Bi-weekly homework assignments.

Homework 1

Question 1. Show that the following expressions can be written as Δ_0 formulas.

- (1) $x = \{a, b\};$
- (2) $x = \bigcup y;$
- (3) x = (a, b);
- (4) $X = A \times B;$
- (5) R is a relation;
- (6) f is a function.

(Recall that (a, b) is defined as $\{\{a\}, \{a, b\}\}$ and $A \times B$ is defined as $\{(a, b) : a \in A, b \in B\}$.

Question 2. Show that the following properties have the corresponding complexity:

- (1) " κ is a cardinal" is Π_1 ;
- (2) " κ is a regular cardinal" is Π_1 .
- (3) "|X| = |Y|" is Σ_1 ;
- (4) "|X| < |Y|" is Δ_2 assuming ZF, and is Π_1 , assuming ZFC.

Question 3. Assume ZF.

- (1) Show that (V_{ω}, \in) satisfies all axioms of ZFC but the axiom of infinity.
- (2) Suppose $\alpha > \omega$ is a limit ordinal. Show that V_{α} satisfies all axioms of ZF apart from the axiom of replacement. Assuming AC, show that AC holds in V_{α} as well.
- (3) Show that the axiom of replacement fails in $V_{\omega+\omega}$ and in V_{ω_1} .
- (4) Show that the powerset axiom fails in $H(\aleph_1)$.

Question 4. A cardinal κ is called **(strongly) inaccessible** if κ is regular and for any $\alpha < \kappa$, $|2^{\alpha}| < \kappa$. Assuming ZFC, show that if κ is strongly inaccessible then $H(\kappa) = V_{\kappa}$. Conclude that then V_{κ} satisfies all the axioms of ZFC.

Question 5. Exercise 2.20 in the notes.

Question 6 (Recursive definition). Suppose $\theta(x, y)$ is such that given a function f with domain an ordinal α , there is a unique y such that $\theta(f, y)$ holds. We may use θ to define recursively functions f_{α} by

- $f_0 = \emptyset;$
- given f_{α} , $f_{\alpha+1}$ has domain $\alpha + 1$ such that $f_{\alpha+1} \upharpoonright \alpha = f_{\alpha}$ and $f_{\alpha+1}(\alpha)$ is the unique y for which $\theta(f_{\alpha}, y)$ holds;
- $f_{\alpha} = \bigcup_{\beta < \alpha} f_{\beta}$ if α is a limit ordinal.

Write a formula $\phi(w, y)$ which is true if and only if w is an ordinal and $f_{w+1}(w) = y$ (equivalently, $f_{\alpha}(w) = y$ for some $\alpha > w$). That is, ϕ defines a class function, defined on all the ordinals, recursively using θ . Show that if θ is Σ_n then ϕ is Δ_n .

Homework 2

Recall the following definition involved in Godel's L.

Given a set M, we view M as a model (M, \in) . Say that X is definable (with parameters) over M if $X \subseteq M$ and there is a formula $\phi(x, x_1, ..., x_k)$ and parameters $a_1, ..., a_k$ in M such that

$$x \in X \iff M \models \phi(x, a_1, ..., a_k).$$

Let Def(M) be the set of all $X \subseteq M$ which are definable over M.

Recall that the hierarchy L_{α} is defined recursively on the ordinals by

- $L_0 = \emptyset;$
- $L_{\alpha+1} = \operatorname{Def}(L_{\alpha});$
- $L_{\alpha} = \bigcup_{\beta < \alpha} L_{\beta}$ for limit α .

Question 7. (1) Show that the property "X = Def(M)" (of the pair X, M) is Δ_1 .

- (2) Show that the property " $X = L_{\alpha}$ " (of the pair X, α) is Δ_1 .
- (3) Show that L_{α} is hereditarily ordinal definable, for every ordinal α . In other words, $L \subseteq \text{HOD}$.

It follows that L is absolute between transitive models of ZF. In particular, if we follow the "construction of L" inside L, we get L again. In other words, $L \models \forall x \exists \alpha (x \in L_{\alpha})$, where " $x \in L_{\alpha}$ " is the Δ_1 expression you found above.

Question 8. Show that the property "X is in HOD" is Σ_2 .

Question 9. (1) Show that $H(\aleph_1) \not\prec_{\Sigma_2} V$.

