{\text{right}}).
$$

Goal:

Show that in fact $\mathbb{P}\times\mathbb{P}\Vdash f(\tau_\mathit{left})\mathop{\not\subset}\limits F^\Delta\;f(\tau_\mathit{right}).$

Then f is essentially a homomorphism to F^Δ (on a comeager set).

Proof that in fact $\mathbb{P}\times\mathbb{P}\Vdash f(\tau_\mathsf{left})\mathsf{F}^\Delta\;f(\tau_\mathsf{right})$

Fact (Larson-Zapletal "Geometric Set Theory")

There is a condition $p \in \mathbb{P}$ such that $(\mathbb{P} \restriction p) \times (\mathbb{P} \restriction p) \Vdash f(\tau_{\text{left}}) \mathop{\textsf{F}}\nolimits^{\Delta} f(\tau_{\text{right}}).$ w.l.o.g. p "chose" \vec{A} .

$$
\star(\vec{A}) \quad \text{there is some } p \in \mathbb{P} \text{ that "chose" } \vec{A}, \text{ such that } \quad (\mathbb{P} \restriction p) \times (\mathbb{P} \restriction p) \Vdash f(\tau_{\text{left}}) \ F^{\Delta} \ f(\tau_{\text{right}}).
$$

By indiscernibility, any shift of \vec{A} in A also satisfy this statement. For $\gamma \in \Gamma$, there is $\delta \in \Delta$ s.t. if p, q satisfy $\star (\vec{A})$, $\star (\gamma \cdot \vec{A})$, then $(\mathbb{P} \restriction p) \times (\mathbb{P} \restriction q) \Vdash f(\tau_{\text{left}}) \mathop{\not\vdash}^{\Delta} \delta \cdot f(\tau_{\text{right}}).$

By indiscernibility: the map $\gamma \mapsto {\delta \in \Delta}$ as above} is a group homomorphism from Γ to a quotient of a subgroup of Δ . If this group homomorphism is trivial, then $\mathbb{P}\times\mathbb{P}\Vdash f(\tau_\mathsf{left})\mathsf{F}^\Delta\;f(\tau_\mathsf{right})$, as required.

Thanks for listening!