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‡ Department of Mathematics and Statistics, Concordia University

7141 Sherbrooke W., Montréal, Québec, Canada H4B 1R6
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Abstract

The two matrix model is considered with measure given by the exponential of a sum of
polynomials in two different variables. It is shown how to derive a sequence of pairs of “dual”
finite size systems of ODEs for the corresponding biorthonormal polynomials. An inverse
theorem is proved showing how to reconstruct such measures from pairs of semi-infinite finite
band matrices defining the recursion relations and satisfying the string equation. A proof is
given in the N → ∞ limit that the dual systems obtained share the same spectral curve.

1 Introduction

We consider the two–matrix model [5, 7, 8, 9, 6], which involves an ensemble consisting of pairs of N ×N hermitian
matrices M1 and M2, with a U(N) invariant probability measure of the form:

1

τN
dµ(M1,M2) :=

1

τN
expKtr (−V1(M1) − V2(M2) +M1M2)dM1dM2 . (1-1)

Here dM1dM2 is the standard Lebesgue measure for pairs of Hermitian matrices and V1 and V2 are chosen to be
polynomials of degrees d1 + 1, d2 +1 respectively, and are referred to as the called the potentials. The overall positive
scaling factor K in the exponential is taken as having order N when considering the large N limit. We also assume
that both potentials are real and bounded from below (for reasons of convergence) .

The normalization factor (partition function)

τN =

∫

M1

∫

M2

dµ (1-2)

is known to be a KP τ -function in each set of deformation parameters (the coefficients of the two polynomials V1, V2),
as well as providing solutions to the two-Toda equations [11, 1, 2]. The key objects of the theory are the correlation
functions for the eigenvalues of the two matrices. Analogously to the one–matrix models, such correlation functions
can be recovered by means of certain Fredholm integral kernels. We recall here briefly that in one-matrix models with
measure

1

τN
dµ(M) :=

1

τN
exp tr (−V (M))dM (1-3)

1 Based in part on a talk given by J. Harnad at the NEEDS 2001 Euroconference, 24–31 July 2001, Isaac Newton Institute for

Mathematical Sciences, Cambridge, U.K.
2bertola@crm.umontreal.ca
3eynard@spht.saclay.cea.fr
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the computation of such a kernel is reduced to the construction of orthonormal polynomials Pn(x) for the space
L2

(

R, e−V (x)dx
)

. In terms of these polynomials, the kernel is given by

N

K(x, x′) =

N−1
∑

n=0

Pn(x)e−
1

2
V (x)Pn(x′)e−

1

2
V (x′) . (1-4)

In 2-matrix models there are four relevant kernels needed to compute the statistical correlations of eigenvalues. For
m–matrix models there are m2 such kernels.

These kernels are expressible in terms of suitably defined sequences of biorthogonal polynomials. By this we mean
two sequences of monic polynomials

πn(x) = xn + · · · , σn(y) = yn + · · · , n = 0, 1, . . . (1-5)

which are orthogonal with respect to a coupled measure on the product space:

∫

R

∫

R

dx dy πn(x)σm(y)e−KV1(x)−KV2(y)+Kxy = hnδmn, (1-6)

where V1(x) and V2(y) are the polynomials appearing in the two-matrix model measure (1-1). The orthogonality
relations determine the two families uniquely, if they exist[6]. The four relevant kernels are expressed as follows in
terms of these biorthogonal polynomials

N

K12(x, y) =

N−1
∑

n=0

1

hn

πn(x)σn(y)e−KV1(x)e−KV2(y) ,
N

K11(x, x
′) =

∫

R

dy
N

K12(x, y) eKx′y, (1-7)

N

K22(y
′, y) =

∫

R

dx
N

K12(x, y) eKxy′

,
N

K21(y
′, x′) =

∫

R

∫

R

dx dy
N

K12(x, y) eKxy′

eKx′y . (1-8)

All the statistical properties of the spectra of the 2-matrix ensemble may then be expressed in terms of these kernels

[9] and the corresponding Fredholm integral operators
N

Kij , i, j = 1, 2. For instance the density of eigenvalues of the
first matrix is:

