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Abstract

We introduce the notion of bilinear moment functional and study their general properties. The
analogue of Favard’s theorem for moment functionals is proven. The notion of semiclassical bilinear
functionals is introduced as a generalization of the corresponding notion for moment functionals
and motivated by the applications to multi-matrix random models. Integral representations of such
functionals are derived and shown to be linearly independent.
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1 Introduction

The notion of moment functional is most commonly encountered as a generalization of the context of
Orthogonal Polynomials (OP) [1]. These are generally defined as a graded polynomial orthonormal
basis in L2(R,dµ) where dµ is a given positive measure for which all moments

µi :=

∫

R

dµ(x)xi (1-1)

1Work supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), Grant.
No. 261229-03 and by the Fonds FCAR du Québec no. 88353.

2e-mail: bertola@mathstat.concordia.ca
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are finite. The moment functional associated to such a measure is then the element L in the dual
space of polynomials C[x]∨ defined by

L(p(x)) :=

∫

R

dµp(x) , (1-2)

and it is uniquely characterized by its moments. The positivity of the measure implies that we can
always find orthogonal polynomials with real coefficients so that the orthogonality relation reads

L(pm(x)pn(x)) = hnδnm , (1-3)

pn(x) = xn + O(xn−1) ∈ R[x] , hn ∈ R
×
+. (1-4)

Generalizing this picture one is led to consider complex functionals [2], i.e., a functional whose
moments are not necessarily real. The associated OPs are then defined by the same relations (1-3)
where now the polynomials belong to the ring C[x] and hn are nonzero complex numbers.

One of the main applications of OPs is in the context of random matrices [3, 4] where they
allow to write explicit expressions for the correlation functions of eigenvalues and of the partition
function of these models.

Recently [5, 6, 7, 8] growing attention is devoted to the 2-matrix models (or the multi-matrix
models) in which the probability space is the space of couples (or n-tuples) of matrices. Also such
models can be “solved” along lines similar to the one matrix models by finding certain biorthogonal
polynomials (BOP). The probability measure is given by

dµ(M1,M2) =
1

Zn
eTr(M1M2) dµ1(M1) dµ2(M2) , (1-5)

where Mi are usually N × N Hermitian matrices, dµi’s are U(N) invariant positive measures and
the constant Zn is to insure that the measure of the total space is 1 and it is called the partition
function. The relevant BOPs are then a pair of graded polynomial bases {pn(x)}, {sn(y)} “dual”
to each other in the sense that

∫

R

∫

R

dµ1(x)dµ2(y) pn(x)sm(y)exy = hnδnm , (1-6)

pn ∈ R[x], sn ∈ R[y] , hn ∈ R
×. (1-7)

The integral in Eq. (1-6) defines a particular kind of bimoment functional, that is, an element of
the dual to the tensor product of two spaces of polynomials C[x] ⊗C C[y]

L(p(x)|s(y)) :=

∫

R

∫

R

dµ1(x)dµ2(y) p(x)s(y)exy , (1-8)

provided all its bimoments µij are finite

µij := L(xi|yj) ∈ R . (1-9)
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Generalizing this picture we now consider complex bimoment functionals which are uniquely char-
acterized by their (complex) bimoments µij ∈ C.

The notion of semiclassical moment functional for a functional of the form (1-2) requires that
the measure dµ(x) has a density W (x) whose logarithmic derivative is a rational function of x and
the support is a finite union of intervals. This condition can be translated into a distributional
equation for the moment functional itself and then generalized to the complex case [9, 10, 11].

Motivated by the applications to 2-matrix models, we are interested in the corresponding notion
of semiclassical bimoment functionals (which we will define properly later on) and in studying their
properties: we will produce (complex path) integral representations for them, generalizing the
framework of [12, 13, 14] to this situation.

We quickly recall that [9, 10, 11] a moment functional L is called semiclassical if there exist two
(minimal) fixed polynomials A(x) and B(x) with the properties that

L
(

−B(x)p′(x) + A(x)p(x)
)

= 0, ∀p(x) ∈ C[x] . (1-10)

The integral representation was obtained in [12, 13, 14]: we can quickly reprove here their result
(without details) in a different way which was not used there and which is in the line of approach
of this paper. Consequence of the definition is that the (possibly formal) generating power series

F (z) :=

∞
∑

k=0

µk
zk

k!

(

′′ =′′ L(exz)
)

, µk := L(xk) , (1-11)

satisfies the n-th order linear ODE
[

zB

(

d

dz

)

− A

(

d

dz

)]

F (z) = 0 . (1-12)

The order n is the highest of the degrees of A(x), B(x) and it is referred to –in this context–
as the class. A distinction occurs according to the cases deg(A) < deg B (Case A in [13]) or
deg(A) ≥ deg(B) (Case B). By looking at the recursion relation satisfied by the moments µk one
realizes that there are precisely n linearly independent solutions if in Case B or n − 1 in Case A3

and hence the functionals are in one–to–one correspondence with the solutions of Eq. (1-12) which
are analytic at z = 0. It is precisely the result of [15] that the fundamental system of solutions of
Eq. (1-12) are expressible as Laplace integral transform of the weight density

W (x) := exp

(∫

dx
A(x) + B′(x)

B(x)

)

(1-13)

3In Case A and if A(x) 6≡ 0 there is a linear constraint on the initial assumptions for the recurrence relation, which
decreases the dimension of solution space by one. If A(x) ≡ 0 then the solutions of the functional equation can be
found easily.
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(which may have also branch-points) over n distinct suitably chosen contours Γj;

Fj(z) :=

∫

Γj

dxW (x)exz . (1-14)

In Case A one should actually reject one solution among them, i.e. the one with a singularity at
the origin, or better consider only the linear combinations which are analytic at z = 0.

In the present paper the bimoment functionals we consider will rather correspond to generating
functions in two variables satisfying an over-determined (but compatible) system of PDEs, and the
fundamental solutions will be representable as suitably chosen double Laplace integrals.

The paper is organized as follows:
in Section 2 we introduce the basic objects and definitions, recalling how to explicitly construct
the BOPs from the matrix of bimoments. We also prove that the BOPs uniquely determine the
bimoment functional: this is the analog in this setting of Favard’s Theorem which allows to recon-
struct a moment functional from any sequence of polynomials which satisfy a three–term recurrence
relation.
In Section 3 we introduce the definition of semiclassical functionals and then prove that (under
certain general assumpions) they are representable as integrals of suitable 2-forms over Cartesian
products of complex paths. The starting point is the fact already mentioned that the generating
function of bimoments now depends on two variables z, w and satisfies an over-determined system
of PDEs. We will prove the compatibility of this system (in the class of cases specified in the
text) and then we will solve it. The solutions that we obtain (in the cases we consider) are entire
functions of both variables z, w so that one could derive bounds on the growth of the bimoments
(the coefficients of the Taylor series centered at z = 0 = w). It should also be remarked that
all semiclassical linear moment functionals can be recovered as a special case of bilinear ones (see
Remark 3.1): this correspond to the fact that one-matrix models can be recovered from two-matrix
models when one of the measures is Gaussian.

2 Definitions and first properties

By bimoment functional we mean a bilinear functional L on the tensor product of two copies of
the space of polynomials

L : C[x] ⊗ C[y] → C . (2-15)

Although the two polynomial spaces are just copies of the same space, we use two different inde-
terminates x and y in order to distinguish them. Such a functional is uniquely determined by its
bimoments

µij := L(xi|yj). (2-16)

It makes sense to look for biorthogonal polynomials. We recall their definition and some standard
facts [16, 4]
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Definition 2.1 Two sequences of polynomials {πn(x)}n∈N and {σn(y)}n∈N of exact degree n are
said to be biorthogonal with respect to the bimoment functional L if

L(πn|σm) = δnm . (2-17)

If such two sequences exist then we denote by {pn(x)}n∈N and {sn(y)}n∈N the corresponding se-
quences of monic polynomials, which then satisfy

L(pn|sm) = hnδnm , hn 6= 0 ∀n ∈ N. (2-18)

It is an adaptation of the classical result for orthogonal polynomials to write a formula for the
monic sequences

Proposition 2.1 The biorthogonal polynomials exist if and only if

∆n 6= 0, n ∈ N, ∆n := det









µ0,0 µ0,1 · · · µ0,n−1

µ1,0 µ1,1 · · · µ1,n−1
... · · · · · · ...

