Above countable products of countable equivalence relations

Assaf Shani

UCLA

European Set Theory Conference, Vienna July 2019

Definition (Clemens-Coskey)

Let E be an equivalence relation on X and Γ a countable group. The Γ-**jump of** E, $E^{[\Gamma]}$, is defined on X^{Γ} by

$$
x \in [F] \, y \iff (\exists \gamma \in \Gamma)(\forall \alpha \in \Gamma) x (\gamma^{-1} \alpha) \in y(\alpha).
$$

 E^{ω} is defined on X^{ω} by $x E^{\omega} y \iff (\forall n \in \omega) x(n) E y(n)$. Example

$$
E_0 \sim_B (=_{\{0,1\}})^{[\mathbb{Z}]} \text{ and } E_{\infty} \sim_B (=_{\{0,1\}})^{[\mathbb{F}_2]}.
$$

Theorem (Clemens-Coskey) $E \mapsto E^{[\mathbb{Z}]}$ is a jump operator on Borel equivalence relations.

$x E^{\omega} y \iff (\forall n \in \omega) x(n) E y(n)$ $x \in [\Gamma]$ $y \iff (\exists \gamma \in \Gamma)(\forall \alpha \in \Gamma)$ $x(\gamma^{-1}\alpha) \in y(\alpha)$.

Theorem (Clemens-Coskey)

Suppose E is a generically ergodic countable Borel equivalence relation and Γ a countable infinite group. Then $E^\omega <_B E^{[\Gamma]}$.

```
Question (Clemens-Coskey)
Is E_{\infty}^{[\mathbb{Z}]} <_B E_{\infty}^{[\mathbb{F}_2]}?
```
Theorem (S.)

Suppose E is a generically ergodic countable Borel equivalence relation.

$$
E^{[\mathbb{Z}]} <_B E^{[\mathbb{Z}^2]} <_B E^{[\mathbb{Z}^3]} <_B \ldots <_B E^{[\mathbb{F}_2]}.
$$

Let F be an equivalence relation on Y. A complete classification of F is a map c: $Y \longrightarrow I$ such that for any $x, y \in Y$,

$$
x F y \iff c(x) = c(y).
$$

Complete classifications: (using hereditarily countable structures)

$$
\blacktriangleright =_{[0,1]} \text{ on } [0,1]: x \mapsto x;
$$

- ► E a countable Borel equivalence relation: $x \mapsto [x]_E$;
- $\blacktriangleright E^{\omega}$: $x \mapsto \langle [x(n)]_E \mid n < \omega \rangle$
- \blacktriangleright $E^{[\Gamma]}$: Given $x \in X^{\Gamma}$, for $\gamma \in \Gamma$ let $A_{\gamma} = [x(\gamma)]_{E}$.

$$
x\mapsto \left\{(\gamma, A_\alpha, A_{\gamma^{-1}\alpha});\, \gamma, \alpha\in \Gamma\right\}.
$$

"A set of E-classes and an action of Γ on it"

Theorem (S.)

Suppose E and F are Borel equivalence relations, classifiable by countable structures (and fix a collection of invariants). Assume further that E is Borel reducible to F . Let A be an E-invariant in some generic extension. Then there is an F-invariant B s.t. $B \in V(A)$ and

 $V(A) = V(B)$.

Furthermore, B is definable in $V(A)$ using only A and parameters from V.

Remark

The proof uses tools from Zapletal "Idealized Forcing" (2008) and Kanovei-Sabok-Zapletal "Canonical Ramsey theory on Polish Spaces" (2013).

Assume E is Borel reducible to F and A is a generic E -invariant. Then $V(A) = V(B)$ for some *F*-invariant *B* which is definable in $V(A)$ using only A and parameters from V.

Example

Let x be a Cohen generic and $A = [x]_{E_0}$ its E_0 -invariant. If r is a real in $V(A)$ which is definable from A and parameters in V alone then $r \in V$, so $V(r) \neq V(A)$.

It follows that E_0 is not Borel reducible to $=_{[0,1]}$

To prove the main theorem,

we need to study models generated by invariants for $E^{[\Gamma]}$.

Assume towards a contradiction that $E^{[\mathbb{Z}^2]} \leq_{\mathcal{B}} E^{[\mathbb{Z}]}$. Let $x \in X^{\mathbb{Z}^2}$ be Cohen-generic and A its $E^{[\mathbb{Z}^2]}$ -invariant.

$$
A_{-1,1} \t A_{0,1} \t A_{1,1} A_{-1,0} \t A_{0,0} \t A_{1,0} \t B_{-3} \t B_{-2} \t B_{-1} \t B_0 \t B_1 \t B_2 \t B_3 A_{-1,-1} \t A_{0,-1} \t A_{1,-1} ... \t ...
$$

Assume that B_0 and $A_{0,0}$ are bi-definable over A and $v \in V$.

$$
A_{-1,1} \t A_{0,1} \t A_{1,1} A_{-1,0} \t A_{0,0} \t A_{1,0} \t B_{-3} \t B_{-2} \t B_{-1} \t B_0 \t B_1 \t B_2 \t B_3 A_{-1,-1} \t A_{0,-1} \t A_{1,-1} ... \t ...
$$

Proposition (Strong failure of Marker Lemma)

In $V(A)$, the elements of $\{A_{\gamma}; \gamma \in \Gamma\}$ are indiscernibles over A and parameters in V.

$$
A_{0,0} \longleftrightarrow B_0
$$
 bi-definable (over A and $v \in V$). Then for some $5 \in \mathbb{Z}$, $A_{1,0} \longleftrightarrow B_5$. Then $A_{m,0} \longleftrightarrow B_5_m$ for all $m \in \mathbb{Z}$. $(\{A_{m,0}, m \in \mathbb{Z}\} \longleftrightarrow \text{an arithmetic sequence with difference 5})$ Now for each n, $\{A_{m,n}; m \in \mathbb{Z}\}$ "corresponds" to an arithmetic sequence in B with common difference 5. Furthermore, these are disjoint for distinct values of n, a contradiction.

Theorem (S.)

Let Γ and Δ be countable groups and E a generically ergodic countable Borel equivalence relation. The following are equivalent:

- 1. $E^{[\Gamma]}$ is not generically $E_{\infty}^{[\Delta]}$ -ergodic.
- 2. There is a subgroup $\tilde{\Delta}$ of Δ , a normal subgroup H of $\tilde{\Delta}$ and a group homomorphism from Γ to Δ/H with finite kernel;

Using similar arguments as before, plus:

Theorem (S.)

Let E and F be Borel equivalence relations classifiable by countable structures. The following are equivalent:

- 1. E is generically F-ergodic;
- 2. If A is the E-invariant of a generic Cohen-real, then for any F-invariant $B \in V(A)$, definable from A and parameters in V, B is in V .