Borel reducibility and symmetric models

Assaf Shani

UCLA

Boise Extravaganza in Set Theory Ashland, Oregon June 2019

An equivalence relation E on a Polish space X is **Borel** if $E \subseteq X \times X$ is Borel.

Definition

Let E and F be Borel equivalence relations on Polish spaces X and Y respectively.

- A Borel map f: X → Y is a reduction of E to F if for any x, x' ∈ X, x E x' ⇔ f(x) F f(x').
- Say that E is Borel reducible to F, denoted E ≤_B F, if there is a Borel reduction.

Definition

Let E be an equivalence relation on a set X.

A complete classification of E is a map $c: X \longrightarrow I$ such that for any $x, y \in X$, xEy iff c(x) = c(y).

The elements of I are called **complete invariants** for E.

Definition

▶ The first Friedman-Stanley jump, \cong_2 (also called =⁺) on \mathbb{R}^{ω} is defined such that the map

$$\langle x(i) \mid i < \omega \rangle \in \mathbb{R}^{\omega} \mapsto \{x(i); i \in \omega\} \in \mathcal{P}_2(\mathbb{N})$$

is a complete classification.

Similarly, ≅_α is classifiable by hereditarily countable elements in P_α(ℕ). Let E be a Borel equivalence relation on a Polish space X.

Definition

E is potentially $\mathbf{\Gamma}$ if there is an equivalence relation *F* on a Polish space *Y* so that $F \subseteq Y \times Y$ is $\mathbf{\Gamma}$ and *E* is Borel reducible to *F*.

Example

Consider the equality relation $=_{\mathbb{R}}$ on the reals. Then $=_{\mathbb{R}}$ is Π_1^0 but not potentially Σ_1^0 .

Definition

 Γ is *the* potential complexity of *E* if it is minimal such that *E* is potentially Γ .

Hjorth-Kechris-Louveau (1998) completely classified the possible *potential complexities* of Borel equivalence relations which are induced by closed subgroups of S_{∞} . (A set is in $D(\Gamma)$ if it is the difference of two sets in Γ)

For each class they found a maximal element.

Definition (Hjorth-Kechris-Louveau 1998)

The relation $\cong_{\alpha+1,\beta}^*$ for $2 \le \alpha$ and $\beta < \alpha$ is defined as follows. \cong_4^* An invariant for $\cong_{3,1}^*$ is a set A such that $\cong_{4,2}^*$

- A is a hereditarily countable set in P₃(N) (i.e., a ≃₃-invariant – a set of sets of reals);
- ► There is a trenary relation R ⊆ A × A × P₁(N), definable from A, such that;
- ▶ given any $a \in A$, R(a, -, -) is an injective function from A to $\mathcal{P}_1(\mathbb{N})$.

Note: for
$$\gamma \leq \beta$$
, $\cong_{\alpha+1,\gamma}^* \leq_B \cong_{\alpha+1,\beta}^*$

 $\cong_{4.1}^{*}$

 \cong_{40}^{*}

 $\cong_{3.1}^*$

 $\cong_{3.0}^{*}$

Theorem (Hjorth-Kechris-Louveau 1998)

Let *E* be a Borel equivalence relation induced by a *G*-action where *G* is a closed subgroup of S_{∞} . Then

- 1. If E is potentially $D(\Pi_n^0)$ then $E \leq_B \cong_{n,n-2}^* (n \geq 3)$;
- 2. If E is potentially $\Sigma_{\lambda+1}^{0}$ then $E \leq_{B} \cong_{\lambda+1,<\lambda}^{*} (\lambda \text{ limit});$
- 3. If E is potentially $D(\mathbf{\Pi}^0_{\lambda+n})$ then $E \leq_B \cong^*_{\lambda+n,\lambda+n-2}$ $(n \geq 2)$.

Theorem (Hjorth-Kechris-Louveau 1998)

Let *E* be a Borel equivalence relation induced by a *G*-action where *G* is an abelian closed subgroup of S_{∞} . Then

- 1. If E is potentially $D(\Pi_n^0)$ then $E \leq_B \cong_{n,0}^* (n \geq 3)$;
- 2. If *E* is potentially $\Sigma_{\lambda+1}^{0}$ then $E \leq_{B} \cong_{\lambda+1,0}^{*} (\lambda \text{ limit});$
- 3. If E is potentially $D(\Pi^0_{\lambda+n})$ then $E \leq_B \cong^*_{\lambda+n,0} (n \geq 2)$.
- $\Delta_{1} \quad \Pi_{1}^{0} \quad \Sigma_{2}^{0} \quad \Pi_{3}^{0} \quad D(\Pi_{3}^{0}) \quad \Pi_{4}^{0} \quad D(\Pi_{4}^{0}) \dots \quad \Pi_{\omega}^{0}$ $G \text{ is abelian} \qquad \cong_{3,0}^{*} \qquad \cong_{4,0}^{*}$ $\Sigma_{\omega+1}^{0} \quad \Pi_{\omega+2}^{0} \quad D(\Pi_{\omega+2}^{0}) \quad \Pi_{\omega+3}^{0} \quad D(\Pi_{\omega+3}^{0}) \dots$ $\cong_{\omega+1,0}^{*} \qquad \cong_{\omega+2,0}^{*} \qquad \cong_{\omega+3,0}^{*}$

Theorem (Hjorth-Kechris-Louveau 1998) For all countable ordinals α , $\cong_{\alpha+3,\alpha}^* <_B \cong_{\alpha+3,\alpha+1}^*$.