µn−1,0 µn−1,1 · · · µn−1,n−1









. (2-19)

Under this hypothesis the monic sequences {pn}n∈N and {sn}n∈N are given by the formulas

pn(x) :=
1

∆n
det







µ0,0 · · · µ0,n−1 1
µ1,0 · · · µ1,n−1 x

... · · · · · · ...
µn,0 · · · µn,n−1 xn






; (2-20)

sn(y) :=
1

∆n
det









µ0,0 · · · µ0,n−1 µ0,n

µ1,0 · · · µ1,n−1 µ1,n
... · · · · · · ...
1 · · · yn−1 yn









. (2-21)

The proof of this simple proposition is essentially the same as for the orthogonal polynomials and
it is left to the reader (see [4, 16]). With formula (2-21) we can also compute

L(pn|sm) =
∆n+1

∆n
δnm . (2-22)

The relation with the normalized polynomials is

πn(x) = cnpn(x) , σn(y) := c̃nsn(y) , (2-23)

where the complex constants cn and c̃n are such that cnc̃n = ∆n+1

∆n
. If biorthogonal polynomials

exist they in general do not satisfy a three-term recurrence relation as for the standard orthogonal
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polynomials: they rather satisfy recurrence relations which generally are not of finite bands

xπn(x) = γnπn+1(x) +

n
∑

j=0

aj(n)πn−j(x) (2-24)

yσn(y) = γ̃nσn+1(y) +

n
∑

j=0

bj(n)σn−j(y) . (2-25)

In the case of orthogonal polynomials the three-term recurrence relation is sufficient for reconstruct-
ing the moment functional (Favard’s Theorem [2]). A natural question is whether the recurrence
relations (2-24, 2-25) are also sufficient for the existence of a moment bifunctional for which the
two sequences are biorthogonal polynomials. Note that the specification of the numbers γn, αi(n),
i ≤ n and γ̃n, βi(n), i ≤ n determines uniquely the two sequences of polynomials in Eqs. (2-24,2-25)
provided that γn 6= 0 6= γ̃n, ∀n ∈ N. The following theorem answers positively to the existence of
the moment bifunctional

Theorem 2.1 [Favard-like Theorem for biorthogonal polynomials] If the constants γn, γ̃n do not
vanish for all n ∈ N then there exists a unique moment bifunctional L for which the two sequences
of polynomials πn, σn as in Eq. (2-24, 2-25) are biorthogonal.

Proof. As for the ordinary Favard’s theorem we proceed to the construction of the bimoments
µij = L(xi|yj) by induction. We introduce the associated monic polynomials by defining

pn(x) :=
1

π0
πn(x)

n−1
∏

k=0

γk , p0(x) ≡ 1, (2-26)

sn(y) :=
1

σ0
σn(y)

n−1
∏

k=0

γ̃k , s0(y) ≡ 1 . (2-27)

The corresponding recurrence relations have the same form as in Eq. (2-24, 2-25) except that now
the constants γn, γ̃n are replaced by 1. The first moment µ00 is fixed by the requirement

1 = L(π0|σ0) = µ00π0σ0 , (2-28)

since the polynomials π0, σ0 are just nonzero constants.
Suppose now that the moments µij have already been defined for i, j < N . We need then to

define the moments µNj for j = 0, . . . N − 1, and µiN for i = 0, . . . , N − 1 and µNN . By imposing
the orthogonality

0 = L(pN |s0) = µN0 + . . . , (2-29)

we define µN0, where the dots represent an expression which contains only moments already defined
(i.e. µi0, i < N). We define by induction on j the moments µNj, the first having been defined
above. We have, for j < N − 1

0 = L(pN |sj+1) = µN,j+1 + . . . , (2-30)
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where again the dots represent an expression involving only previously defined moments. This
defines µN,j+1. We can repeat the arguments for the moments µiN , i < N by reversing the role of
the pi’s and sj ’s.

Finally the moment µNN is defined by

det





µ00 · · · µ0N
...

...
µN0 · · · µNN



 =
1

π0σ0

N−1
∏

k=0

γkγ̃k , (2-31)

where the only unknown is precisely µNN and its coefficient in the LHS does not vanish since the
corresponding minor is just

det





µ00 · · · µ0N−1
...

...
µN−10 · · · µN−1N−1



 =
1

π0σ0

N−2
∏

k=0

γkγ̃k 6= 0 . (2-32)

This completes the definition of the moment bifunctional L. Q.E.D.

We now turn our attention to some specific class of bilinear functionals L. We do not require for
the analysis to come that the biorthogonal polynomials exist, although for applications to multi-
matrix models this is essential. In those applications the determinants ∆n are proportional to the
partition functions for the corresponding multi-matrix integrals (up to a multiplicative factor of n!)
and are also interpretable as tau functions of KP and 2-Toda hierarchies [17, 18].

3 Bilinear semiclassical functionals

The notion of semiclassical for ordinary moment functionals and the applications to random ma-
trices suggest the following

Definition 3.1 We say that a bilinear functional L : C[x]⊗CC[y] → C is semiclassical if there exist
four polynomials A1(x), B1(x) and A2(y), B2(y) of degrees a1 + 1, b1 + 1, a2 + 1, b2 + 1 respectively,
such that the following distributional equations are fulfilled

{

(Dx ◦ B1(x) + A1(x)) ⊗ 1L = B1(x) ⊗ yL
1 ⊗ (Dy ◦ B2(y) + A2(y))L = x ⊗ B2(y)L .

(3-33)

Explicitly these equations mean that, for any polynomials p(x), s(y)

L
(

− B1(x)p′(x) + A1(x)p(x)
∣

∣

∣
s(y)

)

= L
(

B1(x)p(x)
∣

∣

∣
ys(y)

)

, (3-34)

L
(

p(x)
∣

∣

∣− B2(y)s′(y) + A2(y)s(y)
)

= L
(

xp(x)
∣

∣

∣B2(y)s(y)
)

. (3-35)
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Remark 3.1 We mentioned that any semiclassical moment functional is –in a certain sense– a special
case of bilinear semiclassical functional. We want to clarify this relation here. Consider a semiclassical
bifunctional in which A2(y) = ay and B2(y) = 1. The defining relations become

L(−B1p
′ + A1p|s) = L(B1p|ys) , L(p| − s′ + ays) = L(xp|s). (3-36)

In particular for s(y) = 1 the second in Eq. (3-36) reads

L(p|y) =
1

a
L(xp|1) . (3-37)

The claim that the reader can check directly is that the moment functional Lr(·) := L(·|1) is a semiclassical
functional in the sense explained in the introduction with A(x) = A1(x) − x

a
B1(x) and B(x) = B1(x). It

will be clear later on that this “reduction” corresponds to a partial integration of a Gaussian weight.

