The Γ-jump operators of Clemens and Coskey, and actions of Polish wreath products

Assaf Shani

Harvard University

ASL meeting June 2021

Borel homomorphisms and reductions

Let $a: G \curvearrowright X$ be a continuous action of a Polish group G on a Polish space X.

The action induces the orbit equivalence relation E_a on X defined by $x E_a y \iff \exists g \in G(g \cdot x = y)$. How much of G does E_a remember? Definition: Let E and F be equivalence relations on Polish spaces X and Y respectively.

- ▶ A Borel map $f: X \to Y$ is a **homomorphism** from *E* to *F*, $(f: E \to_B F)$, if for $x, x' \in X$, $x E x' \implies f(x) F f(x')$.
- A Borel map $f: X \to Y$ is a reduction of E to F if for any $x, x' \in X$, $x E x' \iff f(x) F f(x')$.
- ► E is Borel reducible to F, denoted E ≤_B F, if there is a Borel reduction of E to F.
- ▶ *E* and *F* are **Borel bireducible**, $(E \sim_B F)$, if $E \leq_B F$ and $F \leq_B E$.

The Γ-jumps of Clemens and Coskey

Let *E* be an equivalence relation on *X* and Γ a countable group. E^{Γ} is defined on X^{Γ} by $x E^{\Gamma} y \iff (\forall \gamma \in \Gamma) x(\gamma) E y(\gamma)$. Γ acts on X^{Γ} by shifts: $\gamma \cdot x(\alpha) = x(\gamma^{-1}\alpha)$.

Definition (Clemens-Coskey)

The Γ -jump of E, $E^{[\Gamma]}$, is defined on X^{Γ} by

$$x E^{[\Gamma]} y \iff (\exists \gamma \in \Gamma) \gamma \cdot x E^{\Gamma} y.$$

$$J_0^{[\Gamma]} = \Delta(2); \ J_{\alpha+1}^{[\Gamma]} = (J_{\alpha}^{[\Gamma]})^{[\Gamma]}; \ J_{\alpha}^{[\Gamma]} = \left(\bigoplus_{\beta < \alpha} J_{\beta}^{[\Gamma]}\right)^{[\Gamma]} \text{ for limit } \alpha.$$

$$J_1^{[\Gamma]}: \ \Gamma \curvearrowright 2^{\Gamma}. \quad J_2^{[\Gamma]}: \ \Gamma \wr \Gamma = \Gamma \rtimes \Gamma^{\Gamma} \curvearrowright (2^{\Gamma})^{\Gamma}.$$

Theorem (Clemens-Coskey)

 $J_{\alpha}^{[\Gamma]}$, $\alpha < \omega_1$, are cofinal for Borel ERs induced by $\Gamma \wr \Gamma = \Gamma \rtimes \Gamma^{\Gamma}$. $E \mapsto E^{[\Gamma]}$ is a jump operator on Borel ERs, for many $\Gamma (\mathbb{Z}, \mathbb{Z}_2^{<\omega})$. Iso. on ctbl scattered linear orders of rank $1 + \alpha$ is \sim_B with $J_{\alpha}^{[\mathbb{Z}]}$. Question (Clemens-Coskey)

When is $J_{\alpha}^{[\Gamma]}$ Borel reducible to $J_{\beta}^{[\Delta]}$ for some $\beta < \omega_1$?

Theorem (S.)

Assume that for any group homomorphism ϕ from Γ to a quotient of a subgroup of $\Delta,$

- the image of \u03c6 is finite;
- the Kernel of ϕ is isomorphic to Γ .

(For example, \mathbb{Z} and $\mathbb{Z}_{2}^{<\omega}$.) Then any Borel homomorphism $f: J_{2}^{[\Gamma]} \to_{B} J_{\beta}^{[\Delta]}$ sends a comeager set into a single orbit. (" $J_{2}^{[\Gamma]}$ is generically $J_{\beta}^{[\Delta]}$ -ergodic".) In particular, there is an action of $\Gamma \wr \Gamma$ which is not Borel reducible

In particular, there is an action of $\Gamma \wr \Gamma$ which is not Borel reducible to any action of $\Delta \wr \Delta$.

