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Abstract

Peakons are non-smooth soliton solutions appearing in certain nonlinear partial differential equa-
tions, most notably the Camassa-Holm equation and the Degasperis-Procesi equation. In the latter
case the construction of peakons leads to a new class of biorthogonal polynomials. The present paper
is the first in the series of papers aimed to establish a general framework in which to study such poly-
nomials. It is shown that they belong to a class of biorthogonal polynomials with respect to a pairing
between two Hilbert spaces with measures dα,dβ on the positive semi-axis R+ coupled through the
the Cauchy kernel K(x, y) = 1

x+y
. Fundamental properties of these polynomials are proved: their

zeros are interlaced, they satisfy four-term recurrence relations and generalized Christoffel-Darboux
identities, they admit a characterization in terms of a 3 by 3 matrix Riemann-Hilbert problem.
The relevance of these polynomials to a third order boundary value problem (the cubic string) is
explained. Moreover a connection to certain two-matrix random matrix models, elaborated on in
subsequent papers, is pointed out.
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1 Introduction

This paper deals with a class of biorthogonal polynomials {pn(x)}N, {qn(y)}N of exact degree n satisfying

the biorthogonality relations ∫
R+

∫
R+

pn(x)qm(y)
dα(x)dβ(y)

x+ y
= δmn, (1-1)

where dα,dβ are positive measures supported on R+ such that all the bimoments are finite.

We present two main reasons why such polynomials are of interest: one source of interest is the weakly

dispersive equation

ut − uxxt + 3uux = 2uxuxx + uuxxx, (x, t) ∈ R2, (1-2)

which was proposed in the early 1990s by Camassa and Holm [1] as a model shallow water wave equation.

This equation admits weak solutions of the form:

u(x, t) =
n∑
i=1

mi(t) e−|x−xi(t)|, (1-3)

where the positions xi(t) and the heights mi(t) are determined by the system of nonlinear ODEs:

ẋk =
n∑
i=1

mie
−|xk−xi|,

ṁk =
n∑
i=1

mkmi sgn(xk − xi) e−|xk−xi|,
(1-4)

for k = 1, . . . , n. On account of the non-smooth character, and the presence of sharp peaks at {xk}, these

solutions were named peakons. The peakon solutions to the CH equation were subsequently constructed

using inverse scattering techniques by Beals, Sattinger and Szmigielski [2, 3]. In particular, it was shown

in these works that rapidly decaying at large x solutions to the CH equation can be constructed by solving

the inverse problem for an inhomogeneous string equation:

− φ”(ξ, z) = zm∗(ξ)φ(ξ, z), −1 < ξ < 1, z ∈ C. (1-5)

In this equation, ξ is related to the spacial variable x by ξ = tanh(x) and m∗(ξ) is simply related to

m(x) = u − uxx. In the peakon case, m =
∑n
i=1miδxi , where δxi is the Dirac measure concentrated

at the position of the peak xi, and m∗ =
∑n
i=1m

∗
i δx∗i respectively [2]. The connection to orthogonal

polynomials became transparent once it was realized that the Weyl function for the problem (1-5),

W (z) =
φ′(1, z)
zφ(1, z)

,
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admits a continued fraction expansion of Stieltjes’ type:

W (z) =
1

l∗nz +
1

m∗n +
1

l∗n−1z + · · ·

, (1-6)

where l∗j = x∗j+1−x∗j is the distance between peaks in the ξ coordinate. In this way the peakon solutions

became intimately linked to the origins of the modern theory of orthogonal polynomials [4]. One of the

most immediate applications of orthogonal polynomials to peakons was the proof of the absence of the

so-called triple collisions [3], roughly stating that the peaks xj can only coalesce in pairs. The essential

part of the argument could be traced back to the fact that orthogonal polynomials satisfy three-term

recurrence relations. Yet, the CH equation can be viewed as belonging to a family of PDEs

ut − uxxt + (b+ 1)uux = buxuxx + uuxxx, (x, t) ∈ R2, (1-7)

for which the peakon ansatz (1-3) leads to a similar system of ODEs as (1-4):

ẋk =
n∑
i=1

mie
−|xk−xi|,

ṁk = (b− 1)
n∑
i=1

mkmi sgn(xk − xi) e−|xk−xi|.
(1-8)

Two cases of (1-7) are known to be integrable. In addition to the case b = 2, namely the original CH

equation, the case b = 3 is also known to be integrable. The latter equation was discovered by Degasperis

and Procesi [5] and was later shown to be integrable by Degasperis, Holm and Hone [6, 7]. We will refer to

the case b = 3 of (1-7) as the DP equation. The construction of the DP peakons was given by Lundmark

and Szmigielski, first in a short note [8], then a complete construction in the longer paper [9]. The main

steps of this construction, presented with an emphasis on its connection to biorthogonal polynomials, is

the subject of Section 3.