- (2) Show that $H(\aleph_{\omega}) \not\prec_{\Sigma_2} V$. (Recall that $\aleph_{n+1} = \aleph_n^+$ and $\aleph_{\omega} = \sup_n \aleph_n = \bigcup_n \aleph_n$.)
- (3) Show that $V_{\omega_1} \not\prec_{\Sigma_1} V$.
- (4) Show that $H(\aleph_1) \prec_{\Sigma_1} V_{\omega_1}$.

Relative definability. Let A be a set. Say that a set X is ordinal definable over A (X is OD(A)) if there is a formula $\phi(x, y_1, ..., y_n, z, w_1, ..., w_k)$, ordinals $\alpha_1, ..., \alpha_n$ and $a_1, ..., a_k \in A$ such that

$$x \in X \iff \phi(x, \alpha_1, ..., \alpha_n, A, a_1, ..., a_k).$$

As before, this is equivalence to saying that there exists an ordinal α such that $A \in V_{\alpha}, \alpha_1, ..., \alpha_n < \alpha$ and

$$x \in X \iff \phi^{V_{\alpha}}(x, \alpha_1, ..., \alpha_n, A, a_1, ..., a_k)$$

Say that X is **hereditarily ordinal definable over** A if every member of t.c.(X), the transitive closure of X, is ordinal definable over A.

Let HOD(A) be the collection of all sets which are hereditarily ordinal definable over A.

Question 10 (Assume ZF). (1) For any set A prove that HOD(A) satisfies ZF.

- (2) Assume that A is a set of ordinals. Prove that HOD(A) satisfies ZFC, and $A \in HOD(A)$.
- (3) Assume that A is a set of sets of ordinals, that is, there is some ordinal η such that $A \subseteq \mathcal{P}(\eta)$. Prove that $A \in HOD(A)$.
- (4) Assume that A is a transitive set. Prove that $A \in HOD(A)$.

Relative constructability. The following provides a quick introduction to versions of the constructible universe L, when relativized to a set A. These are not to be submitted. Also they assume you are already familiar with the basics of L.

Definition 1 (Hajnal's relativized L-construction). Given a set A, define

- $L_0(A) = \text{t.c.}(A)$, the transitive closure of A;
- $L_{\alpha+1}(A) = \operatorname{Def}(L_{\alpha}(A));$

• $L_{\alpha}(A) = \bigcup_{\beta < \alpha} L_{\beta}(A)$ for limit α .

Let L(A) be the union of all $L_{\alpha}(A)$ for ordinals α . Then L(A) is a definable transitive class.

For a set M a relation R on M and $X \subseteq M$, say that X is definable (with parameters) over (M, \in, R) if there is a formula ϕ in the language of set theory expanded by the relation R (that is in the atomic case we also consider formulas of the form $R(x_1, ..., x_m)$, if R is an m-ary relation), and parameters $a_1, ..., a_k$ in M such that

$$x \in X \iff M \models \phi(x, a_1, ..., a_k)$$

Let $\operatorname{Def}^{A}(M)$ be the set of all $X \subseteq M$ which are definable over (M, \in, R) .

Definition 2 (Levy's relativized L-construction). Given a set, or a definable class, A, define

- $L_0[A] = \emptyset;$
- $L_{\alpha+1}[A] = \operatorname{Def}^{A \cap L_{\alpha}[A]}(L_{\alpha}[A]);$ $L_{\alpha}[A] = \bigcup_{\beta < \alpha} L_{\beta}[A].$

Let L[A] be the union of all $L_{\alpha}[A]$ for ordinals α . Then L[A] is a definable class.

- Question (Assuming ZF). (1) For any set A, L(A) is a model of ZF and it is the minimal transitive class model of ZF which contains A and all the ordinals.
 - (2) For any set or definable class A, L[A] is a model of ZFC. It is the smallest transitive model of ZF which contains all the ordinals and satisfies the following:

for any
$$X \in L[A], X \cap A \in L[A]$$
.

Question. If A is a set of ordinals, then L[A] = L(A).

Remark. In general the two models could be different. For example if A is not a set of ordinals, it might be that $A \notin L[A]$. Also, if A is not a set of ordinals it might be that L(A) fails to satisfy the axiom of choice.

Homework 3

Fix a countable transitive model M of ZFC.