N
ρ1(x) =

1

N

N

K11(x, x) , (1-9)

the correlation function of two eigenvalues of the first matrix is:

N
ρ11(x, x

′) =
1

N2

(

N

K11(x, x)
N

K11(x
′, x′) −

N

K11(x, x
′)

N

K11(x
′, x)

)

, (1-10)

and the correlation function of two eigenvalues, one of the first matrix and one of the second is:

N
ρ12(x, y) =

1

N2

(

N

K11(x, x)
N

K22(y, y) −
N

K12(x, y)(
N

K21(y, x) − eKxy)

)

. (1-11)

Any other correlation function of m eigenvalues can similarly be written as a determinant involving these four kernels.
The main objective of this paper is to derive and analyze certain differential systems of ODE’s satisfied by the

quasipolynomials ψn(x) := πn(x)e−V1(x), φn(y) := σn(y)e−V2(y) and their Fourier Laplace transforms. In section 2,
we summarize the principal results for finite N . The details and proofs may be found in [3] and [4]. In section 3 we
derive the corresponding results in the N → ∞ limit in a simple way.

The proof of Prop. 2.1 and the non–abelian version of the transversality argument in Section 3 is based on joint
work with J. Hurtubise, details of which will appear in [4].
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2 Folding and systems of ODE in duality

Consider the normalized quasi-polynomials

ψn(x) =
1√
hn

πn(x)e−KV1(x) , φn(y) =
1√
hn

σn(y)e−KV2(y) , n = 0, . . .∞ . (2-12)

Viewing these as components of a pair of semi–infinite column vectors

Ψ
∞

= (ψ0, ψ1, . . . ψn, . . .)
t and Φ

∞
= (φ0, φ1, . . . φn, . . .)

t , (2-13)

we obtain a pair of semi-infinite matrices Q and P that implement multiplication of Ψ
∞

by x and derivation − 1
K

d
dx

,

respectively. Equivalently, we obtain the transposes Qt and P t by applying − 1
K

d
dy

or multiplication by −y to Φ
∞

. By

construction, these satisfy the Heisenberg commutation relations (or “string equation”)

[P,Q] = − 1

K
1 . (2-14)

Along with these quasipolynomials we need their Fourier-Laplace transforms and the corresponding semi-infinite
(row)-vectors with components

ψ
n
(y) :=

∫

R

dx eKxyψn(x) , φ
n
(x) :=

∫

R

dy eKxyφn(y) (2-15)

Ψ
∞

(y) := (ψ
0
, ..., ψ

n
, ...) ; Φ

∞

(x) := (φ
0
, ..., φ

n
, ...) . (2-16)

The multiplicative and derivative recursion relations for these sequences can be shown (by integration by parts) to be

xΦ
∞

(x) = Φ
∞

(x)Q ;
1

K

d

dx
Φ
∞

(x) = Φ
∞

(x)P (2-17)

yΨ
∞

(y) = Ψ
∞

(y)Qt ;
1

K

d

dy
Ψ
∞

(y) = Ψ
∞

(y)P t . (2-18)

It also follows [3] from integration by parts that the two matrices P and Q have a finite band structure

Q :=

















α0(0) γ(0) 0 0 · · ·
α1(1) α0(1) γ(1) 0 · · ·

...
. . .

. . .
. . .

. . .

αd2
(d2) · · · α0(d2) γ(d2)

0
. . .

. . .
. . .

. . .

















(2-19)

P :=





















β0(0) β1(1) · · · βd1
(d1) · · ·

γ(0) β0(1) β1(2)
. . . βd1

(d1+1)

0 γ(1) β0(2)
. . .

. . .

0 0 γ(2) β0(3)
. . .

...
. . .

. . .
. . .

. . .





















, (2-20)

where γ(n) 6= 0 for all n ∈ N. This structure essentially follows from the fact that the two matrices

(P − V ′
1(Q)), (Q− V ′

2(P )) (2-21)

are strictly lower and upper triangular respectively. Indeed, in the basis of quasipolynomials it is obvious that

∞
∑

m=0

(P − V ′
1(Q))nmψm(x) =

(

− 1

K

d

dx
− V ′

1(x)

)

ψn(x) = cψn−1(x) + lower n’s quasipolynomials. (2-22)
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and that Q and P t, representing the multiplication by x and y respectively, can have no more than one diagonal above
the main diagonal. The converse is also true as will be detailed below.