In analogy with the orthogonal polynomials case we also define the class

Definition 3.2 For a semiclassical bifunctional L we define its biclass as the pair of integers

(s1, s2) = (max(a1, b1) + 1,max(a2, b2) + 1) . (3-38)

Note that from the definition some recurrence relations follow for the moments µij. In order to
spell them out we introduce the following notations for the coefficients of the polynomials Ai, Bi

A1(x) =

a1+1
∑

j=0

α1(j)x
j , B1(x) :=

b1+1
∑

j=0

β1(j)x
j , (3-39)

A2(y) =

a2+1
∑

j=0

α2(j)y
j , B2(y) :=

b2+1
∑

j=0

β2(j)y
j . (3-40)

Then the aforementioned recurrence relations are given by

Proposition 3.1 The moments µij of the semiclassical bifunctional L are subject to the relations

b1+1
∑

j=0

β1(j)µn+j,m+1 = −n

b1+1
∑

j=0

β1(j)µn−1+j,m +

a1+1
∑

j=0

α1(j)µn+j,m , (3-41)

b2+1
∑

j=0

β2(j)µn+1,m+j = −m

b2+1
∑

j=0

β2(j)µn,m−1+j +

a2+1
∑

j=0

α2(j)µn,m+j . (3-42)

Proof.
From the definition of semi-classicity by setting p(x) = xn and s(y) = ym in the two relations (3-34,
3-35). Q.E.D.
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The two recurrence relations give an overdetermined system for the moments: it is not guar-
anteed a priori that solutions exist and if they do, how many. There are now four different cases,

according to deg(Bi)
<
=
>

deg(Ai); we address in the present paper the case deg(Ai) > deg(Bi), i = 1, 2

(most relevant in the applications to random matrix models) which is the analog of Case B in [13]
and we could call “Case BB”. The other cases have less interesting applications in matrix models
because they correspond to potentials (in a sense which will be clear below) which are bounded at
infinity. They are certainly interesting from the point of view of Eqs. (3-41, 3-42); for example it
is a simple exercise to check that if deg(B1) = deg(B2) = 1 and deg(A1) = deg(A2) = 0 then in
general no nontrivial solutions exist for Eqs (3-41, 3-42).

For the rest of this paper we will make the following
Assumptions (A)

deg(Bi) + 1 ≤ deg(Ai) , i = 1, 2. (3-43)

Moreover in the case deg(B1) + 1 = deg(A1) and deg(B2) + 1 = deg(A2) we impose

det

(

α1(a1 + 1) β1(b1 + 1)
β2(b2 + 1) α2(a2 + 1)

)

6= 0 when a1 = b1 + 1, a2 = b2 + 1 . (3-44)

Under this assumption we can prove

Proposition 3.2 The solutions to Eqs. (3-41, 3-42) form a vector space of dimension M := s1·s2 =
(a1 + 1) · (a2 + 1).

Proof. The fact that the space of solutions is a vector space is obvious from the linearity of the
defining equations. We need to prove the assertion regarding the dimension. We start by defining
the (possibly formal) generating function of moments

F (z, w) :=
∞
∑

j,k=0

zjwk

j!k!
µjk = L

(

exz|eyw
)

. (3-45)

From the recursion relation for the moments or (equivalently) from the definition of semi-classicity,
it follows that such a function satisfies the system of PDEs











[

(∂z + w)B2(∂w) − A2(∂w)
]

F (z, w) = 0

[

(∂w + z)B1(∂z ) − A1( ∂z )
]

F (z, w) = 0 .
(3-46)

Conversely, any solution of this system which is analytic at z = 0 = w provides a semiclassical
bimoment functional associated with the data Ai, Bi. We now count the solutions of this system.
It will be clear later on that all the solutions are analytic at z = 0 = w (in fact entire) so that any
solution does define a moment functional.
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The system (3-46) is a higher order overdetermined system of PDEs for the single function (or
formal power series) F (z, w) and the compatibility is readily seen since

[

(∂z + w)B2(∂w) − A2(∂w), (∂w + z)B1(∂z) − A1(∂z)
]

= (3-47)

=
[

(∂z + w)B2(∂w), (∂w + z)B1(∂z)
]

= (3-48)

=
[

(∂z + w), (∂w + z)
]

B2(∂w)B1(∂z) = (1 − 1)B2(∂w)B1(∂z) = 0. (3-49)

Now we express the system as a first order linear system of PDE’s on the suitable jet extension.
Let us introduce the notation

Fµ,ν(z, w) := ∂z
µ∂w

νF (z, w). (3-50)

The proof now proceeds according to the three different cases:

Case BB1: deg(Ai) ≥ deg(Bi) + 2, i = 1, 2;

Case BB2: deg(A1) = deg(B1) + 1 but deg(A2) ≥ deg(B2) + 2 (or vice-versa);

Case BB3: deg(A1) = deg(B1) + 1, deg(A2) = deg(B2) + 1.

For convenience we set the leading coefficients of the two polynomials Ai to unity as this does not
affect the dimension of the solution space of the system but makes the formulas to come shorter to
write.

In Case BB1 (ai ≥ bi + 2) we can write the two first order systems

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

∂wFµ,ν = Fµ,ν+1 µ = 0, · · · , a1 , ν = 0, · · ·a2 − 1

∂wFµ,a2 =

b2+1
X

k=0

β2(k)(wFµ,k + Fµ+1,k) −

a2
X

k=0

α2(k)Fµ,k µ = 0..a1 − 1

∂wFa1,a2 =

b2+1
X

k=0

β2(k)

2

4wFa1,k +

0

@

b1+1
X

j=0

β1(j)

„

zFj,k + Fj,k+1

«

−

a1
X

j=0

α1(j)Fj,k

1

A

3

5−

a2
X

k=0

α2(k)Fa1,k

, (3-51)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

∂zFµ,ν = Fµ+1,ν µ = 0, · · · , a1 − 1, ν = 0, · · · a2

∂zFa1,ν =

b1+1
X

j=0

β1(j)(zFj,ν + Fj,ν+1) −

a1
X

j=0

α1(j)Fj,ν ν = 0..a2 − 1

∂zFa1,a2 =

b1+1
X

j=0

β1(j)

2

4zFj,a2 +

0

@

b2+1
X

k=0

β2(k)

„

wFj,k + Fj+1,k

«

−

a2
X

k=0

α2(k)Fj,k

1

A

3

5−

a1
X

j=0

α1(j)Fj,a2

. (3-52)

Note that the two systems are consistent for the unknowns Fµ,ν , µ = 0, ..., a1, ν = 0, ..., a2 if we
have bi + 2 ≤ ai, i = 1, 2.
In Case BB2 with a1 = b1 +1 the second system is not anymore consistent because the RHS of the
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third equation in system (3-52) contains Fa1+1,a2 . It must be replaced by

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

∂zFµ,ν = Fµ+1,ν µ = 0, · · · , a1 − 1, ν = 0, · · · a2

∂zFa1,ν =

a1
X

j=0

“

β1(j)(zFj,ν + Fj,ν+1) − α1(j)Fj,ν

”

ν = 0..a2 − 1

∂zFa1,a2 =

a1
X

j=0

β1(j)

2

4zFj,a2 +

0

@

b2+1
X

k=0

β2(k)wFj,k −

a2
X

k=0

α2(k)Fj,k

1

A

3

5−

a1
X

j=0

α1(j)Fj,a2+

+

a1−1
X

j=0

b2+1
X

k=0

β2(k)β1(j)Fj+1,k + β1(a1)

b2+1
X

k=0

β2(k)

0

@

a1
X

j=0

 

β1(j)(zFj,k + Fj,k+1) − α1(j)Fj,k

!

1

A

. (3-53)

Finally in the Case BB3 (a1 = b1 + 1 and a2 = b2 + 1) we have the two systems
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>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

∂zFµ,ν = Fµ+1,ν µ = 0, · · · , a1 − 1, ν = 0, · · ·a2

∂zFa1,ν =

a1
X

j=0

“

β1(j)(zFj,ν + Fj,ν+1) − α1(j)Fj,ν

”

ν = 0..a2 − 1

(1 − β1(a1)β2(a2))∂zFa1,a2 =

a1
X

j=0

β1(j)

"

zFj,a2 +

a2
X

k=0

“

wβ2(k) − α2(k)
”

Fj,k

#

+

−

a1
X

j=0

α1(j)Fj,a2 +

a1−1
X

j=0

a2
X

k=0

β1(j)β2(k)∂zFj,k

, (3-54)

and a similar system for the ∂w derivative. Note that in the third equation the derivatives ∂zFj,k

are defined by the first and second equation.
Since now (1 − β1(a1)β2(a2)) 6= 0 as per the Assumption (which is (α1(a1 + 1)α2(a2 + 2) −

β1(a1)β2(a2)) 6= 0 if we do not assume that the polynomials A1, A2 are monic) then the system is
still well defined; on the other hand, if (1 − β1(a1)β2(a2)) = 0 then the last equation becomes a
constraint4.