Question 11. Let (\mathbb{P}, \leq) be a poset and τ a \mathbb{P} -name in M. Find a name τ^* such that τ and τ^* have the same rank and for any filter $G \subseteq \mathbb{P}, \tau^*[G]$ is the transitive closure of $\tau[G]$. (And prove this.)

Question 12. Exercises 3.22 and 3.23 in the notes.

Question 13. (1) Prove clauses (6) and (7) of Theorem 3.32 in the notes. Let \mathbb{P} be the poset of all finite approximations for a subset of ω .

- (2) Find two distinct names σ and τ such that $\sigma[G] = \tau[G]$ for any generic filter $G \subseteq \mathbb{P}$.
- (3) Find a statement $\phi(x_1, ..., x_n)$, names $\tau_1, ..., \tau_n$ and a condition $p \in \mathbb{P}$ such that $p \Vdash \phi(\tau_1, ..., \tau_n)$ yet $p \not\Vdash^* \phi(\tau_1, ..., \tau_n)$.

Question 14 (Forcing with a dense set). Let (\mathbb{P}, \leq) be a poset and $D \subseteq \mathbb{P}$ a dense set. (All in M.) We can view (D, \leq) as a poset (assume also that $1_{\mathbb{P}} \in D$).

- Given a filter G for (\mathbb{P}, \leq) , generic over M, show that there is a filter H for (D, \leq) , generic over M, such that M[G] = M[H].
- Conversely, given a filter H for (D, \leq) , generic over M, show that there is a filter G for (\mathbb{P}, \leq) , generic over M, such that M[G] = M[H].

(In this case we consider (\mathbb{P}, \leq) and (D, \leq) as *equivalent* in the sense that they produce the same extensions.)

Question 15. Let κ be an uncountable cardinal and suppose N is a countable elementary submodel of $H(\kappa)$. (N is <u>not</u> assumed to be transitive.)

- (1) Suppose $X \in N$ and X is a countable set. Show that $N \models "X$ is countable" and $X \subseteq N$.
- (2) Show that $N \cap \omega_1$ is an ordinal (that is, it is transitive).
- (3) Suppose $\kappa > \omega_1$. Show that $N \cap \omega_2$ is not an ordinal.

Homework 4

- **Question 16.** (1) Let \mathbb{P} be the poset of all finite approximations for a subset of ω . Find an infinite antichain $A \subseteq \mathbb{P}$. (Without using the axiom of choice.)
 - (2) Let \mathbb{P} be the poset of all intervals p = (x, y) for $x, y \in \mathbb{R}, x < y$. $p \le q \iff p \subseteq q$. Find a countable subset of \mathbb{P} which is dense in \mathbb{P} .

Question 17 (Product forcing). Let $(\mathbb{P}, \leq^{\mathbb{P}})$ and $(\mathbb{Q}, \leq^{\mathbb{Q}})$ be posets (in M). Define \leq on $\mathbb{P} \times \mathbb{Q}$ by

$$(p,q) \le (p',q') \iff p \le^{\mathbb{P}} p' \land q \le^{\mathbb{Q}} q'.$$

Note that $(\mathbb{P} \times \mathbb{Q}, \leq)$ is a poset with maximal element $(1_{\mathbb{P}}, 1_{\mathbb{Q}})$.

We show that forcing with $\mathbb{P} \times \mathbb{Q}$ is equivalent to forcing first with \mathbb{P} , and then forcing with \mathbb{Q} over the generic extension.

- (1) Suppose $K \subseteq \mathbb{P} \times \mathbb{Q}$ is a generic filter over M. Let G and H be the left and right projections of K respectively. Show that $G \subseteq \mathbb{P}$ is a generic filter over M and that $H \subseteq \mathbb{Q}$ is a generic filter over M[G]. Furthermore, show that M[K] = M[G][H], that is, the generic extension of M[G] using the poset \mathbb{Q} .
- (2) Suppose $G \subseteq \mathbb{P}$ is generic over M and $H \subseteq \mathbb{Q}$ is generic over M[G]. Show that $K = G \times H \subseteq \mathbb{P} \times \mathbb{Q}$ is generic over M and that M[G][H] = M[K].
- (3) Show that $\mathbb{P}_1 \times \mathbb{P}_1$ and \mathbb{P}_2 are isomorphic. (Recall that \mathbb{P}_{α} is the poset of all finite binary functions with domain a subset of $\alpha \times \omega$.)

