
Midterm Exam Emat 233, March 18 2005
Special instructions: solve five problems of your choice

[10 points] Problem 1. Evaluate the following integral by reversing the order of integration
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[10 points] Problem 2. Consider the vector field in 2-dimensions

~F (x, y) =
(

xe−x + 2xy
)

i + (y + x2)j .

Compute the line integral of ~F along the curve C in the picture. Motivate
your answer if necessary.
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Solution to Problem 2. The contour is rather complicated so I would suspect a shortcut to exist. Indeed we
check that the integral is independent of the path
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So we look for the potential φ.
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Thus a suitable potential is

φ(x, y) = −xe−x − e−x + x2y +
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[10 points] Problem 3. By using the appropriate theorem (which must be named) compute the circulation
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~F · d~r of the vector field
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around the curve C given by the circle of radius 2 and center (3, 2) oriented counterclockwise.

Solution to Problem 3. The theorem is Green’s theorem. So we have
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[10 points] Problem 4.

Compute the double integral
∫∫
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over the region consisting of the half washer in the picture with inner radius 1 and outer
radius 2.
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Solution to Problem 4. The shape of the region suggests passing to polar coordinates, in which the integral
reads
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[10 points] Problem 5.

Compute the flux of the vector field

~F (x, y, z) = (3yz) i + ln(1 + x2y2z2)j + zk

across the “roof” surface S shown in the picture and described hereafter which is the union
of portion of two planes, oriented upwards

z = 2 + x, −1 ≤ x ≤ 0, 0 ≤ y ≤ 1

z = 2 − x, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
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Solution to Problem 5. The normal of the first portion of plane is
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For the second surface we have
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The total flux is thus
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[10 points] Problem 6 Evaluate the following integral by using polar coordinates
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Solution to Problem 6. The region is the upper semidisk of radius
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