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Abstract

The nonlinear steepest descent method for rank-two systems relies on the notion of g-function. The applicability
of the method ranges from orthogonal polynomials (and generalizations) to Painlevé transcendents, and integrable
wave equations (KdV, NonLinear Schrödinger ,etc.).

For the case of asymptotics of generalized orthogonal polynomials with respect to varying complex weights
we can recast the requirements for the Cauchy-transform of the equilibrium measure into a problem of algebraic
geometry and harmonic analysis and completely solve the existence and uniqueness issue without relying on the
minimization of a functional. This addresses and solves also the issue of the “free boundary problem”, determining
implicitly the curves where the zeroes of the orthogonal polynomials accumulate in the limit of large degrees and the
support of the measure. The relevance to the quasi—linear Stokes phenomenon for Painlevé equations is indicated.
A numerical algorithm to find these curves in some cases is also explained.
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Figure 1: The surface of (the arctan of) h(x) (see the text for explanation) for an admissible Boutroux simple curve
with external potential V (x) = x6/6. Note the “creases” where h is clearly non-differentiable but continuous; on
each side of each crease the surface is negative.
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1 Introduction and setting

In the nonlinear steepest descent method [8] the “cornerstone” is the construction of a suitable g–function for the
problem: for systems of rank 2 there is a single g–function whereas in general (disposing of a trivial gauge term)
for a rank (r + 1)–system one needs a r-tuple of g–functions.

1



The rank 2 case is sufficiently rich so as to include systems relevant to all Painlevé transcendents [21] as well
orthogonal polynomials [9] and generalizations thereof to complex measures [1, 16] and/or to different notions of
biorthogonality of Laurent polynomials [4].

The present paper will not deal with the steepest–descent method itself but rather with the construction of
suitable g–functions of the type of interest in the study of pseudo–orthogonal polynomials. Once the method has
been established it is conceptually simple (but possibly practically complicated) to extend the present considera-
tions to other settings like the linear auxiliary systems appearing in Painlevé equations and Laurent–orthogonal
polynomials.

Sd+1

S1

γ`

Figure 2: An example of contours for a poten-
tial V (x) of degree 8. The shaded sectors are
“forbidden” directions of approach at infinity.
The contours γ` can approach ∞ along any
direction in the “allowed sectors”, non shaded
and marked as S1, . . . ,Sd+1. We should think
of the oriented contours γ` as a wire or high-
way carrying a current (traffic) κ` ∈ C: the
total incoming current in a sector Sj is the
sum of the currents in/out carried by all con-
tours accessing that particular sector. Note
that the total traffic in/out of all sectors is
zero.

The most direct motivation of the present work essentially
stems from a previous paper [1] dealing with pseudo–orthogonal
polynomials described below: we point out that such pseudo–
orthogonal polynomial were already studiend in [16] in the context
of quantum gravity.

Consider a potential (external field) V (x): we will only focus
on polynomials in the present paper but similar techniques can be
used to handle a potential with arbitrary rational derivative (we
are presently working on this extension) and certainly some ad-hoc
situations of even more general form.

Let thus V (x) be a polynomial of degree d + 1 and consider
now the complex moment functional (a “semiclassical” moment
functional in the language of [20, 3])

Lκ,N : C[x] 7→ C (1.1)

xj 7→
d+1∑
`=1

κ`
∫
γ`

xje−NV (x) (1.2)

where the complex constants κ` are arbitrarily chosen but fixed
and N ∈ R+ is a large parameter used in the asymptotic study
below. The contours γ` are some contours in the complex plane
extending to infinity along directions where <(V (x))→ +∞, so as
to give convergent integrals. Note that the details of the contours
are irrelevant in the definition of the moment functional by virtue
of Cauchy’s theorem. Also, by the same argument, one of the
contours is redundant in the sense that the integral along one of
them can be expressed as minus the sum of the integral along all
the others. We will nevertheless retain this “redundant” definition for later purposes.

The pseudo–orthogonal polynomials pn(x) are a sequence of (monic) polynomials of exact degree n with
the defining properties [3]

Lκ,N (pn(x)pm(x)) = hnδnm , hn 6= 0 ,∀n ∈ N. (1.3)

The reader should recognize at this point the connection to ordinary OPs; indeed if V (x) is real-valued and we
choose only the real axis as contour, then the definition above reduces to the standard one.
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The existence of these generalized OPs amounts to the non vanishing of the sequence of Hänkel determinants
of the moment functional [3]. The problem is that of studying the asymptotics of the polynomials pn(x) in the
complex plane uniformly over compact sets as N →∞ and n/N → T ∈ [0,∞).

This problem was addressed and solved3 in [1] using the nonlinear steepest descent method of Deift–Zhou and
hence a suitable notion of g–function. However we solved the problem in a completely “backwards” perspective:
indeed in that paper the data was not a given potential V but rather a given Boutroux hyperelliptic curve (satisfying
certain conditions of “admissibility”) and the potential itself was encoded in certain moduli. The relation between
those moduli and the coefficients of the potential is highly transcendental (except for the degree of the potential
which is immediately read off) inasmuch as it involves the solution of a uniformization problem: thus the question
of how to construct a suitable g–function starting from the potential V remained unanswered.

We remind the reader that in the case of a real potential on the real axis the solution is provided by a variational
problem for a functional

S[ρ] := 2
∫

R
V (x)ρ(x) dx−

∫
R

∫
R
ρ(x)ρ(x′) ln |x− x′| , (1.4)

where ρ(x) dx is a positive measure of total mass T . It is known that under mild assumptions (certainly satisfied
for a polynomial V bounded from below) the measure minimizing the above functional is unique and supported on
a finite disjoint union of compact intervals [22, 10]. The g–function is then defined as

g(x) = V (x)−
∫

R
ln(x− ξ)ρ(ξ) dξ (1.5)

where the cuts of the logarithm are suitably placed on the real axis. It follows from a manipulation involving the
Plemelji–Sokhotsky formula that the holomorphic derivative of g(x) satisfies an algebraic equation

y2 = (V ′(x))2 −Q(x) , y := g′(x) , Q(x) =
∫

R

V ′(x)− V ′(ξ)
x− ξ

ρ(ξ) dξ (1.6)

where –if V (x) is a polynomial of degree d+ 1– Q(x) is a polynomial of degree d− 1: of course Q(x) is determined
implicitly as the solution of the above variational problem.

In the case of a complex potential and (weighted) sum of contours other than the real axis, a similarly developed
variational problem is not known, although it is believed that the minimization problem should be replaced by
a “min-max” problem where one minimizes a similar functional on the measures and then maximizes it over the
variation of the contours within a carefully determined class. The obstacle with this approach from the analytical
point of view is that it introduces a “free–boundary problem” which is in general hard to pin-down also because
the smoothness class of the boundary is not known a priori.4

The point of interest is that the variational conditions can be translated into properties of the algebraic equation
(1.6) in a way that allows straightforward generalization without explicit reference to a minimization problem at
all. This re-formulation is contained in the notion of Boutroux curve and admissibility introduced in [1] and
recalled in the next section.

For the reader with experience in the nonlinear steepest–descent method we point out that these requirements
are the sufficient conditions for fully implementing the Deift–Zhou analysis and thus bypassing entirely the solution
of a minimization problem (as explained in [1]) although being logically equivalent to it5.

3In [1] we considered only the case n = N + r with r bounded, but it is a matter of a simple modification to extend that work to
the case n = TN + r.

4There is one work [19] which deals with a problem that falls within the same circle of investigations where the authors use the
notion of S–curve proving its existence: we point out that the present method is radically different inasmuch as it relies on “differential
geometry” rather than analysis.

5In fact a minimization problem is conceptually needed when solving a certain Dirichlet problem for a uniformizing map.
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1.1 Main results of the paper

The main result of the paper is Theorem 5.1; in coarse terms it asserts that for any (polynomial) potential V (x)
and total charge T > 0 there exist (unique) an appropriate g–function for each choice of contours in the moment
functional (1.2) which is suitable for the nonlinear steepest descent analysis. The knowledge of such g–function
is equivalent to the knowledge of a positive measure (the equilibrium measure) supported on certain arcs in
the complex plane (Sect. 2.1.1), and the contours appearing in (1.2) can be smoothly deformed (within the same
“homology” class) so that they pass through these arcs and is such a way that all the inequalities required by the
steepest descent method are fullfilled (this was explained in [1]).

The idea of the proof is rather differential–geometric and it is based on two ingredients:

• proving that there is some g–function for a similar problem which has the same contours as in (1.2) but for
a potential Ṽ (x) (polynomial of the same degree as V (x)) whose coefficients are not explicitly known;

• proving that we can deform the underlying hyperelliptic curve as in eq(1.6) so that the “connectivity”6 is
preserved and the potential can be made to match any given one (Sects. 5.2 and following).

The precise statements are contained only in Sect. 5.2 and following, because they require introduction of a number
of concepts. Indeed in Section 2 we review the notions of Boutroux curves and admissibility; in Sect. 3 we recall
the construction of Boutroux curves contained in [1] and based on Strebel’s theory of quadratic differentials [23].
This section also contains important terminology that is liberally used throughout the rest of the paper.

The map P that associates to a Boutroux curve its potential (defined in Def. 2.3) is one of the crucial objects;
the important point is that this is local isomorphism of spaces (Boutroux curves vs. potential/charge) but it is
a branched map; Sect. 4, although still preparatory, contains the necessary analysis of the local isomorphism
Lemma 4.1 and the study of the branch-locus (Sect. 4.2).

Each sheet of P (a cell) is attached to another sheet along the ramification locus; the main idea of the
deformation argument is that we can lift a path in the potentiall/charge space to the space of Boutroux curves
while retaining all the “connectivity” and admissibility properties even if we cross the branchlocus. This involves a
gluing (Sect. 5.4) of the coordinate chart given by P in each cell along the boundary consisting of the ramification
locus. Finally in Sect. 5.5 the uniqueness of the g–function is established.

Some indication of other applications (nonlinear Stokes phenomenon and other settings) is pointed out in the
conclusion. In the appendices we provide some examples and it is explained how to obtain numerically Boutroux
curves for a given potential.

2 Boutroux curves

We will consider only polynomial (as opposed to rational) hyperelliptic Boutroux curves of the form

y2 = P (x) (2.1)

where P (x) is a polynomial of even degree: the case of polynomials of odd degrees would require trivial (but
substantial) modifications and we prefer not to touch the issue here since the curve relevant for pseudo–orthogonal

6The precise definition of this word will appear later in Sect. 5.
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polynomial is anyways always of even degree7. The roots of P (x) need not be distinct and hence the hyperelliptic
curve may be nodal8.

Definition 2.1 An algebraic curve defined as in (2.1) is said to satisfy the Boutroux condition if∮
γ

y dx ∈ iR (2.2)

for any closed loop on the Riemann surface of the algebraic function y. The set of Boutroux curves (of fixed degree)
will be denoted by B (or Bn if we want to make explicit the degree n of P (x)).

Note that the set of (polynomial) Boutroux curves is invariant under the affine group

x 7→ λx+ b , y 7→ y

λ
, (λ, b) ∈ C× × C . (2.3)

We denote by Pn the (vector) space of polynomials P (x) of degree n; we can view the set of Boutroux curves
equivalently as the set of those polynomials P (x) such that <

∮
γ

√
P (x) dx = 0 for all closed contours γ such that the

sum of the multiplicities of the enclosed zeroes of P (x) is even. Clearly the loops encircling only even–multiplicity
roots give trivial constraints.