Proposition 2.1 Suppose that P and Q have the above band structure and that the highest diagonal of Q and the
lowest of P have nonzero entries. Then the two following conditions are equivalent

(i) The commutator [P,Q] is diagonal.

(ii) There exist two polynomials of degrees d1 and d2 respectively which we denote by V ′
1(x) and V ′

2 (y) such that

(P − V ′
1(Q))≥0 = 0 , (Q− V ′

2 (P ))≤0 = 0 , (2-23)

where the subscripts ≤0 or ≥0 denote the lower or upper part.

Proof. The detailed proof of this result may be found in [4]. Here we just note that, given the band structure of the
two semi-infinite matrices P and Q, the polynomial V ′

1 (x) may be uniquely determined from the relation

(P − V ′
1 (Q)) · e0 = 0 , e0 := (1, 0, 0, 0, ...)t (2-24)

and its existence rests upon the assumption that γ(n) 6= 0. A similar relation uniquely determines V ′
2(y).

It may then be shown that all the relation contained in eq. (2-23) are satisfied by these polynomials.
Conversely, if two polynomials V ′

1 and V ′
2 satisfying eq. (2-23) exist, then

[P,Q− V2(P )] = [P,Q] = [P − V1(Q), Q] . (2-25)

But the LHS is upper triangular and the RHS is lower triangular (not strictly), so that [P,Q] must be diagonal. Q.E.D.

The structure (2-19), (2-20) of the two matrices P and Q means that the four sequences ψn, ψn
, φn, φn

satisfy both
multiplicative and derivative recursion relations

xψn = γ(n)ψn+1 +

d2
∑

j=0

αj(n)ψn−j , − 1

K

d

dx
ψn = γ(n− 1)ψn−1 +

d1
∑

j=0

βj(n+ j)ψn+j , (2-26)

yφn = γ(n)φn+1 +

d1
∑

j=0

βj(n)φn−j , − 1

K

d

dx
φn = γ(n− 1)φn−1 +

d2
∑

j=0

αj(n+ j)φn+j . (2-27)

From the finite recursion relations satisfied by the quasi-polynomials {ψn(x)} and {φn(y)} follows a set of “generalized

Christoffel–Darboux relations [12, 8], which imply that the kernels
N

K11(x, x
′) and

N

K22(y
′, y) may be expressed as:

N

K11(x, x
′) =

„

N−1

Φ (x′),
N

A Ψ
N

(x)

«

x′ − x
,

N

A :=

2

6

6

6

6

4

0 0 0 0 −γ(N−1)

αd2
(N) · · · α2(N) α1(N) 0
0 αd2

(N+1) · · · α1(N+1) 0
0 0 αd2

(N+2) · · · 0
0 0 0 αd2

(N+d2−1) 0

3

7

7

7

7

5

(2-28)

N

K22(y
′
, y) =

„

N−1

Ψ (y′),
N

B Φ
N

(y)

«

y′ − y
,

N

B :=

2

6

6

6

6

4

0 0 0 0 −γ(N−1)

βd1
(N) · · · β2(N) β1(N) 0
0 βd1

(N+1) · · · β1(N+1) 0
0 0 βd1

(N+2) · · · 0
0 0 0 βd1

(N+d1−1) 0

3

7

7

7

7

5

(2-29)

where Ψ
N

(x) , Φ
N

(y),
N−1

Ψ (y) and
N−1

Φ (x) are the column or row vectors of dimension (d1 + 1) and (d2 + 1) defined by

Ψ
N

(x) = [ψN−d2
, . . . , ψN ]t , Φ

N
(y) = [φN−d2

, . . . , φN ]t, (2-30)

N−1

Ψ (y) = [ψ
N−1

, . . . , ψ
N+d2−1

] ,
N−1

Φ (x) = [φ
N−1

, . . . , φ
N+d1−1

]. (2-31)

4



The matrices
N

A,
N

B entering eqs. 2-29 define two pairings (which we will refer to as the Christoffel-Darboux pairings)

between Ψ
N

and
N−1

Φ and between Φ
N

and
N−1

Ψ . We call these pairs dual windows.