- Assume that all group homomorphisms from Γ to a quotient of a subgroup of Δ are trivial. (e.g., Z₂^{<ω}, Z₃^{<ω}.)
- Let *E* be a generically ergodic countable Borel equivalence relation, (such as $J_1^{[\Gamma]} = \Delta(2)^{[\Gamma]}$,) and *F* an analytic equivalence relation.
- ▶ We show that a homomorphism $E^{[\Gamma]} \rightarrow_B F^{[\Delta]}$ is in fact a homomorphism $E^{[\Gamma]} \rightarrow_B F^{\Delta}$, on a comeager set.
- Assuming E^[Γ] is generically *F*-ergodic we conclude that it is also generically F^[Δ]-ergodic.
- Inductively, $E^{[\Gamma]}$ is generically $J^{[\Delta]}_{\beta}$ -ergodic for all $\beta < \omega_1$.

A symmetric model for $E^{[\Gamma]}$

Let *E* be a generically ergodic countable Borel equivalence relation on *X*. Fix $x \in X^{\Gamma}$, Cohen generic over *V*, and let

$$\vec{A} = \langle [x(\alpha)]_E \mid \alpha \in \Gamma \rangle$$
, and $A = \Big\{ \gamma \cdot \vec{A}; \ \gamma \in \Gamma \Big\}$.

A is a classifying invariant for $E^{[\Gamma]}$. We study the model V(A). Its key property is the following.

Lemma

In V(A), the members of A are indiscernible over A and parameters in V. That is, given a formula ψ and $v \in V$,

$$\psi^{V(A)}(A, \vec{A}, v) \iff \psi^{V(A)}(A, \gamma \cdot \vec{A}, v).$$

(In particular, \vec{A} is not definable from A.)

Let \mathbb{P} be the poset of finite conditions p approximating a choice function through some \vec{B} in A. Let τ be the name for $\bigcup \dot{G}$. Then

$$\mathbb{P} \times \mathbb{P} \Vdash \tau_{left} E^{[\Gamma]} \tau_{right}.$$

That is, (\mathbb{P}, τ) is an $E^{[\Gamma]}$ -pin. Fix a Borel homomorphism $f: E^{[\Gamma]} \to_B F^{[\Delta]}$. Then

$$\mathbb{P} \times \mathbb{P} \Vdash f(\tau_{left}) F^{[\Delta]} f(\tau_{right}).$$

<u>Goal</u>:

Show that in fact $\mathbb{P} \times \mathbb{P} \Vdash f(\tau_{left}) F^{\Delta} f(\tau_{right})$.

Then f is essentially a homomorphism to F^{Δ} (on a comeager set).

Proof that in fact $\mathbb{P} \times \mathbb{P} \Vdash f(\tau_{left}) F^{\Delta} f(\tau_{right})$

Fact (Larson-Zapletal "Geometric Set Theory") There is a condition $p \in \mathbb{P}$ such that $(\mathbb{P} \upharpoonright p) \times (\mathbb{P} \upharpoonright p) \Vdash f(\tau_{left}) F^{\Delta} f(\tau_{right}).$ w.l.o.g. p "chose" \vec{A} .

$$\begin{array}{l} \star(\vec{A}) \quad \text{there is some } p \in \mathbb{P} \text{ that "chose" } \vec{A}, \text{ such that} \\ (\mathbb{P} \upharpoonright p) \times (\mathbb{P} \upharpoonright p) \Vdash f(\tau_{left}) \ F^{\Delta} \ f(\tau_{right}). \end{array}$$

By indiscernibility, any shift of \vec{A} in A also satisfy this statement. For $\gamma \in \Gamma$, there is $\delta \in \Delta$ s.t. if p, q satisfy $\star(\vec{A}), \star(\gamma \cdot \vec{A})$, then $(\mathbb{P} \upharpoonright p) \times (\mathbb{P} \upharpoonright q) \Vdash f(\tau_{left}) F^{\Delta} \delta \cdot f(\tau_{right}).$

By indiscernibility: the map $\gamma \mapsto \{\delta \in \Delta \text{ as above}\}$ is a group homomorphism from Γ to a quotient of a subgroup of Δ . If this group homomorphism is trivial, then $\mathbb{P} \times \mathbb{P} \Vdash f(\tau_{left}) F^{\Delta} f(\tau_{right})$, as required.

Thanks for listening!