In the rest of the paper we will only consider polynomial Boutroux curves of degree 2d and we will hence omit
any explicit reference to the degree when using the symbol B. Let 2g+ 2 be the number of odd–multiplicity roots
{αj} of P (x) (each counted discarding multiplicity): note that necessarily there are an even number of them. We
will denote by

w2 =
2g+2∏
j=1

(x− αj) (2.4)

the smooth hyperelliptic curve with those branch-points. We will regard y as a meromorphic function on the
genus-g hyperelliptic Riemann surface of w, where

y = M(x)w (2.5)

for a suitable polynomial M(x).

Definition 2.2 For a given Boutroux curve y2 = P (x) we introduce the external potential (field) V (z) by the
formula

V (z) = res
∞

ln
(

1− z

x

)
y dx , (2.6)

and by the formula
T = res

∞
y dx , (2.7)

we define the total charge, which is a real number because of the Boutroux condition. The branch of y is chosen
so that it is the same in both formulæ. The total charge is a real number (as follows from the Boutroux condition).
(Clearly the map (V, T ) 7→ (−V,−T ) corresponds to the exchange of sheets in the definition).

7There are other situations, notably Painlevé I, where the curve would be of degree 3, hence either rational or elliptic.
8As long as the genus of the surface of y is finite one may easily consider more general analytic (entire) functions P (x) on the right

hand side.
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Definition 2.3 We will denote by V the set of pairs (V (x), T ); this is naturally a manifold isomorphic to Cd+1×R
(or R2d+3), the isomorphism being given by the d+ 1 coefficients of V (recall that V is constant-free) and the total
charge T . The above defines a map

P : B 7→ V ' Cd+1 × R ' R2d+3

y 7→ P[y] = (V (x), T ) (2.8)

where V (x) and T are defined by the previous residue formulæ in Def. 2.2.

The branching locus of the map P will be studied in some detail later in Section 4.
Equivalently we may characterize the external field and the total charge by the asymptotic relation at infinity

of the chosen branch of y

y(x) =
√
P (x) = V ′(x)− T

x
+O(x−2). (2.9)

For a given Boutroux curve we define the admissible sectors as the directions along which the real part of V (x)
tends to +∞

S = {θ ∈ [0, 2π) : <(V (reiθ))→ +∞, r → +∞} =
d+1⊔
j=1

Sj , d+ 1 := deg V (2.10)

In case of a potential with positive real leading coefficient (we can always assume this because of the action (2.3),
the admissible sectors and their complementary sectors (forbidden) form a regular 2(d+1)-gon, one side containing
the positive real direction.

Definition 2.4 A Boutroux curve is said to be

• simple if all roots are either simple or double;

• noncritical if for each root m of multiplicity ≥ 2 we have <
∫m
α1
y dx 6= 0, where α1 is a simple root9

This defines also the notion of critical Boutroux curve. We will denote the subset of simple and noncritical curves
by Breg, and note that it is an open subset of B (in the topology inherited from P).

Remark 2.1 According to this definition, a Boutroux curve may be non-simple but also non-critical, as long as
the root of multiplicity higher than 2 is not on the zero levelset of the integral.

2.1 Admissible Boutroux curves

In this section we recall the definition of admissibility as introduced in [1] and consequent properties.
From the Boutroux condition it follows that the locally defined harmonic function h(z) = <

∫ z
α1
y dx has only a

multiplicative multivaluedness: harmonic continuation around any closed loop in C yields the same function up to
a sign. In fact the sign is exactly the same obtained by analytic continuation of the algebraic function y. Because
of the Boutroux condition the choice of basepoint α1 amongst the branchpoints is irrelevant: a different choice
adds a half period –hence purely imaginary– to the integral, leaving h unaffected. Therefore the zero level set X of
h(x) is intrinsically well defined and [1]

9The integral is defined up to an overall sign but does not depend on the choice of the simple root α1 because of the Boutroux
condition.
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• the set X consists of a finite union of Jordan arcs, some extending to ∞;

• all branch-points αj belong to X;

• the set X is topologically a forest of trees, namely it does not contain any loop;

• each node is a zero of P (x) and has valency k + 2, where k is the multiplicity of the zero. In particular all
the branchpoints are odd-valent nodes and viceversa all odd–valent nodes are branchpoints.

The definition of the external potential V (z) and charge T and the relationship with y implies that one branch
of h(z) behaves as

h(z) ∼ <V (z)− T ln |z|+O(1). (2.11)

Definition 2.5 A Boutroux curve y2 = P (x) with total charge T and external potential V (x) is said to be pre-
admissible if the branch of h(z) that behaves as in (2.11) can be harmonically continued in a punctured neighbor-
hood of z = ∞ and from there to a continuous function on the whole complex plane C. The set of preadmissible
curves will be denoted by B<adm ⊂B ⊂ P and within it the simple–noncritical preadmissible by B<adm

reg .

There are a few important and almost immediate consequences of this definition which can be found in [1]:

Proposition 2.1 If the Boutroux curve is pre-admissible and noncritical (and hence all branchpoints are simple
zeroes) then

1. The set B where h is not harmonic is contained in the zero-level set X and it is bounded; it will be called the
branchcut structure of the pre-admissible Boutroux curve.

2. The branchcut structure B consists of a finite union of finite Jordan arcs connecting the branchpoints.

3. Each connected component of B contains an even number of branchpoints.

4. Each arc of B is a critical trajectory of the quadratic differential P (x) dx2 [23] on the complex plane,
namely it is defined by the local ODE

∇h(x)ẋ = <(y dx) = 0 . (2.12)

Remark 2.2 The branchcut structure B is obtained by a process of pruning from the embedded graph X as follows:

• one removes from X all the smooth branches, namely the maximal level
curves h(x) = 0 that do not contain a branchpoint in their closure. The
reduced graph X0 obtained this way consists only of critical trajectories
issuing from one of the branchpoints, each of which has valency 3.

• From X0 we remove all the “open branches”, namely the arcs that extend
to infinity; this leaves nodes of our forest with valency one, two or three.

• Each bivalent node belongs to a maximal chain of bivalent nodes; links in
this chain are removed in the unique way that leaves nodes of valency 1
along the chain and so that all newly created connected components have
an even number of nodes. The process is repeated to exhaustion until only
mono and tri-valent nodes are left.
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A similar pruning (more complicated to describe) produces a suitable branchcut structure for an arbitrary pre-
admissible Boutroux curve. In this more general setting one allows nodes of any valency greater than 3 and start
pruning in such a way that at the end

• the parity of the valency of each node is unchanged;

• the sum of the valency of the nodes in each connected component is even.

The uniqueness of the result of such pruning is due to the absence of loops in the graph.

Note that for a pre-admissible Boutroux curve with branchcut structure B, each arc Γk ∈ B will be a critical
trajectory joining two zeroes of P (x). Because h(z) is continuous but not harmonic on Γk it must have the same
sign on both sides of the arc, namely we have the

Lemma 2.1 For each smooth maximal arc Γ ⊂ B \ {x : P (x) = 0} h(Γ) = 0 and the sign of h on the left and
right of Γ is the same.

This allows us to finally introduce the notion of admissibility.

Definition 2.6 A pre-admissible Boutroux curve y2 = P (x) with external potential V (x), total charge T > 0 and
branchcut structure B is admissible if h is negative on both sides of each smooth maximal arc in B\{x : P (x) = 0}.

The set of admissible Boutroux curves (and correspondingly the simple-noncritical admissible ones) will be
denoted by Badm,Badm

reg and we have the following inclusions

Badm ⊂ B<adm ⊂ B ⊂ P
∪ ∪ ∪ ||

Badm
reg ⊂ B<adm

reg ⊂ Breg ⊂ P
. (2.13)

Each of these sets inherits the natural topology from that of P.

We point out that this notion of admissibility stems from the specific application to the Deift-Zhou steepest
descent method for the case of (pseudo)–orthogonal polynomials as explained in [1]: in this setting the sign of h
being negative on the sides of each cut is necessary because the Stokes matrices are upper-triangular. The process
of “opening lenses” [9] will give exponentially vanishing jumps in the approximate Riemann–Hilbert problem for
the pseudo-orthogonal polynomials [1]. It is clear that if the applications requires elementary Stokes matrices of
different triangularity, the notion of admissibility (and possibly the one of pre-admissibility) should be modified
accordingly.

We conclude the section with the

Definition 2.7 ([1]) Given an admissible Boutroux curve with branchcut structure B the g–function is the locally
analytic function

g(x) =
∫ x

α0

y dx (2.14)

defined on C \ Γ, where Γ is a collection of arcs containing the branchcuts and some additional arcs (arbitrarily
chosen) connecting the components of B into a chain and to ∞, so as to have a simply connected complement.

The main point that was raised in [1] is that the notion of admissibility for the Boutroux curve is the set of necessary
and sufficient requirements for the g-function in order to apply the nonlinear steepest descent method.
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2.1.1 The (signed) measure associated to a (pre)admissible Boutroux curve

If [y] ∈B<adm then the jump of the normal derivative of h across the branchcuts defines a real measure; equivalently
we can define the measure by

1
2iπ

(y+ dx− y− dx) = ρ(x) d|x| . (2.15)

Such measure is real-analytic on the cuts: on each cut it has a definite sign and it is

• positive if the value of h is negative on both sides of the cut;

• negative if the value of h is positive on both sides of the cut.

In addition the total mass of the measure is precisely the total charge T of the Boutroux curve. We leave these
straightforward checks to the reader. We only point out (without proof) that

Proposition 2.2 There are no admissible Boutroux curves of negative total charge and the only admissible Boutroux
curves of zero charge are perfect squares y2 = (V ′(x))2.

There are –however– preadmissible Boutroux curves of negative charge and nontrivial ones of zero charge (but the
corresponding measure is necessarily signed).

3 Construction of Boutroux curves from combinatorial data and met-
ric gluing

In this section we recall the construction already expounded in [1], which allows to construct (admissible) Boutroux
curves with prescribed topology of the branchcut structure.

In fact the statements do not have anything specific to Boutroux curves but are rather a convenient parametriza-
tion of the space of polynomials P (x) in terms of certain combinatorial and metric data: we will not give the general
account here for brevity and refer ibidem for further details.

The observation that drives the construction is that the Riemannian metric

ds2 = |P (x)||dx|2 (3.1)

(here |dx| stands for the usual distance in the plane) is a flat metric with conical singularities at the zeroes of
P (x); the flat coordinates of this metric are the real and imaginary parts of G :=

∫ √
P (x) dx, which are locally

defined away from the zeroes of P .
As in [23] we will use the notion of vertical10 critical trajectories: these are the maximal solutions of <(y dx) = 0

issuing from all the conical points (the zeroes). It is known (and a local computation shows it easily) that from a
zero of multiplicity k there are k + 2 critical trajectories.

We denote by
Ξ := {closure of all maximal critical trajectories} (3.2)

the closure of the union of all these trajectories: note that in our situation Ξ includes also the critical trajectories
issuing from the double (or higher order) zeroes of P (x), which are saddles (or stationary points) of h.

