Borel reducibility and symmetric models

Assaf Shani

UCLA

Boise Extravaganza in Set Theory Ashland, Oregon June 2019

An equivalence relation E on a Polish space X is **Borel** if $E \subset X \times X$ is Borel.

Definition

Let E and F be Borel equivalence relations on Polish spaces X and Y respectively.

- A Borel map $f: X \longrightarrow Y$ is a reduction of E to F if for any $x, x' \in X$, $x E x' \iff f(x) F f(x')$.
- \triangleright Say that E is Borel reducible to F, denoted $E \leq_B F$, if there is a Borel reduction.

Definition

Let E be an equivalence relation on a set X .

A complete classification of E is a map $c: X \longrightarrow I$ such that for any $x, y \in X$, xEy iff $c(x) = c(y)$.

The elements of *I* are called **complete invariants** for *E*.

Definition

► The first Friedman-Stanley jump, \cong_2 (also called $=^+)$ on \mathbb{R}^ω is defined such that the map

$$
\langle x(i) | i < \omega \rangle \in \mathbb{R}^{\omega} \mapsto \{x(i); i \in \omega\} \in \mathcal{P}_2(\mathbb{N})
$$

is a complete classification.

 \triangleright Similarly, \cong_{α} is classifiable by hereditarily countable elements in $\mathcal{P}_{\alpha}(\mathbb{N}).$

Let E be a Borel equivalence relation on a Polish space X .

Definition

E is potentially Γ if there is an equivalence relation F on a Polish space Y so that $F \subseteq Y \times Y$ is Γ and E is Borel reducible to F.

Example

Consider the equality relation $=_{\mathbb{R}}$ on the reals. Then $=_{\mathbb{R}}$ is Π^0_1 but not potentially $\Sigma^0_1.$

Definition

 Γ is the potential complexity of E if it is minimal such that E is potentially Γ.

Hjorth-Kechris-Louveau (1998) completely classified the possible potential complexities of Borel equivalence relations which are induced by closed subgroups of S_{∞} . (A set is in $D(\Gamma)$ if it is the difference of two sets in Γ)

For each class they found a maximal element.

 $Δ_1$ Π⁰₁ Σ⁰₂ Π⁰₃ D(Π⁰₃) Π⁰₄ D(Π⁰₄)... Π 0 ω $=_{\mathbb{N}}$ $=_{\mathbb{R}}$ \mathcal{E}_{∞} \cong_2 \cong_3 $(=^+)$ $(=^{++})$ ∼=ω $\Sigma_{\omega+1}^0 \qquad \Pi_{\omega+2}^0 \qquad D(\Pi_{\omega+2}^0) \qquad \Pi_{\omega+3}^0 \qquad D(\Pi_{\omega+3}^0) \; ...$ \cong _{ω+1} \cong _{ω+2}

Definition (Hjorth-Kechris-Louveau 1998)

∼=4 ∼= ∗ 4,2 $\cong^*_{4,1}$ ∼= ∗ 4,0 \cong_2 The relation $\cong_{\alpha+1,\beta}^*$ for $2\leq \alpha$ and $\beta<\alpha$ is defined as follows. An invariant for $\cong_{3,1}^*$ is a set A such that A is a hereditarily countable set in $P_3(N)$ (i.e., a \cong_3 -invariant – a set of sets of reals); ► There is a trenary relation $R \subseteq A \times A \times \mathcal{P}_1(\mathbb{N}),$ definable from A, such that;

► given any $a \in A$, $R(a, -, -)$ is an injective function from A to $\mathcal{P}_1(\mathbb{N})$.

Note: for
$$
\gamma \leq \beta
$$
, $\cong_{\alpha+1,\gamma}^* \leq_B \cong_{\alpha+1,\beta}^*$.

