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Borel equivalence relations

E

F

An equivalence relation E on a Polish space X
is Borel if E ⊆ X × X is Borel.

Definition
Let E and F be Borel equivalence
relations on Polish spaces X and Y respectively.

I A Borel map f : X −→ Y is a reduction
of E to F if for any x , x ′ ∈ X ,
x E x ′ ⇐⇒ f (x) F f (x ′).

I Say that E is Borel reducible to F , denoted
E ≤B F , if there is a Borel reduction.
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Friedman-Stanley jumps

Definition
Let E be an equivalence relation on a set X .
A complete classification of E is a map c : X −→ I such that for
any x , y ∈ X , xEy iff c(x) = c(y).
The elements of I are called complete invariants for E .

Definition

I The first Friedman-Stanley jump, ∼=2 (also called =+) on Rω
is defined such that the map

〈x(i) | i < ω〉 ∈ Rω 7→ {x(i); i ∈ ω} ∈ P2(N)

is a complete classification.

I Similarly, ∼=α is classifiable by hereditarily countable elements
in Pα(N).
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Potential complexity

Let E be a Borel equivalence relation on a Polish space X .

Definition
E is potentially Γ if there is an equivalence relation F on a Polish
space Y so that F ⊆ Y × Y is Γ and E is Borel reducible to F .

Example

Consider the equality relation =R on the reals.
Then =R is Π0

1 but not potentially Σ0
1.

Definition
Γ is the potential complexity of E if it is minimal such that E is
potentially Γ.
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The equivalence relations of Hjorth-Kechris-Louveau

Hjorth-Kechris-Louveau (1998) completely classified the possible
potential complexities of Borel equivalence relations which are
induced by closed subgroups of S∞. (A set is in D(Γ) if it is the
difference of two sets in Γ)
For each class they found a maximal element.

∆1 Π0
1 Σ0

2 Π0
3 D(Π0

3) Π0
4 D(Π0

4) ... Π0
ω

=N =R E∞ ∼=2

(=+)

∼=3
∼=ω

(=++)

Σ0
ω+1 Π0

ω+2 D(Π0
ω+2) Π0

ω+3 D(Π0
ω+3) ...

∼=ω+1
∼=ω+2
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The equivalence relations of Hjorth-Kechris-Louveau

∼=4

∼=∗4,2
∼=∗4,1
∼=∗4,0
∼=3

∼=∗3,1
∼=∗3,0
∼=2

Definition (Hjorth-Kechris-Louveau 1998)

The relation ∼=∗α+1,β for 2 ≤ α and β < α is defined as follows.

An invariant for ∼=∗3,1 is a set A such that

I A is a hereditarily countable set in P3(N)
(i.e., a ∼=3-invariant – a set of sets of reals);

I There is a trenary relation R ⊆ A× A× P1(N),
definable from A, such that;

I given any a ∈ A,
R(a,−,−) is an injective function from A to P1(N).

Note: for γ ≤ β, ∼=∗α+1,γ≤B
∼=∗α+1,β.
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The equivalence relations of Hjorth-Kechris-Louveau

Theorem (Hjorth-Kechris-Louveau 1998)

Let E be a Borel equivalence relation induced by a G -action where
G is a closed subgroup of S∞. Then

1. If E is potentially D(Π0
n) then E ≤B

∼=∗n,n−2 (n ≥ 3);

2. If E is potentially Σ0
λ+1 then E ≤B

∼=∗λ+1,<λ (λ limit);

3. If E is potentially D(Π0
λ+n) then E ≤B

∼=∗λ+n,λ+n−2 (n ≥ 2).

∆1 Π0
1 Σ0

2 Π0
3 D(Π0

3) Π0
4 D(Π0

4) ... Π0
ω

∼=∗3,1 ∼=∗4,2

Σ0
ω+1 Π0

ω+2 D(Π0
ω+2) Π0

ω+3 D(Π0
ω+3) ...

∼=∗ω+1,<ω
∼=∗ω+2,ω

∼=∗ω+3,ω+1
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Abelian group actions

Theorem (Hjorth-Kechris-Louveau 1998)

Let E be a Borel equivalence relation induced by a G -action where
G is an abelian closed subgroup of S∞. Then

1. If E is potentially D(Π0
n) then E ≤B

∼=∗n,0 (n ≥ 3);

2. If E is potentially Σ0
λ+1 then E ≤B

∼=∗λ+1,0 (λ limit);

3. If E is potentially D(Π0
λ+n) then E ≤B

∼=∗λ+n,0 (n ≥ 2).

∆1 Π0
1 Σ0

2 Π0
3 D(Π0

3) Π0
4 D(Π0

4) ... Π0
ω

G is abelian ∼=∗3,0 ∼=∗4,0

Σ0
ω+1 Π0

ω+2 D(Π0
ω+2) Π0

ω+3 D(Π0
ω+3) ...