10Here we deviate from the common use in the pertinent literature, which is that of horizontal trajectories. The difference is of pure
convention and it is forced since we are interested in the level curves of h(z) = <

R
y dx, better described as “vertical”.
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Terminology. Suppose we are given an admissible Boutroux curve and have defined the harmonic function
h(z) = <

∫ z
α1
y dx (as described earlier) in such a way that it is continuous in C, harmonic around ∞ and away

from the (bounded) cuts and negative on the two sides of each cuts.
It is visually appealing and helpful for the intuition to think of the set h−1(R−) as the sea and to the set h−1(R+)

as the emerged lands or continents. The set X = h−1(0) consists of the branchcuts, which are surrounded by
waters on the two sides, and non branchcuts, which have waters only on one side and will be referred as shorelines.
The branchcuts can be thought effectively as causeways joining emerged continents.

Recall that [23, 18, 1]

1. the complement C \ Ξ =
⊔

Γj is a finite union of unbounded, simply connected regions not containing
any zero of P (x) (which belong to Ξ a fortiori).

2. Each Γj has either one or two boundary components and hence is conformally a strip or a plane.

3. Each Γj is uniformized by W :=
∫
y dx into a vertical strip (if it has two boundary components) or a halfplane

(one boundary component).

4. On each boundary component of each Γj there is at least one critical point (zero of P (x)). The relative
positions in the G–plane of the uniformization of these marked points consists of the metric (moduli) data.
For each plane they are the purely imaginary differences of the various marked points along the boundary;
for strips there is also a complex number indicating the width/shear of the strip, relative to two arbitrarily
chosen marked points on the opposite boundaries.

5. Each half plane Γj in the x–plane contains all directions in a sector of the form θ ∈
(

(2k−1)π
2d+2 , (2k+1)π

2d+2

)
11.

There are thus precisely 2d+ 2 halfplanes.

6. The two top rims of each strip go to infinity along the same direction, and so do the two bottom ones. Such
directions are necessarily amongst the “Stokes’ lines” θ = (2k+1)π

2d+2 , k = 0, . . . , 2d+ 1.

Viceversa, if we are given 2d + 2 halfplanes and a suitable number of strips together with marked points on
the boundaries and a recipe detailing which strip/plane needs to be attached to which other, one can reconstruct
the polynomial P (x) by a process known as “welding” (a form of conformal gluing with prescribed flat metric) [23].

In order to describe the topology of the gluing it was introduced in [1] the notion of a “clock diagram”. This
is simply a (2d + 2)–gon whose inside represents an abstract simply connected domain and whose sides represent
asymptotic directions at infinity. The vertices of the polygon are then connected by a suitable network and the
result is a simplified visualization of the graph of critical lines Ξ.

In general a clock-diagram must have precisely 2d + 2 (topological) halfplanes, each bordering one side of the
(2d+ 2)-gon (i.e. a sector at ∞). The other domains (if any) must be topological strips.

By decorated clock-diagram we mean the additional data of some positive numbers associated to the (undi-
rected) links of the network between two nodes together with one modulus for each strip. The modulus of a strip
is subordinated to the (arbitrary) choice of one node on each of the opposite boundaries and is a complex number
of nonzero real part.

11We are assuming the Boutroux curve to be monic P (x) = x2d + . . .. Otherwise all the sectors should be rotated by a common
angle.
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The meaning of the decorations is that of length of the critical trajectories between critical points in the flat
Strebel metric. The moduli of the strips are the width (real part) and shear (imaginary part) of the chosen strip
relative to the chosen reference marked points.

The reconstruction theorem contained in [1] asserts that

Theorem 3.1 ([1]) For an arbitrary decorated clock–diagram there exists a polynomial P (x) such that the critical
graph Ξ of the vertical trajectories has the same topology of the diagram and the same decorations (after suitable
identification of the nodes).

We only recall the main idea and steps of the proof: it consists in gluing (metrically) a suitable number of flat
metric halfplanes and strips according to the topology of the clock diagram: the decorations of the diagram are
distances of marked points on the boundaries used as reference in the gluing.

The result is a topological (open) simply connected surface which is then compactified with one point to obtain
a compact simply connected topological surface X.

Next one needs to define a conformal structure on X: near a point of the interior of the half-planes/strips,
the conformal structure is defined using the flat coordinate W itself. Near a conical point (where more than two
regions are glued together) the conformal structure if defined by taking a suitable root of the flat coordinates W in
each of the regions. Some further care needs to be paid to define the conformal structure near the compactification
point.

The result is a simply connected Riemann–surface of genus zero.
If we denote by W the flat (complex) coordinate in each of the pieces used in the gluing, one realizes that

W itself is not globally defined: moreover neither is dW since in the gluing it is necessary to flip some planes
W → −W . However dW 2 is an invariantly and globally defined quadratic differential. In the conformal structure
defined above it has a number of zeroes at the nodes and a pole of suitable degree 2d+ 4 at the compactification
point. Therefore in a uniformizing coordinate x, dW 2 = P (x) dx2 for some polynomial P (x) of degree 2d; the
polynomial is defined only up to the group action of translations/dilations in x (i.e. action 2.3) .

We point out that there is a quite transcendental step in going from the decorated clock–diagram to (some)
polynomial P (x), since the theorem involves the uniformization theorem for Riemann surfaces. This step involves
ultimately the solution of a Dirichlet problem.

The Boutroux condition forces some constraints on the decoration and the topology of Ξ; however these con-
straints are linear in the decorations and hence pose no serious complication [1]. We consider only the case of
simple noncritical admissible Boutroux curves.

1. Given an emerged continent C (connected) then the number of connected shorelines is precisely equal to the
number of saddle-points in C plus one, as follows from elementary Morse theory counting the components of
h−1(r) as r ↘ 0.

2. In a similar way (counting the the components of h−1(r), r → +∞) each continent contains k + 1 allowed
sectors Sj , where k is the number of saddle points.

3. Similarly, the number of connected components of X on the boundary of any ocean is equal to the number of
saddle points in that ocean plus one.

4. A path connecting two components of X0 crosses at least two strips. The sums of the width of the traversed
strips (with appropriate signs that would be cumbersome to describe here) is zero.

A lengthier and more detailed discussion can be found in [1].

11



4 The map P and its branching: the discriminant Σ

We claim that P : B → V (Def. 2.3) is a branched covering: indeed the map P defines the coefficients of V (x)
and T as polynomials in the coefficients of P (x) (and rational in the square-root of the leading coefficient of P (x)).
However this map is restricted to the sublocus B ⊂ P and hence the branching occurs at certain type of Boutroux
curves.

Figure 3: A pictorial representation of the
surface of the discriminant Σ in the (V, T )–
space: it has singularities corresponding to
the subloci where the Boutroux curves be-
come more and more degenerate as well
as self-intersections. Our path is chosen
to intersect it in the “smooth” part corre-
sponding to the simple but (simply) criti-
cal Boutroux curves and transversally (i.e.
the tangent to the path is not tangent to
the discriminant). In the picture, the arc
represents a path in the V space, and indi-
cated is the tangent vector at the crossing
of the discriminant. Note that the picutre
is three–dimensional, but actual situation
are always of higher dimension, so that this
is only a suggestive picture.

Claim: A point [y] ∈B is a branchpoint of the map P if and only
if the curve is critical (Def. 2.4), namely it has a root of multiplicity
≥ 2 on the zero levelset X = h−1(0).

We will not prove this in full generality; in this paper we will
only consider admissible curves and the most generic case of a double
root on X. Indeed the content of Section 5.3 will imply that in a
neighborhood of a critical admissible Boutroux curve there are 3 or 4
(depending on the cases) preimages of P.

The visual intuition is that if a root m of multiplicity k ≥ 2 belongs
to a shoreline or causeway, we can find nearby [y] ∈ B Boutroux
curves with the same potential and total charge for which the root m
has either split in k simple roots or a collection of simple and double
(noncritical) roots of total multiplicity k. For k = 2 there are only
two possibilities, namely the case where the double root m has split
into two simple roots (hence branchpoints and necessarily belonging to
X) or else it remains double but non-critical. From the combinatorial
description in terms of decorated clock–diagrams the reader should
realize that

• in order for a (single) double root to belong to X the width of a
strip (or the length of an edge) must tend to zero.

Therefore this is a “(real) codimension-one” occurrence. Any other
way of approaching a critical Boutroux curve is of “higher codimen-
sion”. This prompts the following definition.

Definition 4.1 In the space of Boutroux curves we denote by ∆ ⊂
B the branch-locus, namely the co-dimension 1 locus of Boutroux
curves that are critical.

We denote by ∆reg ⊂∆ the locus of critical but simple Boutroux curves; inside it we denote by ∆0
reg the locus

of simply critical simple Boutroux curves, namely those for which only one saddle point belongs to the levelset
X = h−1(0).

We denote by ∆sing ⊂ ∆ the locus of non-simple, critical, Boutroux curves. The images under the map P of
the above sets will be denoted by Σ0

reg ⊂ Σreg ⊂ Σ ⊂ V ' R2d+3 and called the discriminant locus.

Definition 4.2 Each connected component of Breg \∆ (or B<adm
reg \∆ or Badm

reg \∆ depending on the context)
will be called a cell.
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The above discussion means that while Σ (∆) chops the space V (B) of potential/charges into possibly disconnected
sets, the generic point in Σ belongs to Σ0

reg (∆0
reg) and in a small neighborhood of that point Σ0

reg (∆0
reg) is a

smooth manifold with the coordinates given by the Strebel decorations of the corresponding clock diagram. If the
point belongs to the intersection of two or more smooth components of Σ0

reg, then the corresponding Boutroux
curve will be simple and multiply critical, namely with more than one double zero on the critical levelset: we
can avoid this occurrence as well in general (but including this case would not really cause any serious obstacle).

Viceversa Σsing is of co-dimension two in the whole space and hence removing it (as well as multiply critical
curves) leaves a connected space, where we can connect any two points by a path which intersects only (at most)
the submanifold of “simply critical” admissible simple Boutroux curves Σ0

reg.

4.1 Differential geometry of Breg: P as a local coordinate system

We want to prove that P : B → V is a local isomorphism in a neighborhood of a simple Boutroux curve,
independently of any other condition (pre-admissibility, admissibility, criticality).

Lemma 4.1 (Local Isomorphism Lemma) Let [y0] ∈B be a simple Boutroux curve with P[y0] = (V0, T0).
Consider a neighborhood P of y2

0 = P0(x) consisting of Boutroux curves y2 = P (x) whose zeroes are in a
suitably small polydisk around the zeroes of P0(x) and of the same multiplicity (and also the leading coefficient of
P is in a neighborhood of that of P0(x)).

Then P : P → V is a local isomorphism. In particular each cell (Def. 4.2) of Breg (B<adm
reg , Badm

reg ) is
a manifold of real dimension 2d + 3 and P gives local coordinates to it, inducing a C∞ manifold structure that
coincides with that induced by the coefficients of P.

Proof. The last statement follows from the first and the following observation: if a curve [y] ∈ B is simple and
noncritical (hence [y] ∈ Breg \∆) then all the Boutroux curves [ỹ] in a neighborhood of [y] consisting of simple
curves have zeroes of the same multiplicity. Indeed double zeroes cannot be split into two simple zeroes because then
the newly created branchpoints would necessarily not belong to the zero levelset X (a simple continuity argument
on h(m)) and hence the curve immediately would fail the Boutroux condition.

Consider the neighborhood of P0(x) = C0

∏µ
j=1(x − mj,0)2

∏2g+2
j=1 (x − αj,0) consisting of polynomials of the

same form and with the zeroes nearby the ones of P0.
The Boutroux conditions are 2g + 1 transcendental constraints on the positions of the zeroes of P (x) and the

leading coefficient;

Fγ(P ) := <
(∮

γ

y dx
)

= 0, γ ∈ H1(L \ {∞±}). (4.1)

Viewing the Fγ as functions of the zeroes of P it is clear that they are real-analytic. The isomorphism will follow
from the implicit function theorem if we prove that the Jacobian is invertible.

