Above countable products of countable equivalence relations

Assaf Shani

UCLA

European Set Theory Conference, Vienna July 2019

Definition (Clemens-Coskey)

Let *E* be an equivalence relation on *X* and Γ a countable group. The Γ -jump of *E*, $E^{[\Gamma]}$, is defined on X^{Γ} by

$$x E^{[\Gamma]} y \iff (\exists \gamma \in \Gamma) (\forall \alpha \in \Gamma) x(\gamma^{-1} \alpha) E y(\alpha).$$

 E^{ω} is defined on X^{ω} by $x E^{\omega} y \iff (\forall n \in \omega) x(n) E y(n)$. Example

$$E_0 \sim_B (=_{\{0,1\}})^{[\mathbb{Z}]}$$
 and $E_\infty \sim_B (=_{\{0,1\}})^{[\mathbb{F}_2]}$.

Theorem (Clemens-Coskey) $E \mapsto E^{[\mathbb{Z}]}$ is a jump operator on Borel equivalence relations.

 $\begin{array}{l} x \ E^{\omega} \ y \iff (\forall n \in \omega) x(n) \ E \ y(n) \\ x \ E^{[\Gamma]} \ y \iff (\exists \gamma \in \Gamma) (\forall \alpha \in \Gamma) x(\gamma^{-1} \alpha) \ E \ y(\alpha). \end{array}$

Theorem (Clemens-Coskey)

Suppose *E* is a generically ergodic countable Borel equivalence relation and Γ a countable infinite group. Then $E^{\omega} <_B E^{[\Gamma]}$.

Question (Clemens-Coskey) Is $E_{\infty}^{[\mathbb{Z}]} <_B E_{\infty}^{[\mathbb{F}_2]}$?

Theorem (S.)

Suppose E is a generically ergodic countable Borel equivalence relation.

$$E^{[\mathbb{Z}]} <_B E^{[\mathbb{Z}^2]} <_B E^{[\mathbb{Z}^3]} <_B \dots <_B E^{[\mathbb{F}_2]}.$$

Let F be an equivalence relation on Y. A complete classification of F is a map $c: Y \longrightarrow I$ such that for any $x, y \in Y$,

$$x F y \iff c(x) = c(y).$$

Complete classifications: (using hereditarily countable structures)

•
$$=_{[0,1]}$$
 on $[0,1]$: $x \mapsto x$;

- *E* a countable Borel equivalence relation: $x \mapsto [x]_E$;
- E^{ω} : $x \mapsto \langle [x(n)]_E | n < \omega \rangle$ • $E^{[\Gamma]}$: Given $x \in X^{\Gamma}$, for $\gamma \in \Gamma$ let $A_{\gamma} = [x(\gamma)]_E$.

$$x \mapsto \left\{ (\gamma, A_{\alpha}, A_{\gamma^{-1}\alpha}); \gamma, \alpha \in \Gamma \right\}.$$

"A set of *E*-classes and an action of Γ on it"

Theorem (S.)

Suppose *E* and *F* are Borel equivalence relations, classifiable by countable structures (and fix a collection of invariants). Assume further that *E* is Borel reducible to *F*. Let *A* be an *E*-invariant in some generic extension. Then there is an *F*-invariant *B* s.t. $B \in V(A)$ and

V(A)=V(B).

Furthermore, B is definable in V(A) using only A and parameters from V.

Remark

The proof uses tools from Zapletal "Idealized Forcing" (2008) and Kanovei-Sabok-Zapletal "Canonical Ramsey theory on Polish Spaces" (2013).

Assume *E* is Borel reducible to *F* and *A* is a generic *E*-invariant. Then V(A) = V(B) for some *F*-invariant *B* which is definable in V(A) using only *A* and parameters from *V*.

Example

Let x be a Cohen generic and $A = [x]_{E_0}$ its E_0 -invariant. If r is a real in V(A) which is definable from A and parameters in V alone then $r \in V$, so $V(r) \neq V(A)$.

It follows that E_0 is not Borel reducible to $=_{[0,1]}$

To prove the main theorem,

we need to study models generated by invariants for $E^{[\Gamma]}$.

. . .

Assume towards a contradiction that $E^{[\mathbb{Z}^2]} \leq_B E^{[\mathbb{Z}]}$. Let $x \in X^{\mathbb{Z}^2}$ be Cohen-generic and A its $E^{[\mathbb{Z}^2]}$ -invariant.

Assume that B_0 and $A_{0,0}$ are bi-definable over A and $v \in V$.

Proposition (Strong failure of Marker Lemma)

In V(A), the elements of $\{A_{\gamma}; \gamma \in \Gamma\}$ are indiscernibles over A and parameters in V.

$$A_{0,0} \longleftrightarrow B_0$$
 bi-definable (over A and $v \in V$).
Then for some $5 \in \mathbb{Z}$, $A_{1,0} \longleftrightarrow B_5$.
Then $A_{m,0} \longleftrightarrow B_{5\cdot m}$ for all $m \in \mathbb{Z}$.

 $(\{A_{m,0}; m \in \mathbb{Z}\} \longleftrightarrow$ an arithmetic sequence with difference 5) Now for each n, $\{A_{m,n}; m \in \mathbb{Z}\}$ "corresponds" to an arithmetic sequence in B with common difference 5. Furthermore, these are disjoint for distinct values of n, a contradiction.

Theorem (S.)

Let Γ and Δ be countable groups and E a generically ergodic countable Borel equivalence relation. The following are equivalent:

- 1. $E^{[\Gamma]}$ is not generically $E_{\infty}^{[\Delta]}$ -ergodic.
- 2. There is a subgroup $\tilde{\Delta}$ of Δ , a normal subgroup H of $\tilde{\Delta}$ and a group homomorphism from Γ to $\tilde{\Delta}/H$ with finite kernel;

Using similar arguments as before, plus:

Theorem (S.)

Let E and F be Borel equivalence relations classifiable by countable structures. The following are equivalent:

- 1. E is generically F-ergodic;
- 2. If A is the E-invariant of a generic Cohen-real, then for any F-invariant $B \in V(A)$, definable from A and parameters in V, B is in V.