The key observation is that any quasipolynomial ψj(x) can be uniquely expressed, for any given N ≥ d2, in terms
of linear combinations of any d2 + 1 consecutive basis elements ψN−d2

, .., ψN with polynomial coefficients. We call
this procedure folding of the space onto the window spanned by ΨN = [ψN−d2

, .., ψN ]t. This is accomplished by
means of the x-recursion relations for the quasipolynomials in eq. (2-27), which allow us to express the (N + 1)st
quasipolynomial in terms of the d2 + 1 preceding ones, but with coefficients that are polynomials in x. Iteration of
this procedure defines the folding.

In matricial form the above can be expressed as follows

a
N

(x) Ψ
N

(x) :=











0 1 0 0

0 0
. . . 0

0 0 0 1
−αd2

(N)

γ(N) · · · −α1(N)
γ(N)

(x−α0(N))
γ(N)























ψN−d2

...

...
ψN













=













ψN−d2+1

...

...
ψN+1













= Ψ
N+1

(x) , N ≥ d1 . (2-32)

The matrix a
N

is invertible, since its determinant equals αd2
(n)/γ(n) and αd2

(n) can be shown not to vanish as a

consequence of the relation (Q − V ′
2(P ))≤0 = 0. It will be referred to in the following as a “ladder” matrix. A

completely analogous relation can also be shown for the quasipolynomials φn(y) (see eq. (2-41) below) and for the
respective Fourier-Laplace transforms.

By means of this folding, one can also express the action of any operator of finite band size as a matrix polynomial
in x of size d2 + 1. The most relevant case is the folding of the operator P = − 1

K
d
dx

. Introducing the notation

ΨN := [ψN−d2
, ..., ψN ]t we have

− 1

K

d

dx
Ψ
N

= P Ψ
N

=
N

D1(x) Ψ
N

:=





N
γ ( a

N−1
(x))−1+

N

β0 +

d1
∑

j=1

N

βj a
N+j−1

(x) a
N+j−2

(x) · · · a
N
(x)



 Ψ
N
, (2-33)

where
N

βj := diag [βj(N + j − d2), βj(N + j − d2 + 1), . . . , βj(N + j)] , j = 0, . . . d1 (2-34)

N
γ := diag [γ(N − 1 − d2), γ(N − d2), . . . , γ(N + d2 − 1)] . (2-35)

The corresponding statement for the φn’s is obtained by interchanging x and y, ψn and φn, d1 and d2, αj and βj

etc. One obtains a similarly defined matrix D2(y) representing the action of the derivative on the quasipolynomials
φn’s. With the notations

Φ
N

:= [φN−d1
, ..., φN ]t , (2-36)

N
αj := diag [αj(N + j − d1), αj(N + j − d1 + 1), . . . , αj(N + j)] , j = 0, . . . d2 , (2-37)

N
γ := diag [γ(N − d1 − 1), . . . , γ(N − 1)] (2-38)

b
N

(y) :=











0 1 0 0

0 0
. . . 0

0 0 0 1
−βd1

(N)

γ(N) · · · −β1(N)
γ(N)

(y−β0(N))
γ(N)











, N ≥ d1 (2-39)

one finds

b
N

(y) Φ
N

(y) = Φ
N+1

(y) (2-40)

− 1

K

d

dy
Φ
N

= Qt
Φ
N

=
N

D2(y) Φ
N

:=





N
γ ( b

N−1
)−1(y)+

N
α0 +

d2
∑

j=1

N
αj b

N+j−1
(y) b

N+j−2
(y) · · · b

N
(y)



 Φ
N
. (2-41)
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We can repeat a similar procedure for the respective Fourier-Laplace transforms. The relevant definitions and
relations are given by the following formulæ

N
a(x) :=

















x−α0(N)
γ(N−1) 1 0 0

−α1(N+1)
γ(N−1) 0

· ·· 0
... 0 0 1

−αd2
(N+d2)