To do this it is sufficient to prove that the push-forward by P of the tangent space to the constraints {Fγ}
within the class of polynomials P (x) with zeroes of constant multiplicity is surjective and injective in the tangent
space of V.
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Thus suppose Pt is a one-parametric deformation of P (simple curve) preserving the Boutroux condition and the
multiplicities of the double zeroes; thus Ṗ = d

dtPt is a polynomial of the same degree 2d. We write the deformation
family as

Pt(x) = Ct

µ∏
k=1

(x−mk(t))2

:=wt
2︷ ︸︸ ︷

2g+2∏
j=1

(x− αj(t)) = Mt
2(x)w2

t . (4.2)

where the roots depend on t. The potential/charge undergo a variation δ(V, T ) = δt(V̇ , Ṫ ) given by

V̇ (x) = res
∞

ln
(

1− x

ξ

)
Ṗ (ξ) dξ
2y(ξ)

, Ṫ = res
∞

Ṗ (x) dx
2y

(4.3)

while Ṗ (x) must satisfy the infinitesimal Boutroux condition∮
γ

Ṗ (x) dx
y

∈ iR , ∀γ ∈ H1(L \ {∞±}) , (4.4)

Note that necessarily Ṗt is divisible by Mt (because the double roots remain such along the motion) and hence we
can write it as follows

Ṗt(x) = Mt(x)R(x) ⇒
∮
γ

R(x)
wt

dx ∈ iR (4.5)

with the degree of R(x) at most g + d+ 1. In intrinsic terms the differential

ω̇ :=
R(x)
wt

dx (4.6)

is a meromorphic differential on the hyperelliptic Riemann surface of wt with purely imaginary periods and poles
only above x =∞. Standard theory [13, 14] implies that it is uniquely determined by its singular part at the poles.
In other words

V̇ ′t (x)− Ṫt
x

+O(x−2) =
R(x)
wt

(4.7)

uniquely determines the differential ω̇ under the requirement that all periods are imaginary. This means that the
tangent space to the space of simple Boutroux curves is naturally isomorphic to the tangent space of external
potentials and total charges, of real dimension 2d+ 3 (the d+ 1 complex coefficients of V ′ and the real total charge
T ). 12 Q.E.D.

In the course of the proof we have shown that the tangent space T(V,T )V for (V, T ) 6∈ Σ is naturally isomorphic
to the space of second–kind differentials on L of the form

ω̇ =
R(x) dx

w
degR(x) ≤ g + d+ 1 , (4.9)

that have poles of order d+ 2 above x =∞ and normalized to have purely imaginary periods. This space and this
identification deserve a

12Note that the motion of the roots of Pt(x) are determined by

ṁk(t) = −
Ṗ ′(mk(t))

P ′′t (mk(t))
, α̇j(t) = −

Ṗ (αj(t))

P ′t (αj(t))
. (4.8)
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Definition 4.3 Let P (x) be a polynomial of degree 2d defining a (nodal) hyperelliptic curve of the form

y2 = P (x) := C2

µ∏
j=1

(x−m`)2kj

2g+2∏
j=1

(x− αj)2rj+1 = M(x)2 w2 (4.10)

w2 :=
2g+2∏
j=1

(x− αj) , M(x) := C2

µ∏
j=1

(x−m`)2kj

2g+2∏
j=1

(x− αj)2rj , kj , rj ∈ N . (4.11)

Let H=(y) denoted the linear space of meromorphic differentials over the Riemann surface of w

• with poles of order not greater than d+ 2 above x =∞;

• skew-symmetric w.r.t. the hyperelliptic involution;

• with zeroes at least of order kj − 1 at mj and 2rj at the branchpoints αj;

• with purely imaginary periods,

hence of the form

ω̇ :=
µ∏
j=1

(x−m`)kj−1

2g+2∏
j=1

(x− αj)rj
S(x) dx
w

, degS = g + 1 + d− δ ,

δ :=
µ∑
j=1

(kj − 1) +
2g+2∑
j=1

rj , d = g + 1 + µ+ δ (4.12)

We define the map
P? : H=(P ) −→ TP[y]V

ω̇ −→ P?(ω̇) = (V̇ (x), Ṫ )
(4.13)

where V̇ (x) is a constant–free polynomial and Ṫ a (real) number identified by

S(x) dx
w

∼

(
V̇ ′(x)− Ṫ

x
+O(x−2)

)
dx . (4.14)

We have already shown that if δ = 0 (i.e. the curve is simple, kj = 1, rj = 0) this map is an isomorphism between
H=(P ) and TP[y]V (in fact, irrespectively of P (x) satisfying the Boutroux condition or not).

If δ ≥ 1 then this map is still injective (as follows from standard theory [13]) but not surjective and the (real)
rank is 2d+ 3− 2δ; thus δ is a “defect” or codimension. We will use P and P? only for simple (Boutroux) curves,
however, so the definition is more general than strictly needed.

4.2 Differential geometric description of Σ0
reg and transversality

Suppose a simple admissible Boutroux curve [ycr] ∈∆0
reg ⊂B is simply-critical and consider its image (Vcr, Tcr) =

P[ycr] ∈ Σ0
reg ⊂ V. Recall that this means that a single double zero m of y2 = P (x) lies on the zero levelset X.

We are going to show below (Prop. 4.1) that ∆0
reg is also locally a manifold and P gives a (local) isomorphism

with its image (a smooth hypersurface in V).
Note that a simply critical Boutroux curve [ycr] ∈∆0

reg lies on the boundary of two or more cells (Def. 4.2) of
Breg, which (recalling Lemma 4.1) are all smooth manifolds of the same (real) dimension 2d+ 3.

We will need this in order to formulate the notion of transversality to the discriminant. More precisely
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Proposition 4.1 Let [ycr] ∈ ∆0
reg be simple, admissible and simply-critical. Then there exists a neighborhood

U ⊂Badm of [ycr] such that P
(
U ∩∆0

reg

)
⊆ Σ0

reg is a smoothly embedded surface of real codimension 1.

Proof. Let mcr be the critical double zero of y2
cr = Pcr(x). If y2 = P (x) is in a small neighborhood of Pcr(x), the

constraints that imply that [y] ∈∆0
reg are that a double root m (near mcr) still belongs to X and hence∫ m

α

y dx ∈ iR ,

∮
γ

y dx ∈ iR , (4.15)

where α is any branchpoint. Again, these are (2g+1)+1 real smooth constraints on the coefficients of P (x), hence
the codimension count is immediate.

The tangent space to these constraints –similar to the proof of Lemma 4.1– is the subspace of H=(P ) (Def. 4.3)
cut by the additional linear equation

F [ω̇] =
∫ m

α

ω̇ ∈ iR . (4.16)

We only need to prove that this constraint is linearly independent of the infinitesimal Boutroux conditions (4.4)
(i.e. the vanishing of the real part of all periods of ω̇). It suffices to exhibit a differential in this space which has
imaginary periods but nonzero integral from α to m. But this is obvious: for the differential dw is a differential
which has all zero periods (it is exact!) and pole of degree g + 2 < d + g + 1, hence dw ∈ H=. Moreover∫m
α

dw = w(m) 6= 0. Thus the differential we seek is –for example–

ω̇ =
dw
w(m)

,

∫ m

α

ω̇ = 1 ,
∮
γ

ω̇ = 0 . (4.17)

Q.E.D.

Transversality This notion is implicit in the proof of Prop. 4.1 but it is worth making it explicit. A transversal
path to Σ0

reg ⊂ V will be such that the tangent vector (V̇ , Ṫ ) is associated to the second-kind differential with
imaginary periods (via the identification of T(V,T )V with the space of such Abelian differential of Def. 4.3) with

<
∫ m

α

ω̇ = ρ 6= 0 . (4.18)

4.3 Self–intersections of Σ0
reg

We point out that the proof of Prop. 4.1 is easily adapted to show that the self–intersection of Σ0
reg are completely

transversal. Indeed if [ycr] is multiply simply critical (i.e. has several double roots mj on the zero levelset X), then
the condition is described by the constraints

<
∫ mj

a

y dx = 0, j = 1 . . . r. (4.19)

These constraints are independent and hence transversal to each other: to show this it suffices to exhibit in
infinitesimal form a ω̇ ∈ H=(P ) such that

<
∫ mj

α

ω̇` = δj,` , ∀` = 1 . . . r. (4.20)
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But this is simply achieved considering

ω̇` =
d
(∏

j 6=`(x−mj)w(x)
)

∏
j 6=`(m` −mj)w(m`)

(4.21)

For our purposes it will be immaterial to consider curves which are multiply simply critical, although in some
circumstances (e.g. under some reality conditions for the potential) this may happen. However the analysis to
follow would not seriously differ in this slightly more general case.

Remark 4.1 (The zero-charge locus T = 0) Suppose the total charge is zero T = 0: since the total charge is
the total mass of the measure supported on the branchcut structure, either this measure is signed and hence the
curve is inadmissible or the curve is a perfect square of the form

y2 = (V ′(x))2 . (4.22)

This locus is a multiple branching locus: in its neighborhood there are d admissible curves of genus 0 and “small”
total charge, obtained by solving the algebraic equations for the coefficients of P (x) given by

y2 = M2(x)(x− α1)(x− α2) , degM = d− 1 (4.23)

M(x)
√

(x− α1)(x− α2) ∼ V ′(x)− T

x
+O(x−2) .αj = z0 +O(

√
T ) (4.24)

where z0 is a simple zero of V ′(x) chosen arbitrarily; here V ′(x) is assumed to have simple zeroes for otherwise we
have a particularly singular sublocus of T = 0. The resulting Boutroux curve is certainly admissible for small T ’s.

4.4 Coalescence of simple roots: approaching the boundary of a cell

Let B0
reg be a cell of Breg (Def. 4.2); the considerations to follow extend verbatim if we restrict to (pre)admissible

Boutroux curves.
A point [ycr] on the smooth boundary ∆0

reg has a single double root mcr on the zero levelset X = h−1(0); this
can be the limit of two types of curves

1. simple curves with a double zero m that approaches X or

2. simple curves with two simple zeroes m± merging together.

By the first part of Lemma 4.1 the first case is in no way “singular”: the map P gives a local coordinate system
in a full neighborhood of [ycr].

Let us consider viceversa the second case: we will show below that the differentiable structure induced on Breg
by P can be extended to ∆0

reg ∩B0
reg, extending thus the manifold B0

reg to a manifold-with-boundary. Suppose
we are given a vector field (V̇ (x), Ṫ ) ∈ TV (at least C0) defined in a neighborhood of (Vcr, Tcr) ∈ Σ0

reg. Let

Pcr(x) = (x−mcr)2M2
cr(x)

2g+2∏
j=1

(x− αj,cr) (4.25)

be the corresponding critical Boutroux curve.
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Consider simple noncritical Boutroux curves [y] ∈B0
reg of the form

y2 = P (x) = M2(x)(x−m+)(x−m−)
2g+2∏
j=1

(x− αj) =: M2(x)w2(x)

w2 = (x−m+)(x−m−)
2g+2∏
j=1

(x− αj) . (4.26)

in a neighborhood P of Pcr such that the coefficients of M are in suitable small neighborhoods of those of Mcr

and all the roots are in small neighborhoods of homonymous critical ones; in particular m± are roots in a small
neighborhood of mcr. Inside P the discriminant is represented simply by the locus {m+ = m−} and contains our
critical Boutroux curve as well. The genus of y2 = P (x) is g+ 1 and we choose the Torelli marking {aj , bj} so that
ag+1 is a small loop encircling both m± and bg+1 the corresponding symplectic dual; this is a the same setting as
in Chapter 3 of [14].