The other motivation comes from random matrix theory: while this topic will be dealt with in depth

in the subsequent papers, we indicate the main reasons behind this aspect of our interest in biorthogonal

polynomials.

It is well known [10] that the Hermitean matrix model is intimately related to (in fact, solved by)

orthogonal polynomials (OPs). Not so much is known about the role of biorthogonal polynomials (BOPs).

However, certain biorthogonal polynomials somewhat similar to the ones in the the present paper appear

prominently in the analysis of “the” two–matrix model after reduction to the spectrum of eigenvalues

[11, 12, 13, 14]; in that case the pairing is of the form∫ ∫
pn(x)qm(y)e−xydα(x)dβ(y) = δmn. (1-9)
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We refer to these BOPs as the “Itzykson–Zuber BOPs” (IZ-BOPs) due to the relevance of the Itzykson–

Zuber–Harish-Chandra formula for the matrix model they derive from. Several algebraic structural prop-

erties of these polynomials and their recurrence relation (both multiplicative and differential) have been

thoroughly analyzed in the previously cited papers for densities of the form dα(x) = e−V1(x)dx, dβ(y) =

e−V2(y)dy for polynomials potentials V1(x), V2(y) and for potentials with rational derivative (and hard–

edges) in [15].

We recall that while ordinary OPs satisfy a multiplicative three–term recurrence relation, the BOPs

defined by (1-9) solve a longer recurrence relation of length related to the degree of the differential

dVj(x) over the Riemann sphere [15]; a direct (although not immediate) consequence of the finiteness

of the recurrence relation is the fact that these BOPs (and certain integral transforms of them) are

characterized by a Riemann–Hilbert problem for a matrix of size equal to the length of the recurrence

relation (minus one). The BOPs we deal with in this paper share all these features, although in some

respects they are closer to the ordinary orthogonal polynomials than to the IZBOPs.

We now list the main properties of biorthogonal polynomials studied in this paper:

- they are linked to the spectral and inverse spectral problem for the cubic string, similar to the

ordinary polynomials being linked to the theory of an inhomogeneous string of M.G. Krein [16]

- they solve a four–term recurrence relation for any pair of measures dα,dβ as specified after (1-1);

- they have positive and simple zeroes;

- the zeroes of pn(x) (qn(y)) are interlaced with the zeroes of the neighboring polynomials;

- they are characterized by a 3× 3 Riemann–Hilbert problem;

- they satisfy interesting Christoffel–Darboux identities which pair them naturally with other

sequences of polynomials which solve a dual Riemann–Hilbert problem.

In the first part of the paper which comprises sections 3.1 through 3.3 we carry out a detailed study of a

discrete cubic string with a variety of boundary conditions and establish the main source of biorthogonality

in the form of a generalization of the Parseval Identity (Theorem 3.4). This part of the paper is of interest

per se and can be read independently of the remainder of the paper, even though it is conceptually

important to understand the deeper reasons for the relevance of biorthogonality from the ODE point

of view. This part of the paper addresses the first item on the list above, but it also motivates many

concepts introduced later.

The second part of this paper, starting with section 4.1 onward, is the detailed analysis of the remaining

points from the list.

In the follow-up paper we will explain the relation of the BOPs introduced in this paper with
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• a new two–matrix model with its relevant diagrammatic expansion for large size [17];

• a rigorous asymptotic analysis for continuous (varying) measures dα,dβ using the nonlinear steepest

descent method [17];

• generalizations covering a multi-matrix model [18].

1.1 Relationship with random matrix models

As a preview of the forthcoming papers we would like to point out the relevant two–matrix model our

polynomials are related to.

Consider the set of pairs H(2)
+ := {(M1,M2)} of Hermitean positive-definite matrices; it is a cone in

the direct sum of the vector spaces of Hermitean matrices, endowed with the (U(N)–invariant) Lebesgue

measure, which we short-handedly denote by dM1dM2. Consider the following positive measure on this

space

dµ(M1,M2) =
1

Z(2)
N

α′(M1)β′(M2)dM1dM2

det(M1 +M2)N
(1-10)

where Z(2)
N (the partition function is a normalization constant crafted so as to have a unit total mass). As

a result the measure space (H(2)
+ ,dµ) becomes a probability space, and the matrices M1,M2 are random

matrices. The notation α′(M1), β′(M2) stands for the product of the densities α′, β′ (the Radon–Nikodym

derivatives of the measures dα,dβ with respect to the Lebesgue measure) over the (positive) eigenvalues

of Mj .