γ(N−1) 0 0 0

















∈ gld2+1[x] ;
N

b(y) :=

















y−β0(N)
γ(N−1) 1 0 0

−β1(N+1)
γ(N−1) 0

· ·· 0
... 0 0 1

−βd1
(N+d1)

γ(N−1) 0 0 0

















∈ gld1+1[y] , (2-42)

N−1

Ψ =
N

Ψ
N
a(x) ,

N−1

Φ =
N

Φ
N

b(y) , (2-43)

1

K

d

dy

N−1

Ψ (y) =
N−1

Ψ (y)
N

D2(y) , N ≥ d1 + 1 , (2-44)

1

K

d

dx

N−1

Φ (x) =
N−1

Φ (x)
N

D1(x) , N ≥ d2 + 1 , (2-45)

where

N

D2(y) := (
N

b)−1 N−1
γ +

N−1
α0 +

d2
∑

j=1

N−1

b
N−2

b · · ·
N−j

b
N−1
αj , (2-46)

N

D1(x) := (
N
a)−1 N−1

γ +
N−1

β
0

+

d1
∑

j=1

N−1
a

N−2
a · · ·N−j

a
N−1

β
j

(2-47)

N−1
αj := diag(αj(N − 1), . . . , αj(N + d1 − 1)) , (2-48)

N−1

β
j

:= diag(βj(N − 1), . . . , βj(N + d2 − 1)) (2-49)

Summarizing, we have four sequences of linear differential systems

Size (d2 + 1) × (d2 + 1) Size (d1 + 1) × (d1 + 1)

− 1

K

d

dx
Ψ
N

(x) =
N

D1(x) Ψ
N

(x)
1

K

d

dy

N−1

Ψ (y) =
N−1

Ψ (y)
N

D2(y)

1

K

d

dx

N−1

Φ (x) =
N−1

Φ (x)
N

D1(x) − 1

K

d

dy
Φ
N

(y) =
N

D2(y) Φ
N

(y)

(2-50)

as well as the ladder relations (2-32), (2-40), (2-42), (2-43). We have not considered here the deformation equations,
i.e. the differential equations obtained from infinitesimal variations of the coefficients of the potentials V1 and V2

entering the measure. The complete study of these deformations is carried out in [3]. In particular it is shown there
that the resulting overdetermined system of PDEs is compatible. Here we will only recall that the mixed system of
ODEs and difference equations is also compatible, as implied by the following:

Proposition 2.2 The ladder matrices a
N

intertwine the differential systems D1 with different N ’s, i.e.

a
N

(x)

(

d

dx
+

N

D1(x)

)

=

(

d

dx
+

N+1

D1 (x)

)

a
N

(x) (2-51)

Similar statements hold for the other three sequences of ODEs and ladder relations.

The next proposition explains how the four sequences of systems in the Table are related amongst themselves by
means of the Christoffel–Darboux pairings.
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Proposition 2.3 The following relations are satisfied

N

D1(x)
N

A =
N

A

N

D1(x) ;
N

D2(y)
N

B =
N

B

N

D2(y) (2-52)

The spectra of the two matrices D1(x) and D1(x) (i.e. their characteristic polynomials) coincide, as do the spectra of
D2(y) and D2(y). A less apparent spectral duality also holds. Indeed it is proven in [3] that

det

(

y1−
N

D1(x)

)

= c det

(

x1−
N

D2(y)

)

, (2-53)

where c is the ratio of the leading coefficients of the two potentials V1 and V2. Notice that the two determinants
involve square matrices of rank d2 + 1 on the LHS and of rank d1 + 1 on the RHS. In the following section we give
a simple derivation of a “näıve” N → ∞ limit of these results; namely one in which we treat the relevant recursion
matrices as commuting.

3 The Abelian case

In this section we derive the spectral duality property in a particular limit N → ∞, K/N = O(1). In such a
limit the two matrices P and Q, while retaining their finite band structure, may be taken to commute because
[P,Q] = −1/K → 0. In addition, we consider only the case in which the coefficients αj(n), βj(n), g(n) do not depend
on n: this is a stronger requirement which occurs actually only for certain ranges of the coupling constants. This limit
is studied in the literature and is referred to as the “one-cut case” or the “genus 0” case [7, 5].