Question (Hjorth-Kechris-Louveau 1998)

Are the reductions $\cong_{\omega+1,0}^* \le_B \cong_{\omega+1,<\omega}^*$ and $\cong_{\omega+2,0}^* \le_B \cong_{\omega+2,\omega}^*$ strict?

Expecting a positive answer Hjorth-Kechris-Louveau further conjectured that the entire $\cong_{\alpha,\beta}^*$ hierarchy is strict.

Theorem (S.) $\cong_{\alpha+1,\beta}^* <_B \cong_{\alpha+1,\beta+1}^*$ for any α,β (when defined). $\stackrel{\cong^*_{\omega+1,<\omega}}{\underset{\omega+1,1}{\overset{{}_{\omega}}{\bigvee}}}$

Let $\langle x_n | n < \omega \rangle$ be a generic sequence of Cohen reals and $A = \{x_n; n \in \omega\}$ the unordered collection. The "Basic Cohen model" where the axiom of choice fails can be expressed as

V(A)

The set-theoretic definable closure of (the transitive closure of) A. Any set X in V(A) is definable (in V(A)) using A, finitely many parameters \bar{a} from the transitive closure of A, and a parameter v from V.

That is, X is the unique solution to $\psi(X, A, \bar{a}, v)$.

Theorem (S.)

Suppose *E* and *F* are Borel equivalence relations, classifiable by countable structures (and fix a collection of invariants). Assume further that *E* is Borel reducible to *F*. Let *A* be an *E*-invariant in some generic extension. Then there is an *F*-invariant *B* s.t. $B \in V(A)$ and

V(A)=V(B).

Furthermore, B is definable in V(A) using only A and parameters from V.

Remark

The proof uses tools from Zapletal "Idealized Forcing" (2008) and Kanovei-Sabok-Zapletal "Canonical Ramsey theory on Polish Spaces" (2013).

Assume E is Borel reducible to F and A is a generic E-invariant. Then V(A) = V(B) for some F-invariant B which is definable in V(A) using only A and parameters from V.

Example

The "Basic Cohen Model" is V(A) for a generic =⁺-invariant A. V(A) is not of the form V(r) for any real r (an =_R-invariant). (Recall that for any real r, V(r) satisfies choice.)

It follows that $=^+$ is not Borel reducible to $=_{\mathbb{R}}$

To prove the main theorem, we need to find "good" invariants for $\cong_{\alpha,\beta}^*$.

$\cong_{3,1}^*$ is not Borel reducible to $\cong_{3,0}^*$

Let $V(A^1)$ be the Basic Cohen model as before. Let $X \subseteq A^1$ be generic over $V(A^1)$.

 $A = \{ X \Delta \bar{a}; \ \bar{a} \subseteq A^1 \text{ is finite} \} \in \mathcal{P}_3(\mathbb{N}).$

For any $Y \in A$ the map $Z \mapsto Z\Delta Y$ is injective from A to the reals.

Thus A is a $\cong_{3,1}^*$ -invariant. Note that $V(A) = V(A^1)[X]$.

To prove $\cong_{3,1}^* \not\leq_B \cong_{3,0}^*$ it suffices to show

Proposition

 $V(A) \neq V(B)$ whenever $B \in V(A)$ is a set of sets of reals and B is countable and B is definable from A.

Proof of the proposition

Assume for contradiction that *B* is a countable set of sets of reals *B*, <u>definable from *A* alone</u>, such that V(A) = V(B). Then $X \in V(B)$. Assume that for some $U \in B$

X is defined by $\psi(X,B,U).$

Applying finite permutations to the poset adding X, we get that for any $a \in A^1$ there is $U_a \in B$ such that

 $X\Delta\{a\}$ is defined by $\psi(X\Delta\{a\}, B, U_a)$.

A is preserved under finite changes of X and therefore so is B since B is definable from A alone. This gives an injective map from the Cohen set A^1 to B. Since B is countable, so is A^1 . This is a contradiction since: Fact: $V(A^1)$ and $V(A^1)[X]$ have the same reals.

Dealing with $\cong_{\omega+1,<\omega}^*$ and $\cong_{\omega+2,\omega}^*$

- ► The trick above produces "good" invariants for the ≅* equivalence relations starting from "good" invariants for the Friedman-Stanley jumps.
- Monro (1973) produced models V(Aⁿ), Aⁿ ∈ P_{n+1}(N), in which the generalized Kinna-Wagner principles KWPⁿ⁻¹ fail. It can be shown that V(Aⁿ) ≠ V(B) for any B ∈ P_n(N).
- Karagila (2019) constructed a model M_ω = V(A^ω) in which KWPⁿ fails for all n. He asked whether Monro's constructed can be continued past ω.
- The only previously known failure of KWP^ω is in the Bristol model. (The construction uses L-like conbinatorial principles.)
- It is open which large cardinals are consistent with high failure of Kinna-Wagner principles (Woodin's Axiom of Choice Conjecture implies that extendible cardinals are not.)

Theorem (S.)

For any $\alpha < \omega_1$ there is a Monro-style model $V(A^{\alpha})$.

- A^{α} is a generic \cong_{α} -invariant;
- V(A^α) is not of the form V(B) for any set B in P_{<α}(ℕ);
- KWP^{α} fails in $V(A^{\alpha+1})$;
- ► Works over any V.

Corollary

- (Friedman-Stanley) $\cong_{\alpha+1}$ is not Borel reducible to \cong_{α} .
- ▶ Together with a few more tricks, the main theorem follows. That is, the $\cong_{\alpha,\beta}^*$ hierarchy is strict.