It is lengthy but straightforward to check that the two systems are indeed compatible in each
of the three cases. Since the size of the system is M = (a1 + 1) · (a2 + 1) = s1s2 then there are
precisely M linearly independent solutions. Q.E.D.

Remark 3.2 In principle we would not have to check the compatibility because we will construct later
M = s1s2 solutions to the system, which therefore will be proven to be compatible a posteriori: the point of
Prop. 3.2 is principally that the dimension of the solution space certainly does not exceed M because that
is the dimension of a closed system in the jet space.

The Proposition implies that the recurrence relations (3-41, 3-42) determine uniquely the functional
L in terms of the moments µij with i = 0, . . . , a1, j = 0, . . . , a2. We need to produce M = s1s2

linearly independent semiclassical functionals associated to the same data (A1, B1, A2, B2) by means
of integral representations. Equivalently we can produce integral representations for the M linearly
independent solutions of the overdetermined system of PDE’s (3-46). It is precisely in this form

4We are not going to examine this case in this paper because it is more natural to study in the context of
semiclassical functionals of type AB or AA, i.e. when deg(Ai) ≤ deg(Bi)
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that we will solve the problem, showing contextually that the generating functions are indeed entire
functions of w, z. The starting point is to assume that such an integral representation exists: so
suppose that

F (z, w) =

∫

Γ(x)

∫

Γ(y)

dxdyW (x, y)exz+yw , (3-55)

is a double Laplace integral representation for a solution of (3-46)5.
Plugging such a representation in the two equations in (3-46) and assuming that the contours

are so chosen as to allow integration by parts without boundary terms, we obtain two first order
equations for the biweight W (x, y)

(

B1(x)∂x + A1(x) + B′
1(x)

)

W (x, y) = y B1(x)W (x, y) , (3-56)
(

B2(y)∂y + A2(y) + B′
2(y)

)

W (x, y) = xB2(y)W (x, y) . (3-57)

We make the Assumption (B) that each pair (Ai, Bi) are relatively prime or at most share a
factor (x − c) (or (y − s)). The reason is similar to the case of standard semiclassical functionals.
We will return on this genericity assumption later on.

The two differential equations (3-56,3-57) form an overdetermined system for the biweight
W (x, y) which is compatible and can be solved to give the only solution (up to a multiplicative
nonzero constant)

W (x, y) = W1(x)W2(y)exy = exp (−V1(x) − V2(y) + xy) , (3-58)

W ′
1(x)

W1(x)
=

A1(x) + B′
1(x)

B1(x)
,

W ′
2(y)

W2(y)
=

A2(y) + B′
2(y)

B2(y)
, (3-59)

V1(x) :=

∫

dx
A1(x) + B′

1(x)

B1(x)
(3-60)

V2(y) :=

∫

dy
A2(y) + B′

2(y)

B2(y)
. (3-61)

We call the two functions V1(x), V2(y) the potentials (borrowing the name from statistical mechanics
and random matrix context).

Note that if there are nonzero residues at the poles of
Ai+B′

i
Bi

then the corresponding potential have
logarithmic singularities or poles. The general form of the biweight is

W1(x) :=

p1
∏

j=1

(x − Xj)
λj exp

[

V +
1 (x) +

M1(x)
∏p1

j=1(x − Xj)gj

]

, (3-62)

5In principle one could integrate the two-form W (x, y)exz+ywdx ∧ dy over any 2-cycle, but here we do not need
such generality
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deg(M1) ≤
p1
∑

j=1

gj , M1(Xj) 6= 0 ,

W2(y) :=

p2
∏

k=1

(y − Yj)
ρk exp

[

V +
2 (y) +

M2(y)
∏p2

k=1(y − Yk)hk

]

, (3-63)

deg(M2) ≤
p2
∑

k=1

hk , M2(Yk) 6= 0 .

In these formulas and in the rest of the paper Xj denote the zeroes of B1(x), gj+1 the corresponding
multiplicities and −λj are the residues at Xj of the differential dV1(x); similarly, Yk denote the
zeroes of B2(y), hk +1 the corresponding multiplicities and −ρk the residues at Yk of the differential
dV2(y).

The biclass of the corresponding semiclassical bifunctional is then the total degree of the divisor
of poles of the derivatives of the two potentials on the Riemann spheres whose affine coordinates
are x and y

s1 = d1 +

p1
∑

j=1

(gj + 1) , s2 = d2 +

p2
∑

j=1

(hj + 1) . (3-64)

We will also use the notations X0 = ∞ ∈ P
1
x, Y0 = ∞ ∈ P

1
y.

3.1 The functionals

We will define two sets of paths in the two punctured Riemann spheres P
1
x and P

1
y. We focus on

the first sphere, the paths in the second being defined in analogous way.
More precisely we define s1 “homologically” independent paths in P

1
x \ Cx and s2 paths in P

2
y \ Cy

where Cx and Cy are suitable union of cuts and points: for example the set Cx is the union of all
poles and essential singularities of W1(x) and cuts extending from the branch points to infinity.

The reference to the homology is not in the ordinary sense: here we are considering in fact the
relative homology of the cut-punctured sphere with prescribed sectors around the punctures. We

first define some sectors S
(j)
k , j = 1, . . . p1, k = 0, . . . gj − 1. around the points Xj for which gj > 0

(the multiple zeroes of B1(x)) in such a way that

< (V1(x)) −→
x → Xj ,

x ∈ S
(j)
k

+∞ . (3-65)

The number of sectors for each pole is the degree of that pole in the exponential part of W1(x),
that is d1 + 1 for the pole at infinity and gj for the j-th pole. Explicitly

S
(0)
k :=

{

x :∈ C;
2kπ − π

2 + ε

d1 + 1
< arg(x) +

arg(vd1+1)

d1 + 1
<

2kπ + π
2 − ε

d1 + 1

}

, (3-66)
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k = 0 . . . d1 ;

S
(j)
k :=

{

x :∈ C;
2kπ − π

2 + ε

gj
< arg(x − Xj) +

arg(M1(Xj))

gj
<

2kπ + π
2 − ε

gj

}

, (3-67)

k = 0, . . . , gj − 1, j = 1, . . . , p1 .

These sectors are defined precisely in such a way that approaching any of the essential singularities
(i.e. an Xj such that gj > 0) the function W1(x) tends to zero faster than any power.
Definition of the contours
The definition of the contours follows directly [15], but we have to repeat it in both Riemann
spheres. For the sake of completeness we recall the way they are defined.

1. For any Xj for which there is no essential singularity (i.e. gj = 0), then we have two subcases

(a) Corresponding to the Xj ’s which are branch points or a pole (λj ∈ C\N), we take a loop

starting at infinity in some fixed sector S
(0)
kL

encircling the singularity and going back to
infinity in the same sector.

(b) For the Xj ’s which are regular points (λj ∈ N) we take a line joining Xj to infinity and

approaching ∞ in the same sector S
(0)
kL

as before.

2. For any Xj for which there is an essential singularity (i.e. for which gj > 0) we define gj

contours starting from Xj in the sector S
(j)
0 and returning to Xj in the next (counterclockwise)

sector. Finally we join the singularity Xj to ∞ by a path approaching ∞ within the sector

S
(0)
kL

chosen at point 1(a).

3. For X0 := ∞ we take d1 contours starting at X0 in the sector S
(0)
k and returning at X0 in

the sector S
(0)
k+1.

6.