We need to show that ω̇ = S(x)
w = P−1

? (V̇ (x), Ṫ ) (Def. 4.3) is continuous as we approach the boundary m+ = m−

(the inverse is well defined since P? is an isomorphism for simple curves). Note immediately that S(x) depends
linearly on (V̇ (x), Ṫ ) and hence has the same smoothness class.

We need to show that

1. the coefficients of S(x) remain bounded as [y]→ [ycr];

2. the limiting vector field ω̇cr = Scr/wcr dx is holomorphic also at mcr, namely that Scr has a simple zero at
mcr. In this way the tangent space will coincide with the tangent space described in Prop. 4.1 for the tangent
to the discriminant, allowing us to conclude that the differentiable structure extends to the boundary.

We construct S(x) as follows. Start from

S0(x) =

[
w(x)

(
V̇ ′(x)− Ṫ

x

)]
+

− C (4.27)

where the subscript denotes the polynomial part; here C is a constant such that S0(m+) ≡ 0 if the genus of w is
greater than one, or else it is zero13. This is a polynomial expression in the roots of w and hence regular as long
as none of the roots of w goes to infinity. By assumption, since (V̇ , Ṫ ) is at least C0, then S0(x) is at least C0.

We have now a meromorphic differential η := S0(x) dx
w which has the prescribed polar expansion14 but whose

periods are not imaginary, except if the genus of w is zero, in which case there is nothing else to do. If the genus
is higher than zero, we must add a linear combination of the holomorphic differentials in order to achieve this.
The first goal is to show that the resulting vector field ω̇ = S(x)

w dx will have bounded and continuous coefficients
(namely that the coefficients of HP are bounded and continuous).

Let ωj , j = 1, . . . g+ 1 be the normalized Abelian differentials of the first kind [13] and τjk = Ajk + iBji be the
corresponding period matrix. Recall that Bjk is positive definite.

13Strictly speaking the introduction of this constant would be unnecessary, but it simplifies some considerations to follow.
14Note that any constant C (or addition of any polynomial of degree ≤ g−1 for that matters) in (4.27) would not change the singular

behavior of η at infinity if g ≥ 1.
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Suppose m+ → m−; it is proved in [14] that A is O(1) and all coefficients of B are also bounded except

Bg+1,g+1 =
1

4π
ln |m+ −m−|+O(1). (4.28)

and the determinant of B behaves thus

det[B]j,k≤g+1 =
1

4π
ln |m+ −m−|det[B]j,k≤g +O(1) (4.29)

where the subdeterminant tends to a nonzero constant; indeed [14] the period matrix τ has the expansion

τ =

 τjk +O(δ) ~A+O(δ)

~At +O(δ)
1

4iπ
ln δ +O(1)

 , δ := m+ −m− (4.30)

where the constants ~A can be expressed in terms of the first kind differentials (see [14] for even more detailed
information) and τjk in the principal g × g block is the period matrix for the limiting curve µ2 =

∏2g
j=1(x − αj).

This holds independently of any Boutroux condition15. If we denote by Aj = <
∮
aj
η and Bj = <

∮
bj
η the periods

of η, the normalized differential is thus

η − ~ωt
[
~A− iB−1

(
A ~A− ~B

)]
=
S(x) dx
w

. (4.31)

Now all the periods of η are bounded: also the pinched cycle (bg+1) (which we can think of as a loop encircling the
root m+ and some other root but m−) is bounded because of our choice of the constant C in (4.27).

The last column of B−1 is O
(

1
ln |δ|

)
in all the entries except for B−1

g+1,g+1 which is just O(1). Note that the
ambiguity in the choice of symplectic basis –which is ultimately responsible for the multivaluedness of the expansion
of the period matrix by Lefschetz theorem on vanishing cycles– does not affect the definition of the polynomial S
because the infinitesimal Boutroux condition is independent of the choice of basis in the homology of the curve.16

This concludes the proof of the continuity of ω̇(x) in P. We still need to prove, however, that

Lemma 4.2 The limiting Scr has a zero at mcr and thus ω̇cr is holomorphic at mcr .

Proof. Considering the vanishing cycle γv (a loop encircling m±) we see that the Boutroux condition implies∮
γv

ω̇cr =
∮
γv

Scr(x)

(x−mcr)
√∏2g+2

j=1 (x− αj,cr)
= 2iπ

Scr(mcr)√∏2g+2
j=1 (mcr − αj,cr)

∈ iR (4.32)

On the other hand, since this is the limit of Boutroux curves, considering the Boutroux condition on the pinched
cycle (a loop encircling one of m± and another simple root), we get∮

γp

ω̇P (x) ∼ Scr(mcr)√∏2g+2
j=1 (mcr − αj,cr)

ln |m+ −mcr|+O(1) ∈ iR (4.33)

15In comparing with [14], pag. 50 and following, the reader should keep in mind that Fay uses a different normalization for the period
matrix, in which the real and imaginary parts are interchanged.

16It is also shown in [14] that ωg+1 tends to the normalized third kind–differential on the de-singularization of the limiting hyperelliptic
curve.
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Thus
Scr(mcr)√∏2g+2

j=1 (mcr − αj,cr)
∈ R ∩ iR = {0} . Q.E.D. (4.34)

Since we now know that Scr(mcr) = 0 and given the continuity proven above, we also know that the limit of the
value of a pinched cycle is finite. Note that the polynomial S(x) has an expansion of the type

S(x) = Scr(x) + εS1(x) + . . . (4.35)

where ε is some infinitesimal of |m+−m−| which we are set to estimate; in principle this is encoded in the expansion
of the period matrix (4.30) but it is simpler to reason as follows: the value of the pinching cycle is

1
2

∮
γp

S(x) dx
w

=
∫ m+

α

S(x) dx
w

=
∫ mcr

αcr

Scr(x) dx
w

+ ε

∫ m+

αcr

S1(x) dx
w

+ . . . =

=
∫ mcr

αcr

Scr(x) dx
w

+ ε ln |m+ −m−|
S1(mcr)√∏2g+2

j=1 (mcr − αj,cr)
+ . . . (4.36)

Taking the real part of the above and setting it to zero we conclude that we must have

ε =
1

ln |m+ −m−|
, <

(∫ mcr

αcr

Scr(x) dx
wcr

)
= <

 S1(mcr)√∏2g+2
j=1 (mcr − αj,cr)

 (4.37)

Note that the LHS of (4.37) is a well-defined integral because the Scr(x) = (x−mcr)R(x) and wcr = (x−mcr)w0,
so that the pole in the denominator is canceled by the numerator.

On the other hand, repeating the computation of the vanishing period now that we know that Scr(mcr) = 0
and considering the next order we find∮

γp

ω̇P (x) ∼ 2iπ
| ln |m+ −m−||

S1(mcr)√∏2g+2
j=1 (mcr − αj,cr)

∈ iR (4.38)

We see then that the expression S1(mcr)qQ2g+2
j=1 (mcr−αj,cr)

must be real and must match the LHS of eq. (4.37). We

have thus proved

Proposition 4.2 The continuation of a tangent vector ω̇ near a critical Boutroux curve obtained by coalescing two
roots m+,m− into a critical double root mcr has the expansion

ω̇ = ω̇cr +
1

ln |m+ −m−|
(ω̇1 + o(1))

ω̇cr =
R(x)√∏2g+2

j=1 (x− αj,cr)
, ω̇1(x) =

S1(x)

(x−mcr)
√∏2g+2

j=1 (x− αj,cr)
(4.39)

where ω̇cr is holomorphic at mcr and

R 3 S1(mcr)√∏2g+2
j=1 (mcr − αj,cr)

= <
(∫ mcr

α

ω̇cr

)
. (4.40)
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5 Admissible Boutroux curves and connectivity

5.1 Precise statement of the problem

We now come back to the setting described in the introduction: we are given an external potential V (x)
(complex polynomial) and a total charge T > 0 together with the combinatorial data described below, encoding
the information of the contours γ` (see Fig. 2) actually used in the definition of the orthogonal polynomials.

Using the notion of total incoming current (see caption of Fig. 2) we can determine which sectors are actually
“used” in the definition of our moment functional L: indeed if the total current for sector S`0 is zero, this means
that we can use Cauchy theorem to eliminate the two half-branches of the two contours γ`0 , γ`0+1 (indices are
modulo d+ 1) accessing it combining into a contour that “skips” the sector (see Fig. 4).

Remark 5.1 The fact that the currents form an additive group is also the reflection of the fact that the Riemann–
Hilbert problem for the generalized orthogonal polynomials has only upper triangular Stokes’ matrices, which form
an Abelian group.

We proceed this way until only sectors with nonzero total incoming/outgoing current are left. The data of the
surviving contours together with the traffics (or currents) carried by them and which sectors they connect will be
referred to as the (irreducible) connectivity pattern (denoted by ℘).

Remark 5.2 (Non-uniqueness of the irreducible connectivity pattern) The connectivity pattern is in gen-
eral not unique: a different rewiring of the sectors must be such that

• If there are K+1 sectors with nonzero net current then we use the minimal number of wires (or highways),
that is, K.

If, in particular, some highways carry the same traffic, then the highway system can be rerouted in several ways.
An example is in Fig. 4.

Definition 5.1 For a given admissible Boutroux curve, two sectors Sj ,Sk are connectible if there exists a con-
tinuous piecewise smooth path γ : R→ C (called the connecting path) such that one end belongs asymptotically
to sector Sj and the other to sector Sk and such that

h(x) ≥ 0 , x ∈ γ. (5.1)

The reader should visualize that each emerged continent borders at infinity one or more sectors Sj and continents
(and thus sectors) may (or may not) be joined by a path that never touches the water but can use the causeways:
such a path may contain some arcs from the branchcut structure B or lie entirely above water (in which case it is
an elevated highway).

Definition 5.2 In an irreducible connectivity pattern, given two highways with the same traffic connecting two
disjoint pairs of sectors we call a exchange re-routing (Fig. 4) the re-routing of the two highways in such a way
that they connect the four sectors in the other way compatible with the total flow of traffic from the sectors.
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Figure 4: Using the same example of Fig. 2 with some specific values of the currents κ` (indicated near the tip of
the arrows). The sectors with zero total incoming current can be skipped by the irreducible connectivity pattern
and the contours carrying zero current are irrelevant. In this example there are two notably distinct irreducible
connectivity patterns because the highways carry the same total traffic.

Definition 5.3 Let it be given an irreducible connectivity pattern ℘ (with specified traffics κ) and an admissible
Boutroux curve with branchcut structure (causeways) B. We say that the connectivity of the Boutroux curve is
compatible with the given pattern ℘ (or briefly that the Boutroux curve is compatible with ℘) if

• each highway connecting two sectors can be smoothly deformed to a connecting path (as in Def. 5.1) up to an
exchange re-routing with another highway of the same traffic;

• each causeway after the re-routings carries some nonzero net traffic.

The notion of compatibility in Def. 5.3 does not exclude that the Boutroux curve in question allows a connecting
path (Def. 5.1) between two sectors without incoming traffic in the irreducible pattern ℘: this can happen as long
as the connecting path is strictly elevated (i.e. does not visit any causeway) and connects the two sectors. In other
words a Boutroux curve may be compatible with more than one irreducible connectivity pattern.

