
Homework 1 (1 week)

You are encouraged to discuss the homework problems with your classmates. However,
your final submitted homework must reflect your personal understanding of the material.
Your solution must be written by you in your own words. You are not allowed to copy an
answer from another student or from any other source.

Please make sure your solutions are well organized. Make sure the structure of the
proofs is clear.

Notation: Here is a quick review of some of the notation used in this assignment. Please
let me know if anything else is not familiar or not clear. Feel free to contact me or come to
office hours if you have any questions. If you have not seen a lot of formal mathematical
notation before, you may also find it useful to look at pages 4-8 in [Enderton].

We use {} to denote a set (collection) of objects. For example {A,B, 5} is the set con-
taining 3 members: the letter A, the letter B, and the number 5. Sometimes we use the sep-
arator | to describe the elements of a set. For example, {X|X is a capital letter in the english alphabet}
is the set of all letter A,B,C, ..., Y, Z.

N = {0, 1, 2, ...} the set of natural numbrs.
Z = {...− 2,−1, 0, 1, 2, ...} the set of integers.
Q =

{
n
m |n,m ∈ Z,m ̸= 0

}
the set of rational numbers.

We use the symbol ∈ to denote membership. For instance, a ∈ Q says “a is a rational”.
a /∈ N says “a is not a natural number”.

Reading assignment. Please look over Chapter 1 parts 1.1 and 1.2 of [Enderton] for
some basic definitions regarding propositional logic and connectives. I suspect most of you
will find it familiar (in essence, if not in notation), and easy to understand. You can also
find these in [Woodin-Slaman, 1.1 and 1.2]. (If you haven’t taken a rigorous proof based
class before, it is extra important to take a look at it. We will focus directly on “first
order logic”.) As usual, please ask if you have any questions.

Questions. Recall that for two structures (X,RX) and (Y,RY ), where RX , RY are bi-
nary relations on X,Y , respectively, an isomorphism between (X,RX) and (Y,RY ) is a
function f : X → Y such that

• f is one-to-one and onto;
• for any a, b in X,

a RX b ⇐⇒ f(a) RY f(b)

(meaning a and b “satisfy the relation” in (X,RX) if and only if f(a) and f(b)
“satisfy the relation” in (Y,RY )).

When both structures happen to be linear orders, an isomorphism precisely coincides with
an order-preserving map.

When both structures are graphs, an isomorphism precisely coincides with “graph iso-
morphism”.

Two structures (X,RX) and (Y,RY ) are said to be isomorphic if there is some iso-
morphism between them.
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Question 1. In the following cases, determine whether the two graphs (V1, E1) and
(V2, E2) are isomorphic or not. That is, is there a map f : V1 → V2 so that f is one-
to-one and onto, and for any x, y in V1, x E1 y ⇐⇒ f(x) E2 f(y). Prove your answers.
(Either prove they are not isomorphic, or write an isomorphism.)

All the graphs are presented as structures with V1 = V2 = {a, b, c, d}. If in the graph
(picture) for (V1, E1) there is a line, for example, between a and b, it means that a E1 b
and b E1 a are true. If there is not line between a and b, it means that a E1 b and b E1 a
are false in this structure.

(1)

(V1, E1)

a b

c d

(V2, E2)

a b

c d

(2)

(V1, E1)

a b

c d

(V2, E2)

a b

c d

(3)

(V1, E1)

a b

c d

(V2, E2)

a b

c d

Question 2. (1) Prove that the linear orders (Z, <) and (N, <∗) are not isomorphic
to one another. (<∗ here is as defined in the notes, the reverse of <.)

(2) Prove that the linear orders (Q, <) and (Z, <) are not isomorphic to one another.
(3) Let 2Z be the set even integers, that is, all integers of the form 2k for some integer

k. Similarly, let 3Z be all integers of the form 3k for some integer k. Order both 2Z
and 3Z with the usual ordering <. Prove that (2Z, <) and (3Z, <) are isomorphic.

The following question is a key ingredient in the isomorphism theorem for dense linear
orders. [We will talk more about the proof of the theorem, and the following concepts, on
Tursday 1/27.]

Suppose (A,<) and (A′, <′) are linear orders. (As an example to keep in mind, you can
think of (Q, <) and (Q \ Z, <).)

Given sequences ā = a0, a1, ..., an−1, from A and ā′ = a′0, a
′
1, ..., a

′
n−1 from A′, say that

ā and ā′ have the same type if

ai < aj ⇐⇒ a′i <
′ a′j

for any i, j ∈ {0, ..., n−1}. (Equivalently: ā and ā′ have the same type if the map sending
ai to a

′
i is “order preserving”.)

For a sequence ā = a0, a1, ..., an−1 from A, and some a in A, define ā⌢a as the sequence
a0, a1, ..., an−1, an with an = a.
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Question 3. Suppose (A,<) is some linear oder, and (A′, <′) is a dense linear order. Let
ā and ā′ be sequences from A and A′ accordingly, and assume that they have the same
type.

Then prove that for any a ∈ A there exists some a′ ∈ A′ such that the sequences ā⌢a
and ā′⌢a′ also have the same type.

[Hint: it may help to start by thinking about some concrete cases, for example, when
the length of the sequence n is 1 or 2, and the linear orders are some specific examples.]

Question 4. Consider the following axioms stated with the alphabet of one binary relation
“<”:

(LO 1) (Strictness) for any members x, y of the set X, if x < y holds, then y < x fails (we
may denote this by y ̸< x;

(LO 2) (Transitivity) for any members x, y, z of the set X, if x < y and y < z, then x < z;
(LO 3) (Total (linear) ordering) for any members x, y of X, either x < y or y < x.

(Density) for any x and y, if x < y then there is some z so that x < z < y;
(No max) for every x there is some y with x < y;
(Yes min) there is some x so that for any y, either x = y or x < y.