A further simplification that is purely technical is obtained by considering the matrices as doubly-infinite, i.e. of
size Z × Z instead of N × N. We will show that the statement of spectral duality in this case reduces to a classical
result in commutative algebra, namely the computation of the resultant of two Laurent polynomials.

The non-abelian case (i.e. for finite N) is detailed in [3] and the approach used there may be used to derive the
result for the N → ∞ case. However, we will present a proof here of a different nature, which can also be extended to
the non-abelian case [4].

The equations [P,Q] = − 1
K

1 in the limit N → ∞, K = O(N), become commutativity equations [P,Q] = 0.
Moreover, since we are considering finite band matrices and we focus on the window at N , we can replace the semi–
infinite matrices P,Q by doubly infinite matrices with the same band structure. For suitable scaling regimes it can be
argued on physical grounds that the sequences γ(n), αj(n), βk(n) actually do not depend on n (provided n = O(N)).
It is precisely this very simple case that we want to address here.

The pair of commuting matrices P and Q with the same band structure as before now just become polynomials
in the shift matrix. All the matrices are taken to be Z × Z matrices and hence Λ = [δi,i+1] is actually invertible, the
inverse being just the transpose Λt. With this in mind we can write

Q(Λ) := γΛ + α0 +

d2
∑

i=1

αiΛ
−i , γ 6= 0 6= αd2

(3-54)

P (Λ) := γΛ−1 + β0 +

d1
∑

i=1

βiΛ
i , γ 6= 0 6= βd1

, (3-55)

with Q and P are viewed as Laurent polynomials in Λ,Λ−1. It is convenient to introduce an indeterminate λ and
represent Q and P as acting on the graded space

Q,P : C[λ, λ−1] → C[λ, λ−1] , (3-56)

determined by substituting Λ by λ in the relations (3-54,3-55). The shift matrix Λ is just multiplication by λ while
Λt = Λ−1 represents multiplication by λ−1. The equivalent of a window is then the linear span of d2 + 1 consecutive
powers of λ

C{ψN−d2
, ..., ψN} ↔ C{λN−d2 , ..., λN} . (3-57)
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The folding of the previous sections here reduces to a very simple expression. Indeed, folding the graded space
W := C[[λ]] onto the span of λN−d2 , ..., λN simply means taking the quotient

C[[λ]] ' C[x] ⊗ C[[λ]] mod 〈x−Q(λ) = 0〉 ' C[x]{λN−d2 , ..., λN} . (3-58)

In other words, the power λN+1 can be re-expressed in terms of the powers λN−d2 , ..., λN using the relation x −
Q(λ) = 0. The equivalent of the ladder matrix is just the expression of multiplication by λ in the “folded” window
C[x]{λN−d2 , ..., λN}. It is defined so as to make the following diagram commutative

C[[λ]]
λ

- C[[λ]]

C[x]{λN−d2 , ..., λN}

〈x−Q(λ)=0〉

?
a(x)

- C[x]{λN−d2 , ..., λN}

〈x−Q(λ)=0〉

?

(3-59)

In principle, a could depend on N , but it is easy to see that in fact it is represented by the following N -independent
companion-like matrix

a(x) =











0 1 · · · 0

0 0
. . .

...
0 0 · · · 1

−αd2

γ
· · · −α1

γ
x−α0

γ











(3-60)

Similarly, we could define another folding along P by means of the following diagram

C[[λ]]
λ

- C[[λ]]

C[y]{λN−1, ..., λN+d1−1}

〈y−P (λ)=0〉

?

�
b(y)

C[y]{λN−1, ..., λN+d1−1}

〈y−P (λ)=0〉

?

(3-61)

where b is given by

b(y) =











0 1 · · · 0

0 0
. . .