For later convenience we also fix a sector SL of width β < π− ε which contains the sector S
(0)
kL

used
above. The picture below gives an example of the typical situation, where the light grey sector
represents SL. We will make use also of the sector E which is a sector within the dual sector7 of
SL (in dark shade of grey in the picture): it is not difficult to realize that we can always arrange
contours in such a way that E is a small sector above the real positive axis (if the leading coefficient
of V +

1 is real and positive, otherwise the whole picture should be rotated appropriately).
We shall also require that all contours do not intersect except possibly at some Xj and that each
closed loop should either encircle only one singularity or have one of the Xj on its support.

6Note that in our assumptions on the degrees of Ai, Bi the degrees of the essential singularity at infinity satisfy
d1 ≥ 1 ≤ d2

7 We recall that for a given sector S centered around a ray arg(z) = α0 with width A < π, the dual sector S∨

is the sector centered around the ray arg(z) = π − α0 and with width π − A.
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The result of this procedure produces precisely s1 contours. By virtue of Cauchy’s theorem the
choice is largely arbitrary.
An important feature for what follows is that when a contour Γj is closed (on the sphere P

1
x), then

W1(x) has a singularity and/or is unbounded in the region inside Γj . We will call this property the
Property (℘).

*

S L X

X

X

3

1

2

SkL

ε

Figure 1: The set of contours in the x Riemann sphere P
1
x. Here we

have three zeroes of B(x), X1, X2, X3, and the singularity at infinity X0

of order d1 + 1 = 5. The zero X1 has multiplicity gj + 1 = 4 and the
corresponding essential singularity behaves like exp (x − X1)

−3, the zero
X2 is a regular point for W1(x), namely λ2 ∈ N and finally the zero X3

is either a branch point of W1, in which case the cut extends to infinity
“inside” the contour (in the picture), or a pole (λ3 6∈ N).

We then define the fundamental functionals by

Lij(x
n|ym) :=

∫

Γ
(x)
i ×Γ

(y)
j

dx ∧ dy W1(x)W2(y)exyxnym , (3-68)

i = 1, . . . , s1, j = 1, . . . s2 , n,m ∈ N.

We point out that such contours are chosen so that the corresponding functionals are defined on
any monomials xjyk and such that integration by parts does not give any boundary contribution.
Each such functional is a semiclassical functional associated to the data A1, B1, A2, B2 and their
number is precisely the expected number s1s2 for the solutions of Eqs. (3-46) for the generating
functions. The problem now is to show that they are linearly independent.
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Remark 3.3 A special care should be directed at the case d1 = d2 = 1, i.e. when a1 = b1 + 1 and
a2 = b2 + 1. Indeed in this circumstance the two polynomials V +

1 (x) = δ
2x2 + .. and V +

2 (y) = σ
2 y2 + .. are

just quadratic. The biweight W (x, y) has then the form

W (x, y) = exp

(

−δ

2
x2 − σ

2
y2 + xy + . . .

)

[. . .] . (3-69)

The condition on the determinant (3-44) is precisely the nondegeneracy of the quadratic form − δ
2x2−σ

2 y2+xy.
However, if |δ||σ| ≤ 1 then the integrals as we have defined are always divergent when two contours which
stretch to infinity are involved. This simply means that we cannot choose the surface of integration in
factorized form Γ(x) × Γ(y) but need to resort to a surface which is not factorized. Alternatively we can
analytically continue from the region of δ, σ for which the integrals are convergent.

Some important remarks are in order. Consider the generating functions associated to these con-
tours

Fij(z, w) :=

∫

Γ
(x)
i ×Γ

(y)
j

dx ∧ dy W1(x)W2(y)exyexz+yw . (3-70)

They are entire functions of z, w and hence are indeed generating functions of the bimoment func-
tionals Lij(·|·). Indeed our assumptions on the degrees guarantee that V +

i have degree at least 2,
which is sufficient to guarantee analyticity w.r.t. z, w in the whole complex plane.

Remark 3.4 If the index i corresponds to a bounded contour Γ
(x)
i then Fij(z, w) is a function of expo-

nential type in z (similarly for w if Γ
(y)
j is bounded).

Remark 3.5 If the index i corresponds to one of the contours Γ
(x)
i defined at point 1(a) or 1(b) above,

then Fij(z, w) is of exponential type only for z in an appropriate sector which contains the sector E dual to
the sector SL.

Before entering into the details of the proof of linear independence let us return to the Assumption
(B) about the pairs (Ai, Bi). Suppose that -say- A1 and B1 have a common factor (x− c)K , K ≥ 1
and that they have no other common factor. That is let us suppose that

A1(x) = (x − c)lÃ1(x) , B1(x) = (x − c)rB̃1(x) , (3-71)

l > 0 < r, K := min(l, r) ,

with Ã1(c) 6= 0 6= B̃1(c). Then formula (3-59) would give

V ′
1(x) = −W ′

1(x)

W1(x)
=

(x − c)lÃ1 + r(x − c)r−1B̃1 + (x − c)rB̃′
1

(x − c)rB̃1

, (3-72)

so that the divisor of poles of dV1(x) has degree less than s1. Now we have two possible cases:
(i) if l ≥ r − 1 then we can recast Eq. (3-72) in the form

− W ′
1(x)

W1(x)
=

(x − c)l−r+1Ã1 + (r − 1)B̃1 + ((x − c)B̃1)
′

(x − c)B̃1

, (3-73)
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which is equivalent to a problem in which the polynomials A1, B1 are substituted by A1 := (x −
c)l−r+1Ã1 + (K − 1)B̃1 and B1 := (x − c)B̃1 respectively, which now satisfy the Assumption (B).
In particular the definition of the contours provides the correct number of distinct contours for the
new pair (A1, B1), that is s1−r+1 distinct contours (in the x plane). We need to recover (K−1)s2

solutions if l > r − 1 or ls2 = Ks2 if l = r − 1.
(ii) If l ≤ r − 2 then we can recast Eq. (3-72) in the form

− W ′
1(x)

W1(x)
=

Ã1 + l(x − c)r−1−lB̃1 +
(

(x − c)r−lB̃1

)′

(x − c)r−lB̃1

, (3-74)

now equivalent to a problem in which the polynomials A1, B1 are substituted by A1 := Ã1 +K(x−
c)r−l−1B̃1 and B1 := (x − c)r−lB̃1 respectively, which do not have the factor (x − c) in common
and hence satisfy the Assumption (B). The definition of the contours provides the correct number
of distinct contours for the new pair (A1, B1), and we need to recover Ks2 solutions.
The next proposition shows how to recover the missing solutions.

Proposition 3.3 If

A1(x) = (x − c)KÃ1(x) , B1(x) = (x − c)KB̃1(x) , K ≥ 1 , (3-75)

and Ã1(x), B̃1(x) do not vanish both at c then Eqs. (3-46) have also the solutions

F
(j)
k (z, w) = ecz

∫

Γ
(y)
k

dy(y + z)jey(w+c)W2(y) , j = 0, ...,K − 1. (3-76)

Proof.
The fact that the functions (3-76) solve our system can be checked directly.
Indeed the first eq. in (3-46) is satisfied because the differential operator reads

(∂w + z)B1(∂z) − A1(∂z) =
[

(∂w + z)B̃1(∂z) − Ã1(∂z)
]

(∂z − c)K , (3-77)

and the proposed solutions are linear combination of functions of the form z reczfr(w), r < K which
are all in the kernel of (∂z − c)K . The second equation in (3-46) now reads

[(∂z + w)B2(∂w) − A2(∂w)] ecz

Z

Γ
(y)
k

dy(y + z)jey(w+c)W2(y) =

= c ecz

Z

Γ
(y)
k

dy B2(y)(y + z)jey(w+c)W2(y) + ecz

Z

Γ
(y)
k

dy

„

B2(y)(∂z + w) − A2(y)

«

(y + z)jey(w+c)W2(y) =

= ecz

Z

Γ
(y)
k

dy

„

B2(y)(c + ∂z) − A2(y)