This is a “dense linear order with a minimum”.
Suppose (X,<X) and (Y,<Y ) are two linear orders satisfying the above statements,

where X and Y are countable. Prove that they are isomorphic.
[Hint: you can repeat a similar argument as in the proof of Cantor’s isomorphism

theorem (which we will see in class 1/27). You can also avoid “redoing it”, and find a way
to directly quote the isomorphism theorem for dense linear orders.]

References

[Enderton] Herbert B. Enderton - A Mathematical Introduction to Logic
[Woodin-Slaman] Notes by Professor W. Hugh Woodin and Professor Theodore A. Slaman
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Homework 2 (1 week)

Question 5. Let (X,<X) be an linear order (not assumed to be dense) so that X is
countable. Prove that there is an embedding of (X,<X) into (Q, <). That is, there is a
one-to-one (not necessarily onto) map f : X → Q so that for any x, y in X,

x <X y ⇐⇒ f(x) < f(y).

[So, in a sense, the structure (Q, <) (or any countable DLO) is maximal among all count-
able linear orders.]

Question 6. The following question is specifically about the formal interpretation of
terms in a structure. Follow our definitions precisely.

Let A = {1, 2, 3}. Define a function f : A3 → A by f(a, b, c) = |{a, b, c}| (the size of the
unordered set {a, b, c}). For example, f(2, 2, 2) = 1 and f(1, 3, 2) = 3.
Define h : A2 → A by h(a, b) = 1 if a < b, h(a, b) = 2 if a = b and h(a, b) = 3 if a > b.

Let F be a trenary function symbol and H a binary function symbol. Let t be the term
F (H(x, y), H(y, z), H(z, x)), where x, y, z are variables. With this list of variables ⟨x, y, z⟩
in mind, we view the term t as t(x, y, z).

Consider the structure A = (A, f, h), with f = FA and h = HA.
Find the function tA(x, y, z) : A3 → A. (Write all the possible values.)

Question 7. The following question is specifically about formal writing. Be precise and
follow the definitions.

(In the following, you do not have to prove that φ “does the job”, but it should be
clear enough from the way you write it that the intended meaning is correct. You may
use short-hand notations, but you must first define them as well.)

[We have not yet defined the interpretation of all formulas in a structure, we will finish
this on Tuesday. So it may be easier to do after Tuesday’s class, but you can also do it
before if it is clear to you what ∃ or ∀ should mean.]

(1) Let F be a unary function symbol, < a binary relation symbol, − a binary oper-
ation, and 0 a constant symbol. We consider structures (R,−, <, 0, f) where − is
the usual subtraction operation on R, < is the usual ordering of R, 0 is the usual
0 in R, and f is any function from R to R.

Write a formula φ(x) “saying that” F is continuous at x. (Using the ϵ − δ
definition.)

[Formally, this means that in the structure (R,−, <, 0, f), the formula φ(x) when
assigned c is true if and only if f is a continuous at the point c.]

(2) Let R be a binary relation symbol. Write a sentence φ in the vocabulary {R}
“saying that” R is the graph of a function. That is, in a structure A = (A,RA),
the sentence φ is true if and only if there is some function g : A → A so that
R(a, b) ⇐⇒ g(a) = b for any a, b ∈ A. [Recall that R is interpreted (formally) as
a subset of A×A. Recall the “vertical line test” for being a graph of a function.]

(3) Using the empty signature (meaning, only the relation symbol ≈), write a sentence
φ so that a structure A satisfies φ if and only if the universe A of A has size ≥ 4.
(That is, there are at least 4 distinct members.)

Not to be submitted.

Question. Consider the vocabulary for vector spaces over R, discussed in class.
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(1) Write the axioms for being a vector space over R, in this language.
(2) (⋆) Is there a sentence Φ in this language which captures the property “the vector

space has dimension 2”? That is, a sentence Φ so that a structure A for this
vocabulary satisfies Φ if and only if the dimension of A as a vector space is 2.
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Homework 3 (2 weeks)

Question 8. Consider the signature S = {F, c} where F is a binary operation and c is a
constant symbol. Consider the following structures

• A = (R,+, 0) (that is, FA = + and cA = 0);
• B = (R∗, ·, 1), where R∗ = R \ {0} are all non-zero reals;
• C = (R>0, ·, 1), where R>0 are all positive reals.

(1) Prove that A and B are not isomorphic to one another. [Hint: find a sentence
which is true in one but not the other.]

(2) Prove that A and C are isomorphic. [Hint: Log.] [In your proof, make it clear
what is needed to be an isomorphism. Write down everything that is required to
show that this is an isomorphism. You do not need to prove the properties of Log.]

Question 9. (1) Consider the vocabulary consisting of one unary function symbol F .
Write a sentence φ so that for any structure A = (A,FA), if A |= φ then A is
infinite. [It is necessry to know the following fact: a set X is infinite if and only
if there is some function h : X → X which is one-to-one yet is not onto. (You can
see that this is impossible for a finite set.)]

(2) Let φ be the sentence you wrote above. Provide a structure A = (A,FA) so that
A is infinite, yet A |= ¬φ.(1)

Given a structure A for a signature S, say that a subset C ⊆ A is definable2 in A if
there is a formula φ(x) (having one free variable x) in the language so that

C =
{
a ∈ A|φA(a) = 1

}
.

We may say that C is defined by φ (in A). Or that C is the “set of solutions to φ (in A)”.

Question 10. (1) Let A be a structure, C ⊆ A a definable subset, and f : A → A
an automorphism3 of A. Prove that f(c) ∈ C for any c ∈ C. Conclude that the
restriction of f to C is a one-to-one and onto map from C to C. [You may use the
fact that if f is an isomorphism from A to B then f−1 is well defined and is an
isomorphism from B to A. You should also use our theorem about isomorphism,
which will be proven in the week Feb 14-18.]

(2) Consider the structure A = (N, <). Prove that for every natural number n ∈ N,
the subset {n} is definable in A. [Hint, prove it first for {0}, then for {1}... Note
that you need to find infinitely many formulas, one for each such set.]