...
0 0 · · · 1

−βd1

γ
· · · −β1

γ
y−β0

γ











. (3-62)

In this framework the matrices D1(x) and D2(y) are simply

D1(x) := P (a(x)) = γ a(x)−1 +

d1
∑

j=0

βj

j
a(x) (3-63)

D2(y) := Q(b(y)) = γ b(y)−1 +

d2
∑

j=0

αj

j

b(y) . (3-64)

The previous statement about spectral duality now translates into the identity

det(y1 −D1(x)) ∝ det(x1 −D2(y)) . (3-65)

We will show that both determinants are in fact the resultants (w.r.t. λ) of the two Laurent polynomials Q(λ) − x
and P (λ) − y. The proof is actually quite standard for polynomials and here we just adapt it to the situation with
Laurent polynomials (see e.g. [10]). This amounts to studying the following embedding

C{λN−d2 , ..., λN} ⊕ C{λN−1, ..., λN+d1−1} (P (λ)−y)⊕(Q(λ)−x)
- C{λN−d2−1, ..., λN+d1} , (3-66)
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where x and y are treated as parameters of the embedding. Let us denote by W,W,U the three vector spaces

W := C{λN−d2 , ..., λN} ; W := C{λN−1, ..., λN+d1−1} ; U := C{λN−d2−1, ..., λN+d1} . (3-67)

The above embedding may be combined into a single map

W ⊕W
(P (λ)−y)⊕(Q(λ)−x)

- U (3-68)

The two parts of this map give spaces generically transverse as x and y vary. If they are not transverse for a given
pair (x, y), this means that

∃w ∈W, ∃w ∈W such that w 6= 0 6= w , (P − y)w = (Q− x)w ∈ U . (3-69)

Taking the quotient of this relation by the relation Q(λ) − x = 0 or P (λ) − y = 0 gives rise to the relation

(D1(x) − y)w = 0 (3-70)

(D2(y) − x)w = 0 , (3-71)

which means that y is an eigenvalue of D1(x) and x an eigenvalue of D2(y). Conversely if either of the two equations
(3-70) (3-71) holds, say the first, for nonzero vector w, this means that there exists w ∈W such that

(P − y)w = (Q− x)w . (3-72)

Notice that (Q − x)w cannot be zero since the map P − y : W → U is injective for all y and so (P − y)w 6= 0. The
same result follows if we start from eq. (3-71). This proves that the embedding is not transverse if and only if x is an
eigenvalue of D2(y) which is equivalent to y being an eigenvalue of D1(x).

The condition of transversality amounts to the nonvanishing of the determinant of the embedding (in any fixed
basis). It is easy to see that such an embedding is represented by the Sylvester matrix





























γ β0−y β1 · · · · · · βd1
0 0 0

0 γ β0−y β1 · · · · · · βd1
0 0

0 0 γ β0−y β1 · · · · · · βd1
0

0 0 0 γ β0−y β1 · · · · · · βd1

αd2
· · · α1 α0−x γ 0 0 0 0

0 αd2
· · · α1 α0−x γ 0 0 0

0 0 αd2
· · · α1 α0−x γ 0 0

0 0 0 αd2
· · · α1 α0−x γ 0

0 0 0 0 αd2
· · · α1 α0−x γ





























(3-73)

of the two Laurent polynomials, whose determinant ∆(x, y) equals the resultant. A simple counting of degrees and
inspection of the highest powers in x or y shows that

αd2
γd1 det(y1−D1(x)) = ∆(x, y) = βd1

γd2 det(x1 −D2(y)) . (3-74)

which defines the spectral curves as the non-transversality locus of the embeddings. The intersection of the two
embeddings on this spectral curve is (generically) one-dimensional and projects to the eigenvectors of D1(x) and
D2(y).

While this is very simple, and just a reformulation of standard algebraic results in this abelian setting, a very
similar approach can also be used to prove spectral duality for the pair D1

N (x) and D2
N (y) in the finite N setting,

in which the matrices P and Q do not commute. A refinement and elaboration on this theme also leads to the other
results of [3] in a more elegant and compact form [4], such as the compatibility of the deformation equations in the
coupling constants of the potentials V1, V2 which, in particular imply the invariance of the generalized monodromy of

the operators ∂x +
N

D1(x) and ∂y +
N

D2(y). This defines a sort of “noncommutative resultant” for finite band matrices
whose properties will be developed in a subsequent publication.
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