«

(y + z)jey(w+c)W2(y) + ecz

Z

Γ
(y)
k

dyB2(y)W2(y)(y + z)jeyc∂y(eyw) =

= ecz

Z

Γ
(y)
k

dy

„

B2(y)(∂z + c) − A2(y)

«

(y + z)jey(w+c)W2(y) + ecz

Z

Γ
(y)
k

dyB2(y)W2(y)(y + z)jecy∂y(eyw) =

= ecz

Z

Γ
(y)
k

dy W2(y)ey(w+c)

»

B2(y) [∂z − ∂y]

–

(y + z)j +

+ecz

Z

Γ
(y)
k

dy

„

W ′
2(y)B2(y) − (A2(y) + B′

1(y))W2(y)

«

(y + z)jey(w+c) = 0.
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In Case (ii) (or in Case (i) but with l = r − 1) these solutions are precisely the Ks2 missing
solutions.
In Case (i) with l ≥ r only l− 1 = K − 1 among the solutions (3-76) are linearly independent from
those defined in terms of the contour integrals. To see this we write the weight

− W ′
1(x)

W1(x)
=

r

x − c
+

Ã1 + B̃′
1

B̃1

. (3-78)

Since B̃1(c) 6= 0 then W1(x) has a pole of order r at x = c and can be written as

W1(x) = (x − c)−rw1(x) , (3-79)

with w1(x) analytic at x = c and w1(c) 6= 0. The contour which comes from infinity, encircles c
and goes back to infinity can be retracted to a circle around the pole, so that the corresponding
solutions given by the integral representation would be

∫

Γ
(k)
y

∮

|x−c|=ε
dx ∧ dy (x − c)−rw1(x)ex(z+y)+wyW2(y) =

= 2iπ(r − 1)!

∫

Γ
(k)
y

dy∂r−1
x

(

w1(x)ex(z+y)
)∣

∣

∣

x=c
W2(y) .

Such a solution is clearly an appropriate linear combination of the F
(j)
k s j = 0, . . . r − 1 ≤ K − 1

with the nonzero coefficient w1(c) in front of F
(r−1)
k . Q.E.D

Remark 3.6 The function in Eq. (3-76) with j = 0 corresponds to a moment functional L = δc ⊗ Y ,
where Y is any semiclassical moment functional associated to A2(y), B2(y) and δc is the delta functional
supported at x = c on the space of polynomials C[x]. The other solutions in Eq. (3-76) with j > 0 are also
supported at c but are not factorized and have the form

L =

j
∑

k=0

δ(k)
c ⊗ Yk , (3-80)

for suitable moment functionals Yk .

If there are other roots common to Ai, Bi we can repeat the procedure until we have a reduced
problem which satisfies the Assumption (B).

Therefore from this point on we will assume that the data (A1, B1, A2, B2) satisfy the Assump-
tion (B).

Theorem 3.1 The functionals Lij or –equivalently– the generating functions

Fij(z, w) :=

∫

Γ
(x)
i ×Γ

(y)
j

dx ∧ dy W1(x)W2(y)exyexz+yw (3-81)

are linearly independent
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The proof is an adaptation of [15] with a small improvement (and a correction). We prepare a few
lemmas.

Lemma 3.1 [Theorem of Mergelyan ([19], p. 367)] If E is a closed bounded set not separating the plane and
if F (z) is continuous on E and analytic at the interior points of E, then F (z) can be uniformly approximated
on E by polynomials.

The next Theorem is a rephrasing of the content of [15] for the proof of which we refer ibidem.

Theorem 3.2 [Miller-Shapiro Theorem] If Γ is a closed simple Jordan curve and F (z) is an ana-
lytic function (possibly with singularities and/or multivalued) in the points inside Γ such that the
equation

∮

Γ
F (z)p(z)dz = 0 (3-82)

holds for any polynomial p(z) ∈ (z − z0)C[z] (for some fixed z0 ∈ Γ), then F (z) has no singularities
inside Γ and it is bounded in the interior region of and on Γ.

Suppose now by contradiction that there exist constants Cij not all of which zero such that

s1
∑

i=1

s2
∑

j=1

Cij

∫

Γ
(x)
i ×Γ

(y)
j

dx ∧ dy W1(x)W2(y)exyexz+yw ≡ 0. (3-83)

Reduction of the problem
We claim that if Eq. (3-83) holds then we also have

0 ≡
s1
∑

i=1

s2
∑

j=1

Cij

∫

Γ
(x)
i ×Γ

(y)
j

dx ∧ dy W1(x)W2(y)exz+yw =

s1
∑

i=1

s2
∑

j=1

Cij Ξi(z)Ψj(w) , (3-84)

where we have defined

Ξi(z) :=

∫

Γ
(x)
i

dxW1(x)exz , (3-85)

Ψj(w) :=

∫

Γ
(y)
j

dy W2(y)eyw . (3-86)

Indeed consider the auxiliary function of the new variable ρ

A(ρ; z, w) :=

s1
∑

i=1

s2
∑

j=1

Cij

∫

Γ
(x)
i ×Γ

(y)
j

dx ∧ dy W1(x)W2(y)eρxy+zx+wy . (3-87)
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Here z, w play the role of parameters. This function is entire in ρ (because by our assumptions
deg(V +

i ) ≥ 2 and hence for all contours going to infinity the integrand goes to zero at least as
exp(−|x|2 − |y|2)), and by applying (∂z∂w)K to Eq. (3-83) we have

0 ≡ (∂z∂w)K A(1; z, w) =

(

d

dρ

)K

A(ρ; z, w)

∣

∣

∣

∣

ρ=1

, ∀K ∈ N . (3-88)

Therefore we also have A(0; z, w) ≡ 0, ∀z, w ∈ C, which is Eq. (3-84).
This shows that proving that the functions Fij are linearly independent is equivalent to proving that
the two sets of functions {Ξi(z)}i=1...s1 and {Ψj(w)}j=1...s2 are (separately) linearly independent.
Both the Ξis and the Ψjs are now solutions of the decoupled ODEs of the same type (i.e. with
linear coefficients)

[

zB1

(

d

dz

)

− A1

(

d

dz

)]

Ξi(z) = 0 , (3-89)

[

wB2

(

d

dw

)

− A2

(

d

dw

)]

Ψj(w) = 0 . (3-90)

Equivalently we may say that Ξis and Ψjs are generating functions for the moments of semiclassical
functionals associated to (A1, B1) and (A2, B2) respectively. Their linear independence was proven
in [15]. Unfortunately this latter paper has a small flaw that makes one step of the proof impossible
when deg(Ai) > deg(Bi) + 2 (while it is correct if deg(Ai) ≤ deg(Bi) + 2) [20].
On the other side the linear independence of certain integral representation for semiclassical moment
functionals was obtained in [13]; however their definitions for the contours force them to a procedure
of regularization in certain cases which is elegantly bypassed by the definition of the contours in
[15]. We prefer to fix the proof of [15] since then we will not need any regularization.

3.2 Linear independence of the Ξis

In this section we prove the linear independence of the functions Ξi. This will also prove the linear
independence of the functions Ψj since they are precisely of the same form. We assume that the
polynomial V +

1 (x) appearing in Eq. (3-62) has the form

V +
1 (x) =

1

d + 1
xd+1 +

d
∑

j=0

vjx
j (d := d1 ≥ 1). (3-91)

This does not affect the generality of the problem inasmuch as it amounts to a rescaling of the
variable x. To prove their linear independence we can reduce further the problem to the case where
V +

1 (x) = 1
d+1xd+1. Indeed, suppose that there exist constants Aj such that

W(z; v0, ..., vd) :=

s1
∑

j=1

Aj

∫

Γj

dxW1(x)exz ≡ 0 , (3-92)
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where we have emphasized the dependence on the subleading coefficients of V +
1 as given in Eqs.