(3) Consider the structure A = (Z, <). Prove that the only definable subsets are the
empty set and the entire domain Z.

(4) Consider the following two graphs with vertices V1 = V2 = {a, b, c, d}

1The looming question here is: can you write a sentence, using any vocabulary, which precisely charac-
terizes the infinite structures?

2“Without parameters”. We will see more general forms of definability.
3That is, f is an isomorphism. We call it an automorphism when it is an isomorphism from a structure

to itself
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(V1, E1)

a b

c d

(V2, E2)

a b

c d

For each one, determine all the definable subsets of it. (Prove your answers.) [Hint:
try to understand the possible automorphisms of each graph.]

A formula φ is said to be quantifier free if the symbols ∀, ∃ do not appear in it at all.
Alternatively, the quantifier free formulas are defined inductively:

• atomic formulas are quantifier free;
• negations, conjuctions, disjunctions, and implications between quantifier free for-
mulas are again quantifier free formulas.

(Same as formulas, just not having the quantifier case at all.) Note that in a quantifier
free formula, the free variables are all variables appearing in the formula.

The following question is a variation on our theorem about isomorphism. (Will be
proved in week Feb 14-18). Follow a similar level of formality as in the notes.

Question 11. Suppose h : A → B is an embedding.

(1) Let φ be a quantifier free formula. Suppose x1, ..., xn is a list containing all vari-
ables of φ. Prove that for any a1, ..., an in A,

φA(a1, ..., an) = 1 ⇐⇒ φB(h(a1), ..., h(an)) = 1.

[Prove for the atomic formulas first, and then inductively. This time the induction
does not have the quantifier stages.]

(2) Let φ be of the form (∃y1)...(∃yk)ψ where ψ is a quantifier free formula. (This is “an
existential formula”). Suppose x1, ..., xn is a list containing all the free variables
of φ. You may also assume that neither of the variables x1, ..., xn appears among
y1, .., yk. Prove that for any a1, ..., an from A,

A |= φ(a1, ..., an) =⇒ B |= φ(h(a1), ..., h(an)).

[Start by thinking about just one quantifier (∃y)ψ. Also start by assuming that φ
does not have other free variables (other than y). In this case there is “nothing
to plug” and you need to show that A |= φ =⇒ B |= φ. Appeal to the formal
definitions of interpretations in structures. Look at our proof from the isomorphism
case.]

Question 12. Let us see that the result in (2) of the previous question about embeddings
is essentially best possible. Meaning the =⇒ arrow cannot be reversed. Consider the
signature S = {+, 1} (binary operation and constant symbol) and the structures (Z,+, 1)
and (Q,+, 1) (usual interpretations).

(1) Prove that (Z,+, 1) is a substructure of (Q,+, 1). That is, the identity map h : Z →
Q, h(k) = k, is an embedding. [There is not much to prove. Make sure you
state precisely what it means, what formally needs to be true, for this to be a
substructure.]

(2) Find a sentence φ which is of the form φ = (∃x)ψ, where ψ is a quantifier free
formula with one free variable x, so that (Q,+, 1) |= φ yet (Z,+, 1) ̸|= φ. [To
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argue whether φ is true or not in the structures, you do not have to formally apply
the definition of interpretations. It should be clear however why it is true or not.]

Say that a sentence φ is logically valid if it is true in any structure. That is, for any
structure A (for the signature in which the sentence is formulated), A |= φ. (We will talk
more about this in the future.)

Fix some vocabulary S. Given formulas φ,ψ, write φ↔ ψ to mean (φ→ ψ)∧ (ψ → φ).

Question 13. (1) Prove that ∃x(x ≈ x) is logically valid.
(2) Prove that ∀x(x ≈ x) is logically valid.
(3) Let P be an unary relation symbol. Prove that (∀x)(P (x) ↔ ¬¬P (x)) is logically

valid.
(4) Let P be an unary relation symbol. Prove that (∃x)P (x) is not logically valid.

[You need to appeal to the formal definition of interpretations in structures.]

Not to be submitted. Let φ and ψ be formulas whose free variables are contained in
the list x1, ..., xn. Say that φ and ψ are logically equivalent, denoted φ ≡ ψ, if the
sentence (∀x1)...(∀xn)(φ↔ ψ) is logically valid. [Note: this definition does not depend on
the list of variables. If it is true for a shorter list, containing all free variables, it is true
for a longer list, and vice versa.]

Question (Good practice for the definitions, and important to know). Let φ,ψ be formu-
las. Prove the following logical equivalences.

(1) φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ).
(2) φ→ ψ ≡ (¬φ ∨ ψ).
(3) (∀x)φ ≡ ¬(∃x)¬φ. (Warining: x may or may not be a free variable of φ. In any

case, x is not a free variable of either of the formulas.)
(4) Conclude that for any formula φ there is a formula φ′ so that φ ≡ φ′ and φ only

uses the connectives ∧,¬ and the existential quantifier ∃.
(5) ¬¬φ ≡ φ.

Question (Requires familiarity with the basic definitions of vector spaces (linear algebra)).
Consider the vocabulary for vector spaces over R, discussed in class.

(1) Write the axioms for being a vector space over R, in this language.
(2) (⋆) Is there a sentence Φ in this language which captures the property “the vector

space has dimension 2”? That is, a sentence Φ so that a structure A for this
vocabulary satisfies Φ if and only if the dimension of A as a vector space is 2.

(3) Show that for structures satisfying the axioms you wrote in (1), homomorphisms
between structures precisely correspond to linear maps between vector spaces.

Question (Requires familiarity with basic definitions in field theory). (1) Write the ax-
ioms for being a Field, using the vocabulary 0, 1,+, ·.