Question 18 (Defining a name by cases). Suppose (\mathbb{P}, \leq) is a poset and $A \subseteq \mathbb{P}$ is an antichain. (Both (\mathbb{P}, \leq) and A are in M.) Suppose that, in M, there is a map assigning for each $p \in A$ a name τ_p . Define a name τ in M such that for any filter $G \subseteq \mathbb{P}$, generic over M, if $G \cap A = \{p\}$ then $\tau[G] = \tau_p[G]$ and if $G \cap A = \emptyset$ then $\tau[G] = \emptyset$. (And prove that this is the case.)

Question 19 (Canonical witness (using AC)). Let $\phi(x, \tau_1, ..., \tau_n)$ be a formula in the forcing language. Find a name τ so that for any condition $p \in \mathbb{P}$, if $p \Vdash \exists x \phi(x, \tau_1, ..., \tau_n)$, then $p \Vdash \phi(\tau, \tau_1, ..., \tau_n)$.

4

Homework 5

For a partial function $p: \operatorname{dom}(p) \to \{0,1\}, \operatorname{dom}(p) \subseteq \omega$, and a subset $a \subseteq \omega$, say that a agrees with p if the characteristic function of a extends p. That is, if $p(n) = 1 \iff n \in a$, for all $n \in \operatorname{dom}(p)$.

Question 20. Let L(A) be "the basic Cohen model" as in section 6.1 in the notes. Fix some $a \in A$. Assume ϕ is a formula such that $\phi^{L(A)}(A, a)$ holds. Show that there is a finite partial function $p: \operatorname{dom}(p) \to \{0,1\}$ such that for any $b \in A$, if b agrees with p then $\phi^{L(A)}(A, b)$ holds.

Question 21 (ZFC). Let κ be a regular cardinal. Say that a poset \mathbb{P} satisfies the κ -chain condition (\mathbb{P} is κ -c.c.) if there are no antichains in \mathbb{P} of size $\geq \kappa$. So c.c.c. is ℵ1-c.c.

Let $G \subseteq \mathbb{P}$ be a generic filter over V.

Show that if \mathbb{P} is κ -c.c. and $\lambda \geq \kappa$ is a cardinal in V, then λ is a cardinal in V[G] as well.

If you prefer, you may replace V with a countable transitive model M, then the assumption is that κ is some cardinal in M and $M \models \mathbb{P}$ is κ -c.c. Now replace "generic over V" by "generic over M" and V[G] by M[G].]

Question 22. Let $(\mathbb{P}, \leq^{\mathbb{P}})$ and $(\mathbb{Q}, \leq^{\mathbb{Q}})$ be posets. A map $\pi \colon \mathbb{P} \to \mathbb{Q}$ is a **complete** projection if

- for any p₁, p₂ ∈ ℙ, if p₁ ≤^ℙ p₂ then π(p₁) ≤^ℚ π(p₂);
 for any p ∈ ℙ and for any q ≤^ℚ π(p) there is a p' ≤^ℙ p such that π(p') ≤^ℚ q.
- (1) Show that the image of π , $\{\pi(p) : p \in \mathbb{P}\}$, is a dense in \mathbb{Q} below $\pi(1_{\mathbb{P}})$.
- (2) Show that for any $G \subseteq \mathbb{P}$ generic over V, there is a filter $H \subseteq \mathbb{Q}$ generic over V with $H \in V[G]$.
- (3) (a) Let \mathbb{P} and \mathbb{Q} be any posets. Show that the map $\mathbb{P} \times \mathbb{Q} \to \mathbb{P}$ defined by $(p,q) \mapsto p$ is a complete projection.
 - (b) Let \mathbb{P} be the poset of all finite approximations to a subset of ω . Define a map $\pi: \mathbb{P} \to \mathbb{P}$ as follows. The domain of $\pi(p)$ is the set of all k such that 2k is in the domain of p, and $\pi(p)(k) = p(2k)$ when defined. Show that π is a complete projection.
- (4) Let \mathbb{P} be the poset of finite approximations to a subset of ω . Suppose $G \times H \subseteq \mathbb{P} \times \mathbb{P}$ is generic over V. Let $g = \bigcup G$ and $h = \bigcup H$. Define $f_1: \omega \to \{0, 1\}$ by $f_1(n) = \max\{g(n), h(n)\}$. Define $f_2: \omega \to \{0, 1\}$ by $f_2(n) = g(n) + h(n) \mod 2.$
 - (a) Find a filter $F_1 \subseteq \mathbb{P}$, generic over V such that $f_1 = \bigcup F_1$.
 - (b) Find a filter $F_2 \subseteq \mathbb{P}$, generic over V such that $f_2 = \bigcup F_2$.