After this lengthy sequence of definitions and preparations we finally state precisely the problem we want to
solve.

Theorem 5.1 (Main theorem) For any (V (x), T ) ∈ V \ Σsing and any connectivity pattern ℘ there exists a
unique simple (possibly critical) admissible Boutroux curve compatible with the given connectivity pattern ℘17.

The proof of this theorem will be embodied by the rest of the paper: the main idea is that of using a deformation
argument starting from a “base” Boutroux curve with the desired connectivity pattern but not necessarily with
the same external potential. We then prove that we can smoothly deform it so as to reach the desired external
field V (z) without decreasing the connectivity pattern.

There are two main ingredients to this program:
17If the potential is non generically chosen then the curve may fail to be simple and some degeneration may occur. Of course the

existence is not seriously affected since one may use a continuity argument.
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1. showing that for each connectivity pattern there is an admissible Boutroux curve with that pattern (Section
5.1.1);

2. showing that we can deform such curve until the external potential matches our chosen one without severing
any of the highways that carry net traffic between sectors. The highways follow continuously the deformation
(while connecting the same two sectors) up to an exchange re-routing (if allowed by the traffics). This is
contained in Sections 5.2, 5.3, 5.4, 5.5

5.1.1 Construction of a simple admissible Boutroux curve of given connectivity pattern

We take an irreducible form of the desired connectivity pattern and regard it as as a diagram. By construction the
highways connect distinct sectors: an admissible sector Sj must necessarily be contained in an emerged continent
since h(x) behaves as <(V (x))→ +∞ near x =∞ ∈ CP 1.

The steps to construct the clock-diagram of the admissible Boutroux curve are now

1. Choose a highway and two points (entry/exit) on it, and erase the two outer legs of the highway: the remaining
part will be carried by a causeway though an ocean and the entry/exit points will be simple zeroes.

2. From each entry/exit point we originate two shorelines that go to infinity in the clock-diagram along the two
consecutive critical directions that limit the sector that the original highway was accessing.

3. If a formed shoreline intersects the course of a different highway accessing the same sector, then we put the
entry (or exit) of that other highway at the intersection point. We proceed to exhaustion until no more
complete highways have left. If there were K ≤ d highways originally, there are now 2K ≤ 2d entry/exit
points. We thus have to arrange (2d − 2K)/2 = d −K simple saddle points in order to have an admissible
clock diagram.

4. For each sector without accessing highway we draw a smooth (noncritical) shoreline bounding a unique
continent containing that sector. We flood all the rest with water.

5. The shorelines/causeways constructed so far limit a certain number of oceans and each ocean has a finite
number M of connected boundaries (some of which may include a causeway): from the discussion in Sect.
3 and point (1) we need to place M − 1 saddle points below the sea-level and arrange suitably the four
critical level lines from them. We leave to the reader to verify that this can be done respecting the rules of a
clock-diagram. An example of the process is provided in Fig. 5.

Once the clock diagram has been constructed we can assign arbitrarily the decorations to the edges/strips and by
the reconstruction theorem [1] we know that this corresponds to an actual admissible Boutroux curve for some
external potential V0(x) of degree d+ 1 and some total charge T0 > 0.
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Figure 5: The construction of the causeways/oceans from the irreducible connectivity pattern. The two clock
diagrams correspond to the two equivalent irreducible patterns in Fig. 4. Since two highways have the same traffic
(see Fig. 4) we have the two possibilities above. The two cases correspond to an exchange re-routing.

5.2 Deformation of the curve towards the target potential

From Sect. 4 we know that Badm
reg is coordinatized by P. Moreover we claim the obvious

Proposition 5.1 Each cell of Badm
reg contains Boutroux curves admissible with the same connectivity patterns.

Indeed, by definition, a cell of Badm consists of curves that can be deformed one into the other while in the
process no saddle (double root) can cross a shoreline or causeway and no two simple roots can coalesce; hence the
connectivity pattern cannot change.

Theorem 5.2 (Deformation theorem) Let [y0] ∈Badm
reg (simple, noncritical) and compatible with a given con-

nectivity pattern ℘. Let (V (x), T ) ∈ V \ Σsing; then there exists an admissible Boutroux curve [y] ∈ P−1(V, T )
compatible with the same irreducible connectivity pattern ℘.

The proof is contained in Sections 5.3, 5.4 along the idea expounded here below. As outlined previously, the proof
consists in fixing a smooth path (Vt, Tt) from P[y0] to (V, T ) (that avoids the co-dimension 2 singular discriminant)
and lifting this path into Badm

reg in such a way that the connectivity pattern is preserved at all times: the crux of
the proof is to show that, as we move from one cell of Badm

reg to another when crossing the discriminant we can
choose in which neighboring cell to lift the path in order to ensure the correct connectivity. Namely the lift of
(Vt, Tt) must be such that

• the algebraic curve remains Boutroux, simple and admissible at all times but possibly (simply) critical (Def.
2.4) at some exceptional times (phase transitions);

• none of the highway is ever flooded or severed in the process. Of course the issues are sudden changes in the
topology of the connectivity (underlying the so–called nonlinear Stokes’ phenomenon [17, 15]), such as when
a saddle emerges from, or sinks into, the ocean as a result of these “tectonic shifts”.

Since by assumption the path (Vt, Tt) may only cross Σ0
reg the lift may cross ∆0

reg, the set of simply–critical
admissible Boutroux curves. There are only two ways, as discussed in Sect. 4 in which we can reach the boundary
of a cell of Badm

reg in the regular discriminant:
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1. if two branchpoints (connected by a critical line) merge into a double root;

2. if a double root mt intersects the zero-level set X, namely if h(mt) = 0 at some time t.

We will call these events simple phase transitions.

5.3 Simple phase transitions

A simply critical, simple Boutroux curve y2 = P (x) must have a single double zero m on the levelset h−1(0) = X;
it may then either belong to one or more causeways or belong to a shoreline.

Figure 6: These animations show two
lifts of the same path in the V space.
The potential is V (x) = x3

3 + x and T
goes from T = 3 to T = 1. The simple
transition is at T = 2.

The double root m may belong to
(c0) a shoreline (i.e. all critical trajectories issuing from m are shore-
lines);
(c2) two causeways necessarily forming an angle of π/2 (i.e. two critical
trajectories are shorelines and two are causeways);
(c4) four causeways.

Each situation corresponds to points [y] ∈ Badm at the boundary
between several cells of Badm, and the main point is to show that we
can always choose to lift the path in a suitable cell with the appropriate
connectivity pattern.

In fact we will show that

1. Case (c0) is on the boundary of three cells of Badm
reg ;

2. Case (c1) is on the boundary of three cells of Badm
reg ;

3. Case (c2) is on the boundary of four cells of Badm
reg .

Remark 5.3 As a side note, each simply critical Boutroux curve is on the boundary of four cells of B, but in
general not all of them consist of admissible Boutroux curves. In particular in cases (c0,c1) there is a fourth cell
nearby, but it consists of inadmissible curves.

In Section 4 we showed that we can add the simply critical Boutroux curves on the boundary of each cell
of Badm

reg turning them into (open) manifolds-with-boundaries. The whole point of the discussion to follow is to
determine which two such components incident on the same parts of ∆ can be glued together to make a manifold
without boundary. The issue is that the a “left” part can be only joined to a “right” part, and this allows to
continue the lift of a path (Vt, Tt) crossing the discriminant.

We are going to examine each case in the following paragraphs: each paragraph is accompanied by a marginal
picture showing the local connectivity of the neighboring cells.

The dotted lines show which cell can be glued to which other and hence how the lift of a path lying on a cell can
be lifted across the discriminant. Some paragraphs are also accompanied by short animations showing numerical
examples18.

From some situations we have two possible evolutions preserving admissibility through criticality depending on
the decision of splitting or not the double root; which evolution one chooses depends on which connectivity pattern
must be preserved.

18They can be viewed using Acrobat Reader version 7 or higher for Windows or Mac. The Linux version of the reader does not allow
inline viewing, but it should be possible to extract the animations and play them in an external viewer.
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Case (c0) This can be the result of a sinking/emersion or a merging; if we arrived at (c0) from an emersion
resulting from the lift of (Vt, Tt) up to t = t0 then, in order to maintain the differentiability of the path (Vt, Tt)
we need to either continue the emersion of the saddle (i.e. do no split it) or split it into two branchpoints.

3

1 2

0

If we let the saddle emerge (2 7→ 0 7→ 3) then a new channel of land is
created and the compatibility with the pattern ℘ will be preserved intact
(no highway has been severed and no new causeway has been created).
Viceversa if we split the double zero, necessarily we will create a new
branchcut: at this point the reader does not know yet if the newly created
cut would be a causeway (which would be admissible) or an “inverted”
causeway, which would violate admissibility. While we anticipate that
the splitting would result in an inadmissible Boutroux curve, even in the
other case we should not have performed the split because the newly created causeway would carry no traffic (since
there was no highway prior to emersion) and hence violate the compatibility with the pattern ℘. The way the
splitting occurs will be detailed in Sect. 5.4.

Viceversa if (c0) is the result of a sinking (3 7→ 0) then we may have to split the double root because a channel
of emerged land is being flooded. This depends on whether this channel was traversed by a highway or not: if no
highway was traversing it then the sinking of the saddle below waterlevel would not violate admissibility and also
preserve the compatibility with the pattern ℘ (3 7→ 0 7→ 2); if there was a highway then we are forced to split the
saddle into two branchpoints (3 7→ 0 7→ 1).

By “reversing the arrow of time” we also see that if (c0) is the result of the collapse of a causeway, the resulting
saddle will emerge rather than sink (1 7→ 0 7→ 3) and so preserve the connectivity.

2

1

3

0

Case (c2) Can be the result of either merger of two branchpoints
connected by a shoreline (1 7→ 0) or a causeway (2 7→ 0) or emersion
of a saddle through a causeway (3 7→ 0) but not of a sinking because
the causeway was surrounded by waters (due to admissibility) and hence
the nearing saddle cannot but have emerged. If this is resulting from
a collapsing shoreline, then, depending on the connectivity pattern, we
may have to split again the double root (1 7→ 0 7→ 2) (the branchpoints
“scattering” at right angles) or let the double root move away (1 7→ 0 7→
3) (in a sinking motion as will be proved later).

If this resulted from a collapsing causeway, then we are forced to split
again the root (2 7→ 0 7→ 1) otherwise the saddle would “emerge” and

severe the causeway (and also violate admissibility).

2

3

4

0

1
Case (c4) This can occur as the result of an emersion of a saddle
through two opposite cuts (4 7→ 0 or 3 7→ 0) or the collapse of a causeway
(1 7→ 0 or 2 7→ 0). In the former case we need to split the root and check
that the split maintains compatibility with the pattern ℘; indeed if the
root would split in the “wrong way” (i.e. 4 7→ 0 7→ 2 or 3 7→ 0 7→ 1, but
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it does not) then the newly created causeway would carry no traffic, while the admissibility is not at stake. The
splitting occurs in either (4 7→ 0 7→ 1) or (3 7→ 0 7→ 2). The important point is that we cannot have (3 7→ 0 7→ 1)
or (4 7→ 0 7→ 2) because (as will be seen in Sec. 5.4) this would imply a discontinuity in (V̇t, Ṫt) and precisely
a change of sign in the tangent vector; as long as the path is transversal (in the sense specified in (4.18)) to the
discriminant (and with nonzero tangent vector) then the ones indicated are the only possibilities.