(2) (⋆) How would you axiomatize being an “algebraically closed field”?
(3) How would you axiomatize that the field is of characteristic 0?
(4) Write the axioms for being an Ordered Field, using the vocabulary 0, 1,+, ·, <.
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Homework 4 (2 weeks)

Fix some vocabulary S. Write φ ↔ ψ to mean (φ → ψ) ∧ (ψ → φ). Recall that two
sentences are logically equivalent, denoted φ ≡ ψ, if the sentence φ ↔ ψ is logically
valid. That is, if for any model A, A |= φ↔ ψ. (We also use the notation “ |= (φ↔ ψ)”
for this).

Question 14. (1) Suppose h : A → B is an embedding. Let φ be of the form (∀y1)...(∀yk)ψ,
where ψ is a quantifier free formula. (This is “a universal formula”). Suppose
x1, ..., xn is a list containing all the free variables of φ. You may also assume
that neither of the variables x1, ..., xn appear among y1, .., yk. Prove that for any
a1, ..., an from A,

B |= φ(h(a1), ..., h(an)) =⇒ A |= φ(a1, ..., an).

[The same proof as Question 4 of Pset 3 would work. You can also directly use
Question 4 of Pset 3 together with some logical equivalences. In particuar: (∀x)φ ≡
¬(∃x)¬φ. It follows that (∀y1)...(∀yk)ψ ≡ ¬(∃y1)...(∃yk)¬ψ. (In other words
¬(∀y1)...(∀yk)ψ ≡ (∃y1)...(∃yk)¬ψ.)]

(2) Consider the signature S = {+, 1} as in Question 5 of Pset 3. Let φ be the
sentence from that question. Prove that the sentence φ is not logically equivalent
to any universal formula. That is, if θ = (∀y1)...(∀yk)ζ where ζ is a quantifier free
formula, then it is not true that |= (φ↔ θ).

(3) The above example (and Question 5 of Pset 3) should give you some idea of what
quantifier free, existential, or universal formulas can or cannot express in natural
mathematical examples. Here is a more abstract version of this same idea, which
you can prove using the same outline.

Consider the vocabulary consisting of just one unary relation symbol P . Let φ
be the sentence (∃x)P (x). Prove that φ is not logically equivalent to any universal
formula in this language with signature {P}.

Question 15. Let A0,A1,A2, ... be structures (for the same signature) so that An ⊆ An+1

(An is a substructure of An+1). Let A =
⋃

n=0,1,2,...An. Define a structure A with universe
A as follows. If R is an n-ary relation in the vocabulary and a1, ..., an are in A, take someM
so that a1, ..., an are in AM and define RA(a1, ..., an) to hold if and only if RAM (a1, ..., am)
holds. If F is an n-ary function symbol in the language and a1, ..., an are in A, take some
M so that a1, ..., an are in AM and define FA(a1, ..., an) = FAM (a1, ..., am).

(1) Show thatA “is well defined”. [Perhaps you have not heard that term before. Start
by thinking critically at the above given definition. Does it really make sense? Is
R(a1, ..., an) given a clear and unique truth value by that definition? Note that
there may be different values of M for which a1, ..., an is in AM .]

(2) Show that each An is a substructure of A. [There is not much to do here.]
(3) Assume that for each n, An ≺ An+1 (An is an elementary substructure of An+1).

Prove that each An is an elementary substructure of A.
(4) Here is an example of why being an elementary substructure is important above.

Unlike it, “elementary equivalence”, and even “being isomorphic” is not “preserved
under unions”.
Let An = (Q ∩ [ 1n , 1), <) with the usual order.
(a) Show that An is a substructure of An+1.
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(b) Show that An is isomorphic to An+1 (so in particular elementary equivalent).
(c) LetA be the union model as above. Show thatAn is not elementary equivalent

to A (in particular not isomorphic).

Given a model A and a natural number n, say that a set C ⊆ Am is definable in A (with
parameters) if there is some formula φ, a list of variables x1, ..., xm, y1, ..., yn including all
free variables of φ, and there are fixed members b1, ..., bn of A so that

C = {(a1, ..., am) ∈ Am| A |= φ(a1, ..., am, b1, ..., bn)} .

Note that such φ and b1, ..., bn are not necessarily unique. There could be many ways to
define the same set.

If n = 0 (there are no b’s at all), we say that C is definable without parameters. Gen-
erally, one may care about definability with a particularly chosen parameter.

Question 16. Fix a model A in a signature S.
(1) Prove that any finite subset of A is definable in A. That is, given a1, ..., ak ∈ A the

set C = {a1, ..., ak} ⊆ A = A1 is definable. [You do not need to use the signature.
This is true for any signature, also the empty signature.]

(2) (4) Assume that A and S are countable. Let D be the collection of all C such that
for some m, C ⊆ Am is definable in A with parameters. Prove that D is countable.
[Hint: if you used that “countable unions of countable sets is countable” many
times, you probably need to use it even more.]

Recall that in the last Pset we considered sets C ⊆ A = A1 which are definable without
parameters.

Question 17. Consider the structure A = (R,+A, ·A, 0A, 1A) (standard interpretations).

(1) Prove that the set C ⊆ R, C = {a ∈ R| a ≥ 0} is definable inA without parameters.
(2) Prove that the set of one member {

√
2} ⊆ R is definable in A without parameters.

(3) Is {
√
2} definable without parameters in the structure (R,+, ·)?

(4) Is {
√
2} definable without parameters in the structure (R,+)?

Question (Not to be submitted). Let S be some vocabulary and S ′ ⊆ S. Given a

structure A for S, it’s S ′-reduct is the structure A′ defined by A′ = A, FA′
= FA and

RA′
= RA for any F,R in S ′. If we write A as (A,RA, FA)R,F∈S then we may write A′

as (A,RA, FA)R,F∈S′ . Note that any formula in the language for S ′ is also a formula for
the language S. Prove that for S-structures A,B,

• If φ(x1, ..., xn) is an S ′ formula and a1, ..., an in A, then A |= φ(a1, ..., an) if and
only if A′ |= φ(a1, ..., an).

• If A and B are isomorphic as S structures, then they are isomorphic as S ′-
structures.

• If A,B are elementary equivalent as S-structures, then they are elementary equiv-
alent as S ′-structures.