(If it helps, you may replace V with a countable model M and change everything to "generic over M", where \mathbb{P} , \mathbb{Q} and π are in M.)

Question 23. Let $\mathbb{P} = \mathbb{P}_{\omega}$ the poset of all finite partial functions $p: \operatorname{dom}(p) \to \mathbb{P}_{\omega}$ $\{0,1\}$ where dom(p) is a finite subset of $\omega \times \omega$. Let $G \subseteq \mathbb{P}$ be generic over V and define $a_n = \{k \in \omega : (\exists p \in G) p(n, k) = 1\}$. Define $A_n = \{a_n \Delta X : X \subseteq \omega \text{ is finite}\}.$ Let $A = \{A_n : n \in \omega\}$, and consider the model L(A).

- (1) Prove that for any set $B \in L(A)$ there is a formula ϕ , a parameter $v \in L$ and finitely many $z_1, ..., z_k \in \bigcup A$ such that $b \in B \iff \phi^{L(A)}(b, A, z_1, ..., z_k, v)$.
- (2) Prove that if $B \in L(A)$, $B \subseteq A$, then either B is finite or $A \setminus B$ is finite.

(3) Prove in ZF that if (X, \leq) is a linearly ordered set then there is some set $Y \subseteq X$ such that Y and $X \setminus Y$ are not finite. Conclude that in L(A) there is not linear ordering of the set A.

Homework 6

Question 24 (ZFC). Let λ be an ordinal. Let \mathbb{P} be the poset of all functions $p: \operatorname{dom} p \to \{0,1\}$ where $\operatorname{dom} p \subseteq \lambda \times \omega_1$ is a countable subset. Assume that the Continuum Hypothesis holds, that is, $2^{\aleph_0} = \aleph_1$.

- (1) Show that $|\mathbb{P}| = (|\lambda| + \aleph_1)^{\aleph_0}$.
- (2) Assume CH holds. Let θ be a regular cardinal greater than \aleph_1 (e.g. $\theta =$ \aleph_2). Prove that for any set $X \in H(\theta)$ there is an elementary substructure $M \prec H(\theta)$ such that
 - $\omega_1 \subseteq M, X \in M;$
 - $|M| = \aleph_1;$
 - M is closed under countable sequences. That is, if $h: \omega \to M$ is a function, then $h \in M$. (In particular, if $a \subseteq M$ and $|a| = \aleph_0$ then $a \in M.$
- (3) Show that the poset \mathbb{P} satisfies the \aleph_2 -c.c. condition. That is, any antichain $A \subseteq \mathbb{P}$ is of size at most \aleph_1 . [Hint, assume A is an antichain of size \aleph_2 , find a model M as above with A in M, and argue as we did before.]
- (4) Show that \mathbb{P} is σ -closed.
- (5) Let λ be \aleph_3 (as calculated in V). Suppose $G \subseteq \mathbb{P}$ is generic over V. Show that in the model M[G]:
 - CH holds;
- the powerset of ℵ₁^{V[G]} has size ≥ ℵ₃^{V[G]}.
 (6) Suppose also that in V, 2^{ℵ1} = ℵ₂. Show that in V[G] the powerset of ℵ₁^{V[G]} has size precisely ℵ₃^{V[G]}.

Question 25. Let S be Sacks forcing as defined in section 10 in the notes. Let $G \subseteq \mathbb{S}$ be generic over V.

- (1) Show that S is not c.c.c.
- (2) Show that S is not σ -closed.
- (3) [Assume ZFC] Suppose that $g: \omega \to \theta$ is in V[G], for some ordinal θ . Prove that there is a set $X \in V$ such that $X \subseteq \theta$, X is countable, and $g(n) \in X$ for all $n \in \omega$. [Hint: more specifically, find in V sets F_0, F_1, F_2, \dots such that $|F_n| = 2^n$ and g(n) is in F_n .]
- (4) Conclude that forcing with S does not collapse \aleph_1 . That is, the ordinal ω_1^V (the first uncountable ordinal as calculated in V) is still uncountable in V[G].

6