Figure 7: These animations show the
process exemplified in the diagram.
Specifically they correspond to the po-
tential V (x) = −x

4

4 + C
2 x

2 and T ≡ 1.
The parameter C goes from −1 to 1 and
the transition occurs at C = 0.

In the latter case we can move the double root away or split it again
(scattering the roots); this depends on the traffics that flow through the
causeways. For example if we are in (1 7→ 0) then the choice of going
along (1 7→ 0 7→ 4) or (1 7→ 0 7→ 2) depends on the values of the traffics
traversing the causeways in picture (1): if the traffic traversing the short
causeway in (2) would be zero as a result then this implies that we can
and must evolve into (4).

Summary We see that this exhaustion list of possible scenarios shows
that we can “move away” from a critical situation in all cases by choosing
an appropriate process that (a) preserves the admissibility and (b) the
compatibility with the pattern of connectivity ℘.

The keen reader may have noticed that in fact the pictures are all the
same, only the coloring changes, namely the position of the branchcuts
and the definition of the height function h, which has to be continuous
away from the critical point during the transition.

The list above relies on the precise way two cells of admissible
Boutroux curves can be glued together along their boundaries; for ex-
ample it is not possible to glue the cells corresponding to (1) and (2) in
case (c0) as this would result in a manifold singular along the critical
locus and prevent us from lifting the path (Vt, Tt) across the discriminant, but rather it would only allow paths
that “bounce off” the discriminant in the direction they came.

The next section is aimed at the precise analysis of the split/merge and how to glue cells. After that part is
proven, Thm. 5.2 will be as well.

5.4 Gluing cells along the boundary

In order to complete the proof of Thm. 5.2 after the picturesque discussion above we need to explain how to glue
two cells of admissible Boutroux curves together to form a locally smooth manifold in which we can lift any path
(Vt, Tt) crossing the discriminant.

Since we are lifting a curve, we are essentially solving an ODE in each cell, integrating the tangent vector

ω̇ = P−1
? (V̇ , Ṫ ) . (5.2)

Most of the work has already been done in Section 4 since we have completed each cell to a smooth manifold with
boundary; the boundary points consist of the simply critical, simple, admissible Boutroux curves. The whole point
is the proof of the following
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Theorem 5.3 Suppose that the lift y2
t = Pt(x) of a C1 path (Vt, Tt) in the space of admissible simple Boutroux

curves (Lemma 4.1) is such that at t = t0 one double zero m0 is on the sea-level X and is the limit of a double zero
m(t)→ m0.

Suppose also that 0 6= ḣ(m)
∣∣
t=t0

∈ R, namely the path (Vt, Tt) intersects the discriminant transversally (or
–equivalently– the saddle corresponding to m(t) was either sinking or emerging with nonzero speed).

Then we can continue the family of Boutroux admissible simple curves y2
t = Pt(x) for t ≥ t0 in such a way that

1. P[yt] = (Vt, Tt) is smooth at t0;

2. the root m(t0) splits into two simple roots m±(t). If ḣ(m)
∣∣
t=t0

> 0 (the saddle was emerging) then the two
roots will split along the opposite directions of steepest ascent of the saddle, as determined by continuity from
the directions of steepest ascent for t < t0. Viceversa if ḣ(m)

∣∣
t=t0

> 0 (the saddle was sinking) the roots
will split along the steepest descent directions.

The resulting family is C1 (but not C2) in the differential structure induced by P.

Before entering into the proof we want to put the theorem into context: by Lemma 4.1, which applies to simple
curves in general, we could continue the lift of (Vt, Tt) with a family y2

t = Pt(x) of Boutroux curves preserving the
multiplicity of the critical saddle. However the discussion of the previous section (Sect. 5.3) has shown that we need
to be able to “decide” whether a critical double root has to split or not, in order to preserve the admissibility or the
connectivity. The present theorem serves precisely this purpose by showing that we can C1–glue a family {Pt}t≤t0
of simple B–curves with a moving saddle to a family {Pt}t≥t0 of simple B–curves with a splitting saddle; the
gluing is completely “transparent” to the map P, namely the path (Vt, Tt) can be as smooth as desired. Moreover
the theorem relates the directions of the splitting to the motion (ascending or descending) of the saddle prior to
the transition.

Proof. Suppose that Pt is the lift of the path (Vt, Tt) in a cell C0 of Badm
reg such that the critical curve is the

result of a double root (a saddle–point of h(x)) intersecting the sea-level, either by emersion or immersion.
Let ω̇ = P−1

? (V̇ , Ṫ ) be the corresponding deformation of the Boutroux curve y2 = Pt(x), namely ω̇ = Ṗt(x) dx
yt

.
At time t = t0 we have h(m(t0)) = 0 and

ρ := ḣ(mt0) = <
(∫ mcr

αcr

ω̇cr

)
(5.3)

where ρ ≥ 0 if the saddle was emerging from the sea or ρ ≤ 0 if it was sinking: the assumption of transversality
(Def. 4.18) of the path (Vt, Tt) to the discriminant is tantamount requiring that ρ 6= 0.

At t = t0 we have a simply critical Boutroux curve y2
cr = Pcr(x) and the tangent vector ω̇cr points towards the

exterior of the cell; therefore we must glue to it one of the cells that have the same boundary in which the same
tangent vector ω̇ points inside.

There are three other cells of Breg in a neighborhood of [ycr]; one of them C1 consists of simple Boutroux curves
with a saddle just above sea-level (if ρ > 0, i.e. the saddle was emerging or viceversa below sea–level if ρ < 0) and
the other two C2,3 consist of simple Boutroux curves with two branchpoints m± in a neighborhood of mcr.

It is obvious that we can glue our starting cell with C1 since the vector ω̇ which “lifts” the saddle points (by
definition) in the interior of the cell.
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Of the other two cells one can be glued to C0 and the other one to C1, and we must establish which is which.
From Sect. 4 we know that any vector field of class at least C0 can by extended to the boundary of C2,3; therefore
we can integrate the ODE ω̇ = P−1

? (V̇ , Ṫ ) in either cells.
From Prop. 4.2 we know that the cell we need is such that the vector field is of the form

ω̇ = ω̇cr +
∣∣∣∣ 1
ln |m+(t)−m−(t)|

∣∣∣∣ S1(x) dx
wt

+ . . .

ρ = res
x=mcr

S1(x) dx
wcr

∈ R (5.4)

ρ < 0

ρ > 0

ρ < 0

π
4 −

θ
4

ρ > 0

Figure 8: From the double zero mcr = 0
originate four critical trajectories that
depart along directions π−θ

4 + kπ/2,
where θ = argM2

cr(0)Rcr(0). The dou-
ble root (a saddle point of h(z)) then
splits into two simple zeroes m± that
come out along the directions that bi-
sect the angles formed by the critical
trajectories. For ρ > 0 or ρ < 0 the
split occurs along the indicated direc-
tions. Since Mcr(0)

√
Rcr(0) is the Hes-

sian of hcr, one can check that the di-
rections indicated are also the steepest
ascent (for ρ > 0) or descent (ρ < 0)
directions at the saddle.

We are going to show that S1(mcr) 6= 0 determines the directions in
which the roots m±(t) split (or merge) according to the statement of
the theorem. In addition we will determine the order in δt = t − t0 of
the split. For simplicity (without loss of generality) we assume mcr = 0;
using Prop. 4.2 for ω̇ and hence Ṗt = M(x)ω̇/dx we have (setting
ε = |m+ −m−|)

Pt(x) ∼ Pcr(x) + δtMcr(x)
(
Scr(x) +

1
| ln ε|

S1(x)
)

=

x2M2
cr(x)Rcr(x) + δtxMcr(x)Ṙ(x) +

δt

| ln(ε)|
Mcr(x)S1(x) (5.5)

where w2
cr = x2Rcr(x), Rcr(0) 6= 0 and S1(0) is given by eq. (4.37) and

we have used that Scr(x) vanishes at mcr = 0. This implies that the
roots m±(t) behave as

m± = ±

√
δt

| ln(ε)|

√
S1(0)

Mcr(0)Rcr(0)
(1 + o(1)) =

= ±

√
δt

| ln(ε)|

√
ρ

Mcr(0)
√
Rcr(0)

(1 + o(1)) (5.6)

From this we find

ε2 ln ε = δt
ρ

Mcr(0)
√
Rcr(0)

(1 + o(1)) ⇒ ln ε = ln δt(1 + o(1)) (5.7)

and thus, finally,

m± = ±ṁ
√

δt

ln δt
(1 + o(1)) , ṁ2 =

ρ

Mcr(0)
√
Rcr(0)

(5.8)

The determination of
√
Rcr(0) is the same used in the definition of the height function h(x) by continuity from

before the critical situation, when the saddle was not on a branchcut (and hence no ambiguity of sign exists). If a
harmonic function is written locally H(x) = <(cx2) + . . . then the direction of steepest ascent are − arg(c)/2 + kπ

whereas those of steepest descent are − arg(c)/2 + π/2 + kπ. In our case h(x) ∼ <Mcr(0)
√
Rcr(0)x2 and hence if

ρ > 0, ±ṁ point in the steepest ascent directions as depicted in Fig. 8.
The last statement about the smoothness class is immediate since we have seen that for some polynomials Ṗ , Ṙ,

Pt = Pcr + δtṖ +
δt

ln δt
Ṙ+ . . . (5.9)

and hence the coefficients of Pt is not C2 at δt = 0. Note, however that P[yt] is as smooth as (V̇ , Ṫ ) is. Q.E.D.
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5.5 Uniqueness of the Boutroux curve compatible with the connectivity pattern

The process by which we have constructed our final Boutroux curve with external potential V and total charge
T does not prove uniqueness since the discriminant of simply critical simple curves Σ0

reg is probably not even
connected; indeed the singular discriminant (corresponding to critical non-simple Boutroux curves) has codimension
1 inside the regular discriminant and thus a homotopy argument seems difficult to implement unless one analyzes in
more detail the gluing of the cells of the regular discriminant that meet at generic points of the singular discriminant.

The simplest workaround to this problem is actually that of invoking the asymptotic theory of pseudo–orthogonal
polynomials. Indeed in [1] it was shown that any admissible Boutroux curve can be used to construct the g–function
for the asymptotic study of the OPs that correspond to the potential of the curve, for a certain connectivity pattern.
If there were more than one admissible Boutroux curve compatible with the same connectivity pattern ℘ then we
would have the contradicting situation that the same polynomials have different strong asymptotics for large degrees
(or on suitable subsequences). This contradiction proves uniqueness, although it seems like a far-fetched solution
and probably a more direct proof can be found using some refined homotopy argument.

Remark 5.4 It would be interesting to count the degree of P. For example we claim (without proof) that if V (x)
has simple critical points (and distinct critical values of <V (x)) then for small T there are d admissible Boutroux
curves in P−1(V, T ) ∩Badm. They correspond to the deformation of the nodal curve y2 = (V ′(x))2 obtained by
splitting one of the roots of V ′(x) (which is a node of y). The splitting of the critical point with lowest critical value
of <V (x) is compatible with any connectivity pattern where the opened causeway carries some traffic. All sectors
are connectible to all other sectors, but only one is “essentially” connected and it is the one on whose shoreline
there is an entry-point to the causeway. If that sector is not accessed in our connectivity pattern, then a different
critical point must be used.