• If B is an elementary substructure of A as S-structures, then it is also the case as
S ′-structures.

4Recall: if A is a countable infinite set, like N, then the “powerset” of A, the collection of all subsets of
A, is not countable.
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(There is not much to prove here. It is very useful though. For example in the following
question.)

Question 18. Let S be a vocabulary, which has a constant symbol c. In the following
questions, we write x̄ for the list of the n (distinct) variables x1, ..., xn and x̄′ for the list
of n− 1 variables x2, ..., xn.

(1) Let t be a term so that the variables appearing in t are contained in the list x̄.
Define the term t[c] by replacing the symbol x1 with c everywhere in the string of
symbols t. t[c] may be viewed as a term t[c](x̄′), since x1 does not appear in t[c].
Let A be a structure in the vocabulary S. Prove that for any a2, ..., an in A

t[c]A(x̄′)(a2, ..., an) = tA(x̄)(cA, a2, ..., an).

[Hint: induction.]
(2) Let φ be a formula whose free variables are contained in x̄. Define φ[c] by replacing

every free occurrence of x1 by c. Let A be a structure in the vocabulary S. Prove
that for any a2, ..., an in A

(a2, ..., an) ∈ φ[c]A(x̄′) ⇐⇒ (cA, a2..., an) ∈ φA(x̄).

Instructions: you can assume that x1 does not have any bounded appearances.
In this case we replace every symbol x1 by c. In other words, when you prove
by induction on the construction of a formula, and you are at the stage where
φ = (∃y)ψ, you may assume that y is not x1.

5

(3) Let S = S0∪{c}. Suppose Γ is a set of sentences for the vocabulary S0 (so not using
c). Let φ be a sentence for the vocabulary S0, which is of the form φ = (∀x)ψ.
We may view ψ(x) as a formula for the vocabulary S as well, and consider ψ[c] as
above. Note that ψ[c] is a sentence [why?]. Prove that the following are equivalent:

• Γ |= φ (this statement is entirely stated for the vocabluary S0).
• Γ |= ψ[c] (this statement is stated for the vocabulary S).

[Hint: Let A be a structure for S0 which is a model for Γ. You can expand it to a
structure for S. More precisely: you can expand it to a structure A+ for S so that
A is the reduct of A+ to the signature S0. To expand A, all that is necessary is to
determine how would this expansion interpret the new symbol c. You can choose
how to interpret it, and any such choice will be a structure for S, which is still a
model of Γ.]

Recall the definition of an equivalence relation. Recall that an equivalence relation E
on a set X partitions the set X to disjoint equivalence classes. I will post a short review
of equivalence relations.

Question 19. Let A be a structure for a signature S. Define a relation E on A as follows.6

For a, b in A, say that a E b if there exists some automorphism f : A → A from A to A
so that f(a) = b.

(1) Prove that E is an equivalence relation.

5It is important however to note that if there are bounded occurrences, we do not want to change those,
as this would not give us the right meaning.

6This is not a “definition” in a formal language or in the structure. This is an external definition. That
is, the usual way we define things in mathematics.
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(2) Let S = {<, c1, c2, c3, ...} where < is a binary relation and c1, c2, ... are constant
symbols. Consider the structure A for S with A = Q, <A=< is the usual ordering
of Q, and cAn = 1

n . We may write A as (Q, <, 1, 12 ,
1
3 , ...). Let E be the equivalence

relation defined above. Find the equivalence classes of E. In other words, write
how E partitions Q into equivalence classes.

[Hint: (1) For a constant symbol c an automorphism f must send f(cA) = cA.
(2) To prove that there is no automorphism with certain properties, use the same
ideas as when you proved in the past that certain isomorphisms do not exists.
(3) To prove that there is an automorphism with certain properties, it may be
useful to build it “by pieces”. That is, you may write Q as the unions of disjoint
sets An and define the automorphism of each one individually (you did something
similar in Pset 1). Note that you do need to say why the final map you get is an
automorphism once defined of the entire structure.]
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Homework 5 (2 weeks)

Question 20. Let S = {<, c1, c2, c3, ...} where < is a binary relation and c1, c2, ... are
constant symbols. We interpret below < as the usual ordering on Q. (Technically it should
be <A. We are abusing notation by using the same < as the symbol in the vocabulary
and the interpretation in Q.)

(1) Define A = (Q, <, 1, 12 , ...). That is, A = Q and cAn = 1
n .

(2) Define B = (Q \ {0}, <, 1, 12 , ...).
(3) Define C = (Q+, <, 1, 12 , ...) where Q+ are all (strictly) positive rational numbers.

Note that C is a substructure of B which is a substructure of A.
Given ā = a1, ..., an and b̄ = b1, ..., bn from Q, say that ā and b̄ have the same type if

for any i, j = 1, ..., n:

• ai = aj ⇐⇒ bi = bj ;
• ai < aj ⇐⇒ bi < bj ;
• ai =

1
m ⇐⇒ bi =

1
m , for any m = 1, 2, ...;

• ai <
1
m ⇐⇒ bi <

1
m for any m = 1, 2, ....

(1) Prove that if ā and b̄ have the same type then there is an automorphism of B,
f : Q → Q, so that f(ai) = bi for i = 1, ..., n.7

(2) Let C′ = (Q, <,−1,−2,−3, ...). That is cC
′

n = −n. Prove that C′ and C are
isomorphic.

(3) Prove that neither two of A,B, C are isomorphic to one another.
(4) Prove that B ⪯ A, C ⪯ A, and C ⪯ B. Conclude that A ≡ B ≡ C (equivalently,

Th(A) = Th(B) = Th(C)). [Hint: Suppose D is either A, B, or C. Let φ(x1, ..., xk)
be a formula in the vocabulary {<, c1, c2, ...} and fix d1, ..., dk in D. Then there is
some n and a formula ψ(x1, ..., xk, y1, ..., yn) in the vocabulary {<} so that:

• A |= φ(d1, ..., dk) ⇐⇒ (Q, <) |= ψ(d1, ..., dk, 1,
1
2 , ...,

1
n);

• B |= φ(d1, ..., dk) ⇐⇒ (Q \ {0}, <) |= ψ(d1, ..., dk, 1,
1
2 , ...,

1
n);

• C |= φ(d1, ..., dk) ⇐⇒ (Q+, <) |= ψ(d1, ..., dk, 1,
1
2 , ...,

1
n).