(3-91, 3-62). Considering it as a function of the variables v0, ..., vd then Eq. (3-92) implies that

∂|α|

∂ṽαW(z; ṽ)

∣

∣

∣

∣

ṽi=vi

= 0 , ∀α = (α1, ..., αd) ∈ N
d , ∀z ∈ C. (3-93)

Since W(z; ṽ0, ...., ṽd) is clearly entire in the variables ṽi, Eq. (3-93) implies that actually it does
not depend on them. In other words if the Ξis are linearly dependent with constants Ai then also
the Ξis where we “switch off” the coefficients vi of the potential are linearly dependent with the
same constants Ai.
Therefore it also does not affect the generality of the problem of showing linear independence to
assume the specific form for V +

1

V +
1 (x) =

1

d + 1
xd+1 . (3-94)

We now analyze the asymptotic behavior, and we need the following definition (here given for a
V +

1 more general than the one above).

Definition 3.3 The steepest descent contours (SDCs) for integrals of the form

IΓ(z) :=

∫

Γ
dx e−V +

1 (x)+xzH(x) , (3-95)

with H(x) of polynomial growth at x = ∞, are the contours γk uniquely defined, as z → ∞ within

the sector E =
{

arg(z) ∈
(

− π
2(d+1) , 0

)}

, by

γk :=

{

x ∈ C; =(V +
1 (x)− xz)==

(

V +
1 (xk(z))−zxk(z)

)

,<(V +
1 (x)) −→

x → ∞
x ∈ γk

+∞.

}

, (3-96)

where xk(z) are the d1 branches of the solution to

V +
1

′
(x) = z , (3-97)

which behave as z
1

d1 as z → ∞ in the sector, for the different determinations of the roots of z.
Their homology class is constant as x → ∞ within the sector.

With reference to Figure 1, the sector E is the narrow dark-shaded dual sector of SL (light-shaded).

Proposition 3.4 Let E be the sector arg(z) ∈
(

− π
2(d+1) , 0

)

at z = ∞. Then the Laplace-Fourier

transforms over the SDCs γk ,

Fk(z) :=

∫

γk

dxW1(x)ezx , k = 1, . . . d , (3-98)
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have the following asymptotic leading behavior in the sector E :

Fk(z) = K

√

2π

d
z

2A+1−d
2d ωk(A− 1

2
) exp

[

d

d + 1
z

d+1
d ωk

](

1 + O
(

1

z

))

, (3-99)

A :=

p
∑

j=1

λj , ω := e
2iπ
d , (3-100)

where K 6= 0 is a constant found in the proof.

Proof.
The proof of this asymptotic behavior is an application of the saddle point method. Writing
z = |z|eiθ with the change x = |z|1/dξ we can rewrite the integrals

∫

Γ
e−

1
d+1

xd+1+xz
p
∏

j=1

(x − Xj)
λj eT (x)dx = (3-101)

= |z| 1d |z|A
d

∫

Γ
exp

[

−|z| d+1
d

(

ξd+1

d + 1
− ξeiθ

)]

ξA
p
∏

j=1

(

1 − Xj

ξ|z| 1d

)λj

eT (|z|1/dξ)dξ , (3-102)

T (x) := exp

[

M1(x)
∏p

j=1(x − Xj)gj

]

−→
|x|→∞

K 6= 0 . (3-103)

Let us set λ := |z| d+1
d and change variable of integration to

s = S(ξ) :=
1

d + 1
ξd+1 − ξeiθ . (3-104)

Note that the rescaling of variable leaves the contour Γ in the same “homology” class, so that we
can take the contour as fixed in the ξ-plane. The saddle points for this exponential are the roots of

0 = S′(ξ) = ξd − eiθ , (3-105)

that is the d roots of eiθ. The corresponding critical values are

s(k)
cr (θ) := − d

d + 1
ωkeiθ d+1

d , ω := e2iπ/d, k = 0, . . . , d − 1. (3-106)

The map s = S(ξ) is a d + 1-fold covering of the s-plane by the ξ-plane with square-root-type

branching points at the s
(k)
cr (θ). Moreover each of the d + 1 sectors (around ξ = ∞) for which

<(ξd+1) > 0 is mapped to the single sector

S := {s ∈ C, −π

2
+ ε < arg(s) <

π

2
− ε} . (3-107)
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The inverse map ξ = ξ(s) is univalued if we perform the cuts on the s plane starting at each s
(j)
cr (θ)

and going to <(s) = +∞ parallel to the real axis. Such cuts are distinct for generic values of θ.
We obtain a simply connected domain in the s plane (see picture). By their definition the SDCs γj

corresponds to (the two rims of) the horizontal cuts in the s-plane that go from the critical points

s
(j)
cr (θ) to <(s) = +∞.

The cuts are distinct if =
(

ei d+1
d

θ+2ik π
d

)

6= =
(

ei d+1
d

θ+2ij π
d

)

, for j 6= k, that is away from the Stokes’

lines at infinity

lk =

{

arg(z) =
πk

d + 1
, k ∈ 1

2
Z

}

. (3-108)

Therefore if z approaches infinity along a ray distinct from the Stokes’ lines and within the same
sector between them, the asymptotic expansion does not change.
Asymptotic evaluation of the steepest descent integrals
The integrals corresponding to the steepest descent path γk become

|z|A+1
d

∫

γk

e−λsξ(s)Ag(s, |z|)dξ

ds
ds , (3-109)

g(s, |z|) :=

p
∏

j=1

(

1 − Xj

ξ(s)|z| 1d

)λj

eT (|z|1/dξ(s)), lim
|z|→∞

g(s, |z|) = K 6= 0 , (3-110)

where λ := |z| d+1
d . The Jacobian of the change of variable has square-root types singularity at the

critical point s
(k)
cr since the singularities (in the sense of singularity theory) of S(ξ) are simple and

nondegenerate.

γ

Γ

Figure 2: The Steepest Descent contours for d = 4. The left depicts the ξ-plane, the right the
s-plane.

Then the above integral becomes, upon developing the Jacobian in Puiseux series,

|z|A+1
d

∫

γk

e−λsg(s, |z|)ξ(s)A dξ

ds
(s) = (3-111)
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= |z|A+1
d e−λscr

∫

γk

ds e−λ(s−scr) ξ(s)Ag(s, |z|)
√

2d2s
dξ2 (scr)(s − scr)

(1 + O(s − scr)) = (3-112)

' K|z|A+1
d ei A

d
θωkAe−λscr

(

2de
d−1

d
θωk
)− 1

2
2

∫

R+

e−λt dt√
t

= (3-113)

= K|z|A+1
d ωkAei A

d
θe−λscr

(

2de
d−1

d
θωk
)− 1

2
2
√

πλ− 1
2 = (3-114)

= K

√

2π

d
z

2A+1−d
2d ωk(A− 1

2
) exp

[

d

d + 1
z

d+1
d ωk

]

. Q.E.D. (3-115)

In particular Proposition 3.4 shows that the SDC integrals Fk are linearly independent because
their asymptotics are linearly independent.
Since the SDCs γk and the contours Γk span the same homology, we can always assume that the
Ξi corresponding to the closed loops attached to ∞ are integrals over the SDC γk. Suppose now
that there exist constants Ai such that

s1
∑

j=1

AiΞi(z) ≡ 0 . (3-116)

We split the sum into two parts; the first one contains all contour integrals corresponding to the
bounded paths, the paths joining the finite zeroes Xis to infinity, and loops attached to X0 = ∞
approaching ∞ within the sector SL. We denote the subset of the corresponding indices by IL.
Now it is a simple check which we leave to the reader that all these integrals are of exponential
type in the sector E dual to SL

8.
The second subset of indices IR corresponds to the remaining contour integrals over paths which
come from and return to ∞ outside the sector SL; a careful counting gives |IR| = [d/2]. The sum
in (3-116) can be accordingly separated in