Note that the degree of P : Badm → V is not constant (only locally constant) since –as we have seen– the
number of cells merging at the regular discriminant is not always the same (either three or four cells merge at a
point of ∆0

reg). The degree of P : B→ V instead is well defined (always four cells merge at the discriminant).

5.5.1 Summary of the proof of Thm. 5.1

Since Thm. 5.1 was stated quite far we recall what constitutes the proof of Thm. 5.1.
In Section 5.1.1 we have shown that we can construct a simple noncritical admissible Boutroux curve compatible

with any given connectivity pattern ℘.
Next, in Section 5.2 we have shown that (Thm. 5.2) that from a given simple admissible noncritical Boutroux

curve with a connectivity pattern ℘ we can smoothly deform it so that the potential and charge match any chosen
(generic) one and along the deformation we can preserve the same connectivity pattern by choosing appropriately
the branch of the inverse map P−1 near the phase transition that may occur.

Finally in Section 5.5 we have proved the uniqueness of the result by invoking the uniqueness (along suitable
subsequences) of the strong asymptotic of the corresponding generalized orthogonal polynomials.
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6 Conclusion and final comments

The aim of the paper was to prove the existence of a suitable g–function for the implementation of the nonlinear
steepest descent method. The requirements for the g–functions have been translated into a set of algebraic/harmonic
requirements and these latter have been analysed.

As pointed out in the course of the proof some requirements are specific to the case of the pseudo–orthogonal
polynomial, but in fact the techniques can be extended to cover similar situation like

• Painlevé equations and higher generalizations; in this case we need to allow for Boutroux curves where a
branchpoint may be at infinity (i.e. of odd degree) and the notion of admissibility should be relaxed/modified
keeping into account the triangularity of the Stokes matrices;

• pseudo–orthogonal polynomials with hard-edges and with potentials with rational derivatives [3];

• Laurent biorthogonal polynomials (including OP on the circle) for log-rational symbols with hard edges [4].

The scope of the discussion of how degenerations occur needs to be broadened to cover non–simple situations, for
example in the case relevant to 2–D gravity [16, 11]. In this case, due to the reality constraint on the external
potential, the generic degeneration actually involves a double root coalescing with a branchpoint and then this
triple branchpoint splitting three-ways. It can be seen that there are two ways in which this triple splitting may
occur: one in which one root moves away analytically and the other two as square-roots of (t− t0), and the other
in which the three roots move away according to third roots of t− t0.

For higher order coalescence the “zoology” of the splitting becomes immediately quite large; the issue is inter-
esting from the point of view of the geometry of the moduli space of Boutroux curves (study of the local properties
of the discriminant near the singularities) and also for the application to Riemann–Hilbert analysis.

Indeed the study of the parametrix for the pseudo orthogonal polynomials near a non-simple turning point
(or order 2, 3, 4, . . .) requires the use of some other Painlevé like transcendents. For example in [11] the turning
point of order 3 has five critical trajectories and the local parametrix is constructed in terms of the ψ–function for
Painlevé I. In general of those critical trajectories some or all may be branchcuts and so the parametrix needs to
be “patched” from pieces like in the Airy case [1] corresponding to a simple turning point but with three cuts and
not only one. Additionally some of the main interests are also in “double scaling” approaches in which the splitting
(or coalescing) is scaled together with the large parameter: for example in the recent [12] it is studied the “birth
of a cut” in a double scaling perspective although without explicit use of Riemann–Hilbert techniques (although
it could be addressed using parabolic cylinder functions i.e. Hermite functions, which appear already in the paper
on physical grounds). In general, for a double scaling study of higher order degenerations in the local parametrix
will contain its own large parameter and hence its own g–function.

6.1 Relation to the quasi–linear Stokes’ phenomenon of Painlevé II
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To conclude these remarks we would like to point out the relevance of the
phase transitions described in this text to the so–called quasi–linear Stokes’ phe-
nomenon ([15] and references therein). In the case of PII, for large modulus of
the argument ξ of the Painlevé transcendent η (we do not use the usual sym-
bols x, y here because we already used them for other purposes in the text) the
asymptotics of η is expressible in terms of elliptic functions evaluated at some
point Ξ in the Jacobian. The elliptic curve is precisely the spectral curve we
consider in this text for the potential

VPII(x) = i

(
4
3
x3 + eiϕx

)
, TPII = 0 . (6.1)

where ϕ = arg(ξ).

Figure 9: An admissible Boutroux
curve of genus 0 for the potential
V = x6

6 and total charge T = 1.
The cut is marked in red.

The notion of admissibility needs to be modified (the Stokes matrices of
PII are not all upper-triangular) from the one used in this paper, but the gen-
eral philosophy remains unaltered. In particular the Boutroux curve becomes
critical when ϕ is on the canonical rays and the genus drops from 1 to 0. This
is precisely one of our “phase transitions” for the particular path in V space
parametrized by ϕ ∈ [0, 2π) (see animation). The dependence of the asymp-
totics of η on ϕ and its sudden “discontinuous” changes are what underlies the
quasi–linear Stokes’ phenomenon.

In our setting the rôle of the Painlevé transcendent is played by the isomon-
odromic tau function of the system solved by the (generalized) orthogonal
polynomials [3] and the parameter N (the degree of the OPs) plays the rôle of
the modulus of ξ in PII: since isomonodromic tau functions enjoy the Painlevé
property, the sudden changes of genus and/or topology of the critical graph
of our Boutroux curve w.r.t. the potential/charge, are the direct analogue of
the quasi–linear Stokes’ phenomenon described above for PII. We also mention
that the q.l. Stokes’ phenomenon depends also on the Stokes’ parameters of
the associated linear ODE: these are –in our present description– the traffics. Indeed changing the traffics for a
given connectivity pattern may result in a highway to carry no net traffic, and this would also induce a sudden
change in the connectivity of the Boutroux curve.
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A Some examples

It is worth mentioning that the same point (V, T ) ∈ V may correspond to a non-simple Boutroux curve for a certain
connectivity pattern, while for a different connectivity pattern corresponds to a simple one: in other words the
discriminant is only on one “sheet” of the map P.
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Figure 10: Several admissible Boutroux curves of genus 2 for the same potential V = x6

6 and same total charge
T = 1, but compatible with different connectivity patterns. The cuts are marked in red. The first one is the same
curve depicted also in Fig. 1.

A simple example of this situation is the potential V (x) = x6/6; if we require the maximal connectivity pattern
(i.e. all sectors are joined to all others) then the origin is a zero for the Boutroux curve of order 4 (for any total
charge T ) and then there are 6 simple zeroes

y2 = x4(x6 − 2T ). (1.1)

This family is non-simple and (non simply) critical for all T ∈ R+. However one can find a family of admissible
Boutroux curves (the “usual ones”: in Fig. 9 for T = 1) of genus 0 which are simple for T ∈ R+ and correspond to
a connectivity where only the left and right sectors containing the real axis are connected (only one highway with
traffic, namely the real axis)

y2 = (x2 −A)
(
x4 +

A

2
x2 +

3
8
A2

)2

, A =
2
5

50
1
3T

1
3 (1.2)

More examples (found numerically using the algorithm described in the next appendix) are the ones in Fig. 10
which have two saddle points.

B Numerical algorithm

We would like to explain briefly how to find numerically some nontrivial examples of Boutroux curves (admissible
and not). We will not enter in any software details and leave it to the keen reader to implement the algorithm. We
have produced a certain number of Octave programs (an open-source program of numerical manipulations similar
to other commercial ones and available for several platforms) based on the idea that we are about to explain: these
are available upon request. The results are the pictures found in the present paper and the short animations to
be found on the author’s webpage. We claim (leaving the straightforward check to the reader) that any algebraic
curve of the following form (here vd+1 is the leading coefficient of V ′(x) = vd+1x

d + . . .)

y2 = (V ′(x))2 − 2Tvd+1x
d−1 +Qd−2(x) = P (x) (2.1)

has the property that

y ∼ V ′(x)− T

x
+O(x−2) . (2.2)
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The polynomial Q(x) = Qd−2(x) is an arbitrary polynomial of degree d−2. For generic Q the roots of P are simple
and the genus is d− 1.

Figure 11: An admissible
Boutroux curve for the po-
tential V (x) = x8

4 + ix6

6 −
x2

2 + 3x,
T = 10.

Choose randomly the coefficients of Q(x): we will show that we can define
an ODE in Q(x) that converges to some Boutroux curve for (V, T ).

We find the roots of P (x) and choose a basis of cycles γ1, . . . , γ2g spanning
the homology of the curve. Define

εj := <
∮
γj

y dx , F :=
1
2

2g∑
j=1

ε2j > 0. (2.3)

The functional F vanishes if and only if the curve is Boutroux. We want to
define an infinitesimal deformation of Q that decreases F .

Indeed if we deform Q by δQ we have

δεj = <
∮
γj

δQ

y
dx (2.4)

Since the differential in the integral above is the most general holomorphic
differential (deg δQ ≤ d − 2 = g − 1), we can fix arbitrarily the real parts of its periods; in particular the choice
that maximizes the rate of decrease of F is in the opposite direction to the gradient of F with respect to the εj ’s,
namely we need to find δQ so that

<
∮
γj

δQ

y
dx = −εj = −<

∮
γj

y dx , j = 1, . . . , 2g . (2.5)

By the general theory [13] such differential exists and is unique. The numerical integration (step-by-step) of this
flow will produce eventually a Boutroux curve. Whether the result is admissible or not is decided by inspection of
the final topology of critical trajectories.

Note that different choices of the homology basis γj and/or the starting polynomial Q may produce different
final results: moreover the numerics (at least in the implementation of the author, who is no expert in the field)
becomes rapidly unstable (already degree d = 9/10 pushes the limit of machine precision and one should then use
some package with arbitrary precision arithmetics).

In order to obtain Boutroux curves with saddles we can require that Q(x) be chosen so that P (x) has a certain
number of double zeroes at all times along the flow: this is easily implementable if the number of double points
k that we want to impose is less than

[
d−1
2

]
. Indeed in this case we can parametrize Q(x) instead than by its

coefficients, by d−1 zeroes (counted with multiplicities) amongst the ones of P (x) = (V ′(x))2−2Tvd+1x
d−1+Q(x).

The positions of these zeroes are free parameters.
However if we want to look for “low genus” Boutroux curves, the algorithm becomes (numerically) unfeasi-

ble because these zeroes must belong to a certain algebraic variety describing some high order vanishing of the
discriminant of P (x).
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[6] P. Bleher, A. R. Its, “Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and
universality in the matrix model”, Ann. of Math. (2) 150 (1999), no. 1, 185–266.

[7] P. Bleher, A. R. Its, “On asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert method”,
Symmetries and integrability of difference equations (Canterbury, 1996), 165–177 London Math. Soc. Lecture
Note Ser., 255.

[8] P. A. Deift, “Orthogonal polynomials and random matrices: a Riemann-Hilbert approach”, Courant lec-
ture notes in mathematics, 3. New York University, Courant Institute of Mathematical Sciences, New
York;American Mathematical Society, Providence, RI, 1999.

[9] P. A. Deift, T. Kriecherbauer, K. T. McLaughlin, S. Venakides, X. Zhou. “Strong asymptotics of orthogonal
polynomials with respect to exponential weights”, Comm. Pure Appl. Math. 52 (1999), no. 12, 1491–1552.

[10] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, “New results on the equilibrium measure for logarithmic
potentials in the presence of an external field”, J. Approx. Theory 95 (1998), no. 3, 388–475.
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