6 / 16

 $\cong_{3,1}^*$

∼= ∗ 3,0

 \cong ₂

Theorem (Hjorth-Kechris-Louveau 1998)

Let E be a Borel equivalence relation induced by a G -action where G is a closed subgroup of S_{∞} . Then

- 1. If E is potentially D $(\mathbf{\Pi}_{n}^{0})$ then $E \leq_{B} \cong_{n,n-2}^{\ast} (n \geq 3)$;
- 2. If E is potentially $\mathbf{\Sigma}_{\lambda+1}^{\mathbf{0}}$ then $E \leq_B \cong_{\lambda+1,<\lambda}^*$ $(\lambda \text{ limit});$
- 3. If E is potentially $D(\Pi_{\lambda+n}^0)$ then $E \leq_B \cong_{\lambda+n,\lambda+n-2}^*$ $(n \geq 2)$.
- Δ_1 Π_1^0 Σ_2^0 Π_3^0 $D(\Pi_3^0)$ Π_4^0 $D(\Pi_4^0)$... Π_ω^0 $\cong_{3,1}^*$ ∼= ∗ 4,2 $\Sigma_{\omega+1}^0$ $\Pi_{\omega+2}^0$ $D(\Pi_{\omega+2}^0)$ $\Pi_{\omega+3}^0$ $D(\Pi_{\omega+3}^0)$... $\cong_{\omega+1,<\omega}^*$ $\cong_{\omega+2,\omega}^*$ $\cong_{\omega+3,\omega+1}^*$

Theorem (Hjorth-Kechris-Louveau 1998)

Let E be a Borel equivalence relation induced by a G -action where G is an abelian closed subgroup of S_{∞} . Then

- 1. If E is potentially D $(\mathbf{\Pi}_{n}^{0})$ then $E \leq_{B} \cong_{n,0}^{*} (n \geq 3)$;
- 2. If E is potentially $\mathbf{\Sigma}_{\lambda+1}^0$ then $E \leq_B \cong_{\lambda+1,0}^\ast (\lambda \text{ limit});$
- 3. If E is potentially $D(\Pi_{\lambda+n}^0)$ then $E \leq_B \cong_{\lambda+n,0}^*$ $(n \geq 2)$.
- Δ_1 Π_1^0 Σ_2^0 Π_3^0 $D(\Pi_3^0)$ Π_4^0 $D(\Pi_4^0)$... Π_ω^0 G is abelian ∗ 3,0 $\cong^*_{4,0}$ $\Sigma_{\omega+1}^0$ $\Pi_{\omega+2}^0$ $D(\Pi_{\omega+2}^0)$ $\Pi_{\omega+3}^0$ $D(\Pi_{\omega+3}^0)$... $\cong_{\omega+1,0}^*$ $\cong_{\omega+2,0}^*$ $\cong_{\omega+3,0}^*$

Theorem (Hjorth-Kechris-Louveau 1998) For all countable ordinals α , $\cong_{\alpha+3,\alpha}^* <_{\mathcal{B}} \cong_{\alpha+3,\alpha+1}^*$. Question (Hjorth-Kechris-Louveau 1998) Are the reductions $\cong_{\omega+1,0}^* \leq_B \cong_{\omega+1,<\omega}^*$ and $\cong_{\omega+2,0}^* \leq_B \cong_{\omega+2,\omega}^*$ strict?

Expecting a positive answer Hjorth-Kechris-Louveau further conjectured that the entire $\cong_{\alpha,\beta}^*$ hierarchy is strict.

Theorem (S.) $\cong_{\alpha+1,\beta}^*_B\cong_{\alpha+1,\beta+1}^*$ for any α,β (when defined). $\cong_{\omega+1,<\omega}^*$ $\cong_{\omega+1,1}^*$

Let $\langle x_n | n \langle \omega \rangle$ be a generic sequence of Cohen reals and $A = \{x_n; n \in \omega\}$ the unordered collection.

The "Basic Cohen model" where the axiom of choice fails can be expressed as

$V(A)$

The set-theoretic definable closure of (the transitive closure of) A. Any set X in $V(A)$ is definable (in $V(A)$) using A, finitely many parameters \bar{a} from the transitive closure of A , and a parameter v from V.

That is, X is the unique solution to $\psi(X, A, \bar{a}, v)$.

Theorem (S.)

Suppose E and F are Borel equivalence relations, classifiable by countable structures (and fix a collection of invariants). Assume further that E is Borel reducible to F . Let A be an E-invariant in some generic extension. Then there is an F-invariant B s.t. $B \in V(A)$ and

 $V(A) = V(B)$.

Furthermore, B is definable in $V(A)$ using only A and parameters from V.