∑

i∈IL

AiΞi(z) = −
∑

i∈IR

AiΞi(z) . (3-117)

We want to conclude that the two sides of Eq. (3-117) must vanish separately. Indeed we have
remarked above that the LHS in (3-117) is of exponential type in the sector E . We now prove
that on the contrary the RHS cannot be of this exponential type except in the case that each of
the Ai’s vanishes for i belonging to IR. From Prop. 3.4 we deduce that among the SDC integrals

there are precisely [d/2] that have a dominant exponential behavior of the type exp
(

d
d+1z

d+1
d ωk

)

with <(z
d+1

d ωk) > 0 in the sector E , which is not of exponential type; since the SDC’s can be
obtained by suitable linear combinations with integer coefficients of the chosen contours then the

8Saying that a function is of exponential type in a given sector means that there exist constants K and C such
that the function is bounded by |z|KeC|z| in that sector.
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[d/2] functions Ξi, i ∈ IR must span the same space as the dominant [d/2] linearly independent
SDC’s in the sector E , modulo the span of Ξi, i ∈ IL. In formulas

Z{Fk: Fk dominant in E} ' Z{Ξi, ∀i}mod Z{Ξi, i ∈ IL} = Z{Ξi, i ∈ IR}. (3-118)

Since no nontrivial linear combination of the [d/2] dominant SDC integrals Fk’s in E can be of
exponential type, the only possibility for the RHS of Eq. (3-117) to be of exponential type in the
sector E is that

Ai = 0, ∀i ∈ IR .

Let us now focus on the terms in the LHS of Eq. (3-117). We must now prove that also Ai =
0, i ∈ IL. We can now follow [15] without hurdles. We sketch the main steps below for the sake of
completeness.

We need to prove that

Q(z) :=
∑

i∈IL

Ai

∫

Γi

dxW1(x) exz ≡ 0 ⇔ Ai = 0 ∀i ∈ IL. (3-119)

Let a be a point within the sector E and far enough from the origin so as to leave all contours
Γi, i ∈ IL to the left9. Let us choose a contour C starting at z and going to infinity in the sector
to E . Then we integrate Q(ζ)e−aζ along C. Since eζ(x−a)W1(x) is jointly absolutely integrable
with respect to the arc-length on each of the Γi, i ∈ IL and C, we may interchange the order of
integration to obtain

∑

i∈IL

Ai

∫

Γi

1

x − a
ez(x−a)W1(x)dx ≡ 0. (3-120)

Repeating this r − 1 times and then setting z = 0 at the end, we obtain

∑

i

Ai

∫

Γi

(x − a)−rW1(x)dx ≡ 0, ∀r ∈ N. (3-121)

Let us define
ṽ(x) := W1(x)(x − a)2 , (3-122)

so that Eq. (3-121) is now turned into

∑

i

Ai

∫

Γi

(x − a)−rṽ(x)
dx

(x − a)2
≡ 0, ∀r ∈ N. (3-123)

Let us perform the change of variable ω = 1
x−a (a homographic transformation). We denote by γi

the images of the contours Γi and by f(ω) the function ṽ(x(ω)). Eq. (3-121) (or equivalently Eq.
(3-123)) now becomes

∑

i∈IL

Ai

∫

γi

dωf(ω)P (ω) = 0 , ∀P ∈ C[ω] . (3-124)

9More precisely in the half plane to the left of the perpendicular to the bisecant of the dual sector to E .
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Note that in the variable ω all contours are in the finite region of the ω-plane and the contours
look like the ones in Figure 3 (the missing loops attached to 0 = ω(X0) = ω(∞) were the contours
indexed by IR).

Figure 3: The contours γi, i ∈ IL in the ω plane.
We denote by E the compact set in the ω plane constituted by all contours γi, i ∈ IL and the

interiors of the closed loops. This set E satisfies the requirements of Lemma (3.1). Moreover the
contours γi have all the Property (℘) with respect to f(ω).

We now start proving that the Ais vanish. Consider firstly a contour γi without interior points
(i.e. those segments which join two different Xis). Let ω(t) be a parametric representation where t ∈
[0, L] is the arc length parameter so that ω ′(t) is continuous and nonvanishing on [0, L]. Therefore
it follows that the function

χi(ω) :=

{

f(ω)
ω′(t) , ω ∈ γi

0, ω ∈ E \ γi

(3-125)

is continuous on E and analytic in the interior points of E. Hence there exists a sequence of
polynomials Pn(ω) converging uniformly to χi(ω) on E (by Lemma 3.1). Plugging into Eq. (3-124)
and passing to the limit we obtain

Ai

∫ L

0
dt |f(ω(t))|2 = 0 , (3-126)

which implies that Ai vanishes.
Let us now consider a closed loop, say γl. Let T (ω) be any polynomial vanishing at ω0 ∈ γl

where ω0 is the image of the (unique) zero of B1(x) on the contour Γl. Then we define

Φl(ω) :=

{

T (ω), ω ∈ γl and its interior
0, ω ∈ E \ {γl and its interior} .

(3-127)
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Again, φl(ω) satisfies the requirement of Lemma (3.1) and hence can be approximated uniformly
by a sequence of polynomials. Passing the limit under the integral we then obtain

Al

∫

γl

dωf(ω)T (ω) = 0 , ∀T ∈ (ω − ω0)C[ω] . (3-128)

We then use Theorem 3.2 to conclude that f should be bounded inside γl. But this is a contradiction
because f(ω) has the Property (℘) w.r.t. γl since ṽ(x) = W1(x)(x − a)2 had the same Property
w.r.t. the closed contour Γl. This is a contradiction unless the Al vanishes.

Therefore we have proven that all the Ai must vanish, i.e. the Ξi(z) are linearly independent.
Repeating for the Ψj(w) we conclude the proof of Theorem 3.1.

4 Conclusion

We make a few remarks on the cases we have not considered, i.e. when deg(Ai) ≤ deg(Bi) for one or
both i = 1, 2. Indeed (up to some care in the definition of the contours for reasons of convergence)
one can easily define some solutions of Eqs. (3-46) in the form of double Laplace–Fourier integrals
and also prove their linear independence. More complicated is to produce the analog of Prop. 3.2,
that is to have an a-priori knowledge of the dimension of the space of solutions to Eqs. (3-46):
the result (which we do not prove here) is that there are M = s1s2 + 1 solutions. The moment
recurrences (3-41,3-42) say then that the bifunctionals are actually M − 1 in Case AB or M − 2
in Case AA. That is one has to give a criterion to select amongst the solutions to Eq. (3-46) the
ones which are analytic at w = 0 = z. We will return on this point in a future publication. Suffices
here to say that a similar problem occurs for the semiclassical moment functionals L : C[x] → C.
As we have illustrated in the introduction the generating function satisfies Eq. 1-12, but in general
not all solutions are analytic at z = 0 and hence do not define any moment functional. This can
be understood by looking at the recurrence relations satisfied by the moments:

n
d
∑

j=0

β(j)µn+j−1 =
k
∑

j=0

α(j)µn+j , (4-129)

where d = deg(B) > deg(A) + 1 = k + 1. In this case the resulting d-term recurrence relation has
actually only d− 1 solutions because, for n = 0 the above equation gives a constraint on the initial
conditions10

0 =
k
∑

j=0

α(j)µj . (4-130)

This should be regarded as the requirement that the solution of Eq. (1-12) be analytic at z = 0.
Now, in the bilinear case we have the additional problem that the recurrence relations for the

10When deg(A)+1 = deg(B) = d then generically there are d−1 solutions, except in some cases when ∃n s.t. α(d−
1) = nβ(d). See [14] for more details.
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bimoments are overdetermined and hence the corresponding constraint on the initial conditions
must be shown to be compatible as well. We postpone the more detailed discussion of this problem
to a future publication.
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différentielle linéaire du premier ordre dont les coefficients sont rationnels”, J. Math. Pures
Appl. 1 (1885), 135–165.
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