∼=∗ω+1,0
∼=∗ω+2,0

∼=∗ω+3,0
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Abelian group actions

∼=∗ω+1,<ω

∼=∗ω+1,1

∼=∗ω+1,0

∼=∗4,2

∼=∗4,1

∼=∗4,0

<
B

<
B

<
B

<
B

Theorem (Hjorth-Kechris-Louveau 1998)

For all countable ordinals α, ∼=∗α+3,α<B
∼=∗α+3,α+1.

Question (Hjorth-Kechris-Louveau 1998)

Are the reductions ∼=∗ω+1,0≤B
∼=∗ω+1,<ω

and ∼=∗ω+2,0≤B
∼=∗ω+2,ω strict?

Expecting a positive answer Hjorth-Kechris-Louveau
further conjectured that the entire ∼=∗α,β hierarchy is strict.

Theorem (S.)
∼=∗α+1,β<B

∼=∗α+1,β+1 for any α, β (when defined).
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The “Basic Cohen model”

Let 〈xn | n < ω〉 be a generic sequence of Cohen reals and
A = {xn; n ∈ ω} the unordered collection.
The “Basic Cohen model” where the axiom of choice fails can be
expressed as

V (A)

The set-theoretic definable closure of (the transitive closure of) A.

Any set X in V (A) is definable (in V (A)) using A, finitely many
parameters ā from the transitive closure of A, and a parameter v
from V .
That is, X is the unique solution to ψ(X ,A, ā, v).
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Borel reducibility and symmetric models

Theorem (S.)

Suppose E and F are Borel equivalence relations, classifiable by
countable structures (and fix a collection of invariants).
Assume further that E is Borel reducible to F .
Let A be an E -invariant in some generic extension.
Then there is an F -invariant B s.t. B ∈ V (A) and

V (A) = V (B).

Furthermore, B is definable in V (A) using only A and parameters
from V .

Remark
The proof uses tools from Zapletal “Idealized Forcing” (2008) and
Kanovei-Sabok-Zapletal “Canonical Ramsey theory on Polish
Spaces” (2013).
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A simple example

Assume E is Borel reducible to F and A is a generic E -invariant.
Then V (A) = V (B) for some F -invariant B which is definable in
V (A) using only A and parameters from V .

Example

The “Basic Cohen Model” is V (A) for a generic =+-invariant A.
V (A) is not of the form V (r) for any real r (an =R-invariant).
(Recall that for any real r , V (r) satisfies choice.)

It follows that =+ is not Borel reducible to =R

To prove the main theorem,
we need to find “good” invariants for ∼=∗α,β.
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∼=∗3,1 is not Borel reducible to ∼=∗3,0

A1

X

Let V (A1) be the Basic Cohen model as before.
Let X ⊆ A1 be generic over V (A1).

A =
{
X∆ā; ā ⊆ A1 is finite

}
∈ P3(N).

For any Y ∈ A the map Z 7→ Z∆Y is injective
from A to the reals.

Thus A is a ∼=∗3,1-invariant. Note that V (A) = V (A1)[X ].

To prove ∼=∗3,1 6≤B
∼=∗3,0 it suffices to show

Proposition

V (A) 6= V (B) whenever B ∈ V (A) is a set of sets of reals and B
is countable and B is definable from A.
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Proof of the proposition

Assume for contradiction that B is a countable set of sets of reals
B, definable from A alone, such that V (A) = V (B).
Then X ∈ V (B). Assume that for some U ∈ B

X is defined by ψ(X ,B,U).

Applying finite permutations to the poset adding X , we get that
for any a ∈ A1 there is Ua ∈ B such that

X∆{a} is defined by ψ(X∆{a},B,Ua).

A is preserved under finite changes of X and therefore so is B
since B is definable from A alone.
This gives an injective map from the Cohen set A1 to B.
Since B is countable, so is A1. This is a contradiction since:
Fact: V (A1) and V (A1)[X ] have the same reals.
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Dealing with ∼=∗ω+1,<ω and ∼=∗ω+2,ω

I The trick above produces “good” invariants for the ∼=∗
equivalence relations starting from “good” invariants for the
Friedman-Stanley jumps.

I Monro (1973) produced models V (An), An ∈ Pn+1(N), in
which the generalized Kinna-Wagner principles KWPn−1 fail.
It can be shown that V (An) 6= V (B) for any B ∈ Pn(N).

I Karagila (2019) constructed a model Mω = V (Aω) in which
KWPn fails for all n. He asked whether Monro’s constructed
can be continued past ω.

I The only previously known failure of KWPω is in the Bristol
model. (The construction uses L-like conbinatorial principles.)

I It is open which large cardinals are consistent with high failure
of Kinna-Wagner principles (Woodin’s Axiom of Choice
Conjecture implies that extendible cardinals are not.)
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Invariants for the Friedman-Stanley jumps

Theorem (S.)

For any α < ω1 there is a Monro-style model V (Aα).

I Aα is a generic ∼=α-invariant;

I V (Aα) is not of the form V (B) for any set B in P<α(N);

I KWPα fails in V (Aα+1);

I Works over any V .

Corollary

I (Friedman-Stanley) ∼=α+1 is not Borel reducible to ∼=α.

I Together with a few more tricks, the main theorem follows.
That is, the ∼=∗α,β hierarchy is strict.
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