Remark

The proof uses tools from Zapletal "Idealized Forcing" (2008) and Kanovei-Sabok-Zapletal "Canonical Ramsey theory on Polish Spaces" (2013).

Assume E is Borel reducible to F and A is a generic E -invariant. Then $V(A) = V(B)$ for some *F*-invariant *B* which is definable in $V(A)$ using only A and parameters from V.

Example

The "Basic Cohen Model" is $V(A)$ for a generic $=$ +-invariant A. $V(A)$ is not of the form $V(r)$ for any real r (an = \mathbb{R} -invariant). (Recall that for any real r , $V(r)$ satisfies choice.)

It follows that $=$ ⁺ is not Borel reducible to $=$ _R

To prove the main theorem, we need to find "good" invariants for $\cong_{\alpha,\beta}^*$.

\cong_3^* $_{3,1}^*$ is not Borel reducible to \cong^*_3 3,0

Let $\mathcal{V}(A^1)$ be the Basic Cohen model as before. Let $X\subseteq \mathcal{A}^1$ be generic over $\mathcal{V}(\mathcal{A}^1).$

$$
A = \left\{ X \Delta \bar{a} ; \, \bar{a} \subseteq A^1 \text{ is finite} \right\} \in \mathcal{P}_3(\mathbb{N}).
$$

For any $Y \in A$ the map $Z \mapsto Z\Delta Y$ is injective from A to the reals.

Thus A is a $\cong_{3,1}^*$ -invariant. Note that $V(A) = V(A^1)[X]$.

To prove $\cong^*_{3,1}$ ≰ $_B \cong^*_{3,0}$ it suffices to show

Proposition

 $V(A) \neq V(B)$ whenever $B \in V(A)$ is a set of sets of reals and B is countable and B is definable from A .

Proof of the proposition

Assume for contradiction that B is a countable set of sets of reals B, definable from A alone, such that $V(A) = V(B)$. Then $X \in V(B)$. Assume that for some $U \in B$

X is defined by $\psi(X, B, U)$.

Applying finite permutations to the poset adding X , we get that for any $a\in A^1$ there is $U_a\in B$ such that

 $X\Delta\{a\}$ is defined by $\psi(X\Delta\{a\}, B, U_a)$.

A is preserved under finite changes of X and therefore so is B since B is definable from A alone. This gives an injective map from the Cohen set A^1 to B . Since B is countable, so is A^1 . This is a contradiction since: <u>Fact</u>: $V(A^1)$ and $V(A^1)[X]$ have the same reals.

Dealing with $\cong_{\omega+1,<\omega}^*$ and \cong_{ω}^* $^{\omega+2,\omega}$

- ► The trick above produces "good" invariants for the \cong^* equivalence relations starting from "good" invariants for the Friedman-Stanley jumps.
- ► Monro (1973) produced models $V(A^n)$, $A^n \in \mathcal{P}_{n+1}(\mathbb{N})$, in which the generalized Kinna-Wagner principles KWP^{n-1} fail. It can be shown that $V(A^n) \neq V(B)$ for any $B \in \mathcal{P}_n(\mathbb{N})$.
- \blacktriangleright Karagila (2019) constructed a model $M_\omega=V(A^\omega)$ in which $KWPⁿ$ fails for all n. He asked whether Monro's constructed can be continued past ω .
- The only previously known failure of KWP^{ω} is in the Bristol model. (The construction uses L-like conbinatorial principles.)
- It is open which large cardinals are consistent with high failure of Kinna-Wagner principles (Woodin's Axiom of Choice Conjecture implies that extendible cardinals are not.)

Theorem (S.)

For any $\alpha < \omega_1$ there is a Monro-style model $\mathcal{V}(A^\alpha).$

- ► A^{α} is a generic \cong_{α} -invariant;
- \blacktriangleright $V(A^{\alpha})$ is not of the form $V(B)$ for any set B in $\mathcal{P}_{\leq \alpha}(\mathbb{N});$
- \blacktriangleright KWP^{α} fails in $V(A^{\alpha+1})$;
- \blacktriangleright Works over any V.

Corollary

- ► (Friedman-Stanley) $\cong_{\alpha+1}$ is not Borel reducible to \cong_{α} .
- \triangleright Together with a few more tricks, the main theorem follows. That is, the $\cong_{\alpha,\beta}^*$ hierarchy is strict.