In each instance we assume that d1, ..., dk are in A,B,C respectively.]

So A,B, C are all different models of the same theory. Question: [Not to be submitted,
to be discussed later.] Among the structures (for the same theory) A,B, C. Which is the
smallest? Which is the largest?

The following question shows that the complete theory of A,B, C can be seen as the
logical consequences of very simple axioms.

Question 21. Let S = {<, c1, c2, c3, ...} where < is a binary relation and c1, c2, ... are
constant symbols. Let T be the theory consisting of the following axioms:

• The 6 DLO axioms saying that < is a linear order, it is dense and has no minimum
and no maximum.

• For each n = 1, 2, ..., the sentence ψn = cn > cn+1 is in T .

(1) Let D = (D,<D, cD1 , c
D
2 , ...) be an arbitrary model of T , and assume that D is

countable. Prove that D is isomorphic to either A, B, or C.

7This is not true in A. You saw in the last Pset that if f : Q → Q is an automorphism of A, then
f(0) = 0.
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(2) Conclude that Con(T ), the logical consequences of T , is a complete theory, which
is equal to Th(A) = Th(B) = Th(C).

Question 22. Let φ,ψ1, ψ2 be sentences. Write a formal deduction (that is, fully write
the entire tree of deduction) to prove the following.

(1) {ψ1 ∧ ψ2} ⊢ ψ2 ∧ ψ1.
(2) {ψ1 ∧ ψ2, φ} ⊢ φ ∧ ψ2

(3) {φ} ⊢ ¬¬φ.
(4) Suppose φ(x) is a formula and d a constant symbol. {φ[d]} ⊢ (∃x)φ.

Question 23. Prove that the following are equivalent.

(1) T ⊢ φ (by our definition: there is a formal deduction tree for T ∪{¬φ} all of whose
branches contain a contradiction.)

(2) There is a formal deduction tree for T (only) so that every branch either contains
a contradiction or contains a node with the formula φ.
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Homework 6 (2 weeks)

Question 24. Exercise 7.31 in the notes.

Question 25. Exercise 7.36 in the notes. Write a full proof for each of the remaining
cases.

Let S be a signature and A an S-structure. Say that A is named if for every a ∈ A
there is a constant term t so that tA = a.

Remark:
(1) The models we constructed in Henkin’s theorem were all named.
(2) For the model A to be named, we must have some constant symbols in S. (Otherwise
there are no constant terms.)

Question 26. (1) Fix a signature S and two S-structures A,B. Assume that A is
named and A ≃ B (are isomorphic). Prove that B is named.

(2) Let S be a countable signature and A an infinite countable S-structure. Prove
that there is a countable S structure B so that A ≡ B (elementary equivalent) and
B is not named.

[Hint: first consider an expansion by a new constant.]
(3) Let N = (N, 0, 1,+). Prove that N is named. Conclude that there is a countable

structure B so that B ≡ (N, 0, 1,+) yet B ̸≃ (N, 0, 1,+).

All graphs below will be symmetric and with no loops (a vertex has no edge with itself).
Let (V,E) be a graph. A function c : V → C is called a coloring of the graph, if for

any a, b ∈ V , if a E b, then c(a) ̸= c(b). Namely: when we “move along an edge” the
color must change.
For a number k, a k-coloring is a coloring with k many colors: C = {1, ..., k}.
A graph (V,E) is k-colorable if it has some k-coloring.

Remark: A more familiar notion of coloring is that of a map (of say, countries). In this
case, you want to color each country so that no two adjacent countries have the same color.
This is the same problem, when you take the vertices of the graph to be the countries,
and you connect to vertices by an edge if the countries share a border.

Question 27. Let (V,E) be a countable graph. Prove that (V,E) is k-colorable if and
only every finite subgraph of it is k-colorable.

(Here a subgraph is exactly what it sounds like: we take some finite subset of vertices
V0 ⊆ V , and we have the same edges between them as in the big graph. This precisely
means that it is a substructure.)

Let A be a structure for a signature S. Define an expanded signature SA = S ∪
{ca| a ∈ A}, where ca is a new constant symbol.
We consider a collection of sentences in SA, which we will call the (atmoic) diagram of
A, denoted DA, which are simply supposed to code the structure A.
Fix x̄ = x1, ..., xn. Fix an atomic formula φ(x̄) = R(t1, ..., tk) where t1(x̄), ..., tk(x̄) are
terms and R is a k-ary relation symbol in S. Fix a1, ..., an ∈ A.
If (tA1 (ā), ..., t

A
k (ā)) ∈ RA, then add the sentence R(t1[c̄], ..., tk[c̄]) to DA.

Here c̄ = ca1 , ..., can and ti[c̄] is the constant term we get by substituting each variable xi
by the constant symbol cai .
(It is best to simply think of a relational language S, and the case where simply n = k
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and ti = xi, φ(x̄) = R(x1, ..., xk) and φ[c̄] = R(ca1 , ..., cak).)
Similarly, if (tA1 (ā), ..., t

A
k (ā)) /∈ RA, then add the sentence ¬R(t1[c̄], ..., tk[c̄]) to DA.

(R is also allowed to be ≈ here.)
More generally, we consider a collection of sentences in SA, which we will call the

elementary diagram of A, De
A, which are supposed to code all truths in A.

Fix any formula φ(x̄). Fix ā = a1, ..., an ∈ A. Let c̄ = ca1 , ..., can , and φ[c̄] the result of
substituting every xi by ci.

8

If φA(ā) = 1, then put the sentence φ[c̄] in De
A.

If φA(ā) = 0, then put the sentence ¬φ[c̄] in De
A.

The following question is not to be submitted, the results are almost the same as the
definition.

Question. Let B be an SA-structure. Define a function f : A→ B by f(a) = cBa .

(1) Assume that B |= DA. Prove that f is an embedding.
(2) Assume that B |= De

A, prove that f is an elementary embedding: that is, for
any formula φ(x1, ..., xn), for any a1, ..., an from A,

A |= φ(a1, ..., an) ⇐⇒ B |= φ(f(a1), ..., f(an)).
9

(3) Another point of view is this: define A′ =
{
cBa | a ∈ A

}
, and define the structure

A′ with universe A′ in the natural way. Then the map f is an isomorphism from
A to A′.
Furthermore, if B |= DA then A′ is a substructure of B.
If B |= De

A, then A′ is an elementary substructure of B.
So, by identifying A with A′, we may view B as an extension of A.

Not to be submitted.

Question (Requires some familiarity with real analysis). Let A = (R, 0, 1, ·,+, <) and
assume that A ⪯ B. Assume further that there is some b ∈ B \ R.

• Prove that there is some ϵ ∈ B so that ϵ >B 0 and ϵ <B 1
n for every n = 1, 2, ....

• Prove that there is some b ∈ B so that n <B b for all n = 1, 2, ....

Question (Requires familiarity with basic definitions in field theory). Recall the axioms
of a field, a field of characteristic 0, and field of characteristic p. (In the vocabulary
0, 1,+, ·.) Let φ be a sentence in this vocabulary. Assume that φ is provable from the
axioms of “a field of characteristic 0”. Show that φ is provable from the axioms of “a field
of characteristic p” for all large enough p.

Question (Requires familiarity with field theory and uncountable cardinals). Suppose
F1, F2 are algebraically closed fields of characteristic 0. Assume further that F1 and F2

have the same uncountable cardinality. Prove that F1 and F2 are isomorphic.
(Note that not all countable algebraically closed fields are isomorphic.)
Conclude that all algebraically closed fields (of any size) are elementary equivalent

to one another (and therefore to (C,+, ·, 0, 1). Here you will need to use the “upwards
Loweinheim-Skolem” theorem.

8Recall there are some subtleties with substitution when quantifiers are involved. However, we may
simply assume that the variables x̄ do not have any “quantified appearences”, and then substitution is
very natural.

9This is a mild generalization of elementary substructure.
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Conclude that (C,+, ·, 0, 1) is precisely the logical consequence of the axioms “alge-
braically closed field of characteristic zero”.
In particular, these logical consequences form a complete theory.
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Homework 7 (1 week)

Question 28. Work with A = (N,+, ·, 1, 0) and T = Th(A). To abuse notation less than
usual, let us consider different symbols for the signature: let S = {+̃, ·̃, 1̃. So A is the S-
structure with domain N and +̃

A
= +, ·̃A = · (the standard operations), and 1̃A = 1 ∈ N,

0̃A = 0 ∈ N.
For each natural number m we have an S-term tm so that tAm = m. [These can be defined
inductively: t1 = 1̃, tk+1 = tk+̃1̃. We usually write it less formally as tm = 1 + ... + 1 m
many times.]

(1) Write an S-formula δm(x) so that A |= δm(n) if and only if the number n is
divisible by the number m.10

Let p0, p1, p2, p3, ... be a list of all prime numbers (2,3,5,7,...)
Fix a non-empty set X ⊆ N = {0, 1, 2, ...}. (e.g. X = {1, 3}, X = N, X = {0, 2, 4, 6, ...},
X = {2, 4, 8, 16, ...}.)
Define a set of formulas (with the variable x) as follows.
p = {δpk(x)| k ∈ X} ∪ {¬δpk(x)| k ∈ N \X}.

(2) Prove that p is a type. (Working in T = Th(A)). [This should not be long. Make
sure your solution shows an understanding of what being a type means.]

What does this type mean? For example, if X = {0, 2, 4, 6, ...}, then a realization of
this type is a “non-standard” natural number, which is divisible by p0, p2, p4, ... yet is not
divisible by p1, p3, p5, ....

Recall that Sn(T ) are all the complete n-types. While generally there are at least as
many types as there are formulas (and sets of formulas), the complete types may be more
restricted.

Question 29. Work with A = (Q, <) and T = Th(A).

(1) Prove that S1(T ) has exactly one complete type. That is, S1(T ) = {p} for a
complete type p.

(2) Prove that S2(T ) has exactly 2 complete types in it.
• [Not for submission] Describe Sn(T ) for every n. Prove that they are all isolated.

[Hint: automorphisms! Suppose φ(x) is a formula in some type p ∈ S1(T ). Can there be
a type q ∈ S1(T ) so that ¬φ(x) ∈ q?]

Not to be submitted.

Question. Let T = Th(N,+, ·, 1, 0). Conclude from Question 1 that S1(T ) is uncountable.

Question. Recall the theory T = Th(Q, <, 1, 12 ,
1
3 , ...) in the signature {<, c1, c2, ...},

which we saw is precisely the logical consequences of DLO + {cn+1 < cn|n = 1, 2, ...}.
Prove that T is not “finitely axiomatizable”. That is, there do not exist finitely many
sentences θ1, ..., θk so that Con({θ1, ..., θk}) = T .

[Hint: first, show that no finite subset of DLO+{cn+1 < cn|n = 1, 2, ....} can work.
Note however that we do not assume that θ1, ..., θk are of this form.]

Question. [Requires familiarity with basic definitions in field theory]

10Note that m here is “external” while n is “internal”.
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(1) Prove that the theory T of “a field with characteristic 0” is not finitely axiomati-
zable.

(2) Prove that the theory T of “an algebraically closed field” is not finitely axiomati-
zable.

The next questions shows another natural mathematical concept which can be captured
using types, regarding connected components of graphs.

Let G = (V,E) be a (symmetric) graph. Fix a, b ∈ V vertices.
Say that x0, x1..., xn is a path between a and b (of length n) if x0 = a, xn = b and for
each i = 0, ..., n− 1 there is an edge between xi and xi+1 (xi E xi+1).
For example, for any a the path x0, where x0 = a = xn, is a path of length 0 between a
to itself.
If a E b, then x0 = a, x1 = b is a path of length 1 between a and b.

Say that a and b are in the same connected component of the graph if there is a
(finite) path from a to b.
Note that “there is a path between a and b” is an equivalent relation on V whose equiva-
lence classes are the connected components.

Question. Work in the language for graphs S = {E} and let A = (A,EA) be a graph.
Assume that A has more than 1 connected components.

(1) Write a 2-type p = p(x, y) so that for any a, b ∈ A, the pair (a, b) realizes the type
p if and only if a and b are in different connected components.
Find a graph B with only 1 connected component (so p is not realized in B) so
that p is still a type (“finitely realizable”).

(2) Is there a type q = q(x, y) so that for any a, b ∈ A, the pair (a, b) realizes the type
q if and only if a and b are in the same connected component?
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Homework 8

Question 30. Suppose A = (N, 0, 1, ·,+, <), A ⪯ B (so B = (B, 0B, 1B, ·B,+B, <B) and
in particular N ⊆ B, 0B = 0, 1B = 1). Prove that if b ∈ B \ N then n <B b for all n ∈ N.
Question 31. In this question you are asked to prove that certain countable structures
are saturated or atomic.
This can be done “directly”, with enough effort. But that is not the point here.
The point is to see how our big theorems here, regarding the existence of such models (in
certain situations), can be used to conclude facts about a given model. [For convenience,
some relevant theorems are attached below.]
You can give a quick proof using these big theorems, as well as our understanding the
models of these theories. Fully justify your arguments! In particular, you need to argue
why such saturated or atomic model exists.

(1) Prove that the structure (Q, <) is both saturated and atomic.
(2) Prove that B = (Q \ {0}, <, 1, 12 , ...) is saturated.
(3) Prove that C = (Q+, <, 1, 12 , ...) is atomic.

We saw that elementary equivalent structures may be non-isomorphic. In other words,
two structures could have the same theory, yet be non-isomorphic. This can happen even
if the structure are countable.

We will see now that for finite structures (structures with a finite domain) the the-
ory completely determines the structure. In other words, elementary equivalence implies
isomorphism.

Question 32. (1) [Warm up] Consider the vocabulary {R,F} where R is a binary
relation and F is a binary function. Let A = (A,RA, FA) be a finite structure
(meaning A is finite). Prove that there is a sentence φ in the language so that
A |= φ and for any structure B, if B |= φ then B ≃ A. [Hint: let n be the size of
A. Write a sentence saying that there are precisely n things and which describes
how R and F behave.]

(2) [Finite signature] Let S be any finite vocabulary. Let A be a finite structure in
this vocabulary. Prove that there is a sentence φ in the language so that A |= φ
and for any structure B, if B |= φ then B ≃ A.
This could be a little messy. You don’t have to be too formal here in writing a
sentence.
Referring to your solution for (1), explain the main ideas of what this sentence
should say, and how this can be done in our language.

This should already be quite convincing. Nevertheless, it does make senese to talk about
finite structures even if the signature is infinite!
The result is still true, with an additional trick, as explained below.
This part is not for submission.

(•) Let S be any vocabulary (not assumed to be finite, or even countable). Let A be a
finite structure in this vocabulary. Prove that for any structure B, if B ≡ A (they
are elementary equivalent) then B ≃ A.

[Hint: (a) Show that if |A| = n (A has exactly n members) then |B| = n as well.
(b) There are only finitely many functions from A to B (nn many). You just want
to show that one of these must be an isomorphism.
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(c) Approach by contradiction, that no function works. If a function f : A→ B is
not an isomorphism, there is some symbol in the language whose interpretation f
fails to respect.
(d) Conclude that there are two finite structures for a finite signature, which are
elementary equivalent yet not isomorphic. This would contradict part (2). (The
facts about reducts from Pset 4 are useful.)]

Not to be submitted.

Question. Let A = (N,+, ·, 0, 1). Prove that A is atomic.

Recall: we saw in class that if T has only countably many types, then T has an atomic
model.
On the other hand, we saw in Pset 7 that for T = Th(A), S1(T ) is uncountable.
So the existence of an atomic model is not equivalent to having “not too many types”.
(Unlike the existence of a saturated model, which is equivalent to all the Sn’s being
countable.

Question (Requires familiarity with field theory). Let Qalg be the algebraic closure of
the rationals. Show that the (countable) structure (Qalg,+, ·, 0, 1) (an algebraically closed
field with characteristic 0) is atomic.
Let Qalg(x1, x2, ...) be the algebraic closure of the (countably) infinite degree transcenden-
tal extension of Q. Show that this model is saturated.

[This can be done by “direct computations” using the concept of quantifier elimination
(see Marker’s book).
However, you can also give a quick argument using our results, together with some struc-
ture theory about algebraically closed fields. (Specifically, the fact that we understand
all algebraically closed fields of characteristic 0, up to isomorphism, in terms of their
transcendence degree.]

Relevant theorems for Question 2. Recall that a countable structure A is saturated
for any parameters d̄ = d1, ..., dk from A and for any n-type p with parameter d̄, p is
realized in A. [A is “very large”.]

Recall that a countable structure A is atomic if for any ā = a1, ..., an in A, the type
p = tpA(ā) is isolated. [A is “very small”.]

Recall that an isolated type p (w.r.t. a theory T ) is realized in any model of T . If a
type p is omitted in some model, it must be not isolated.

Theorem 1. Let T be a complete theory. If T does not have a countable saturated model,
then I(T ) is infinite (and in fact uncountable!)

Theorem 2. Let T be a complete theory. If T has a countable saturated model, then it
has a countable atomic model.