This probability space is similar to the so–called two–matrix model, where the coupling between

matrices instead of det(M1 +M2)−N is eNTrM1M2 [19]. The connection with our BOPs (1-1) is precisely

on the same footing as the connection between ordinary orthogonal polynomials and the Hermitean

Random matrix model [10], namely the probability space over HN given by the measure

dµ1(M) :=
1

Z(1)
N

α′(M)dM . (1-11)

In particular we will show in the forthcoming paper how the statistics of the eigenvalues of the two

matrices Mj can be described in terms of the biorthogonal polynomials we are introducing in the present

work. A prominent role in the description of said statistics will be played by the Christoffel–Darboux

identities that we develop in Section 6. Finally, it remains an open question as to what the nature of the

precise connection between what we are proposing and the work of Mark Adler and Pierre van Moerbeke

(e.g. [20]) is, and that item certainly merits further investigation.
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2 List of symbols and notations commonly used

• Given variables x1, . . . , xn we will denote them collectively as X, regardless of what the labeling

set is.

• Sn denotes the group of permutations of n elements.

• Given a permutation σ ∈ Sn we will denote by Xσ the permutation of the indices of the variables.

• Given a permutation σ we denote by ε(σ) its sign.

• C(X) :=
∏n
j=1 xj

• ∆(X) :=
∏
i>j(xi − xj) = det[xj−1

i ]i,j≤n

• Given a square matrix A we denote by Ã the matrix of its cofactors (the adjoint matrix).

• αj , βj = moments of the measures dα,dβ.

• K(x, y)= totally positive kernel.

• 〈xk|y`〉 = Ik,` =
∫∫
xiy`dα(x)dβ(y)K(x, y) bimoments associated to the kernel K(x, y) and the

measures dα,dβ.

• I = [Ik,`]=matrix of bimoments.

• Dn := det[Ik,`]k,`=0,...,n−1, principal minors of the bimoment matrix.

• Λ = semiinfinite upper shift matrix.

• pn(x), qn(y), biorthogonal polynomials satisfying 〈pn|qm〉 = δmn.

• Given any sequence {xj} we will denote by x the column vector

x1

x2

...

 , while xT will denote the

corresponding row vector.

• π =
∫

pdα, η =
∫

qdβ.
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3 Degasperis-Procesi equation and a cubic string

3.1 DP equation

We begin by summarizing basic facts about the DP peakons. The Degasperis-Procesi (DP) equation:

ut − uxxt + 4uux = 3uxuxx + uuxxx, (x, t) ∈ R2, (3-1)

admits weak n-peakon solutions. They are obtained by substituting the peakon ansatz (1-3) into (3-1).

Then careful analysis shows that the solution exists in a weak sense if and only if:

ẋk =
n∑
i=1

mie
−|xk−xi|,

ṁk = 2
n∑
i=1

mkmi sgn(xk − xi) e−|xk−xi|.
(3-2)

This system of ODEs can be successfully analyzed with the help of another crucial ingredient: the

DP equation admits a Lax formulation, first proposed in [6]. Thus the DP equation follows from the

compatibility condition for the the system

(∂x − ∂3
x)ψ = z mψ, (3-3a)

∂tψ =
[
z−1(1− ∂2

x) + ux − u∂x
]
ψ. (3-3b)

where z ∈ C. In the case of peakons, m =
∑n
i=1miδxi , and, as a result, the equation (3-3) is assumed

to hold in the sense of distributions. Furthermore, (3-3) can be solved quite explicitly [9]. To this end it

is useful to perform a Liouville transformation on (3-3). This is fully explained in [9] and here we only

need the main thread of the reasoning that results in the appearance of the cubic string boundary value

problem.

Lemma 3.1. Under the change of variables

ξ = tanh
x

2
, ψ(x) =

2φ(ξ)
1− ξ2

, (3-4)

the DP spectral problem (3-3a) is equivalent to the cubic string problem

−φξξξ(ξ) = z g(ξ)φ(ξ) for ξ ∈ (−1, 1),

φ(−1) = φξ(−1) = 0,

φ(1) = 0,

(3-5)

where (
1− ξ2

2

)3

g(ξ) = m(x). (3-6)
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In the discrete case, when m(x) = 2
∑n

1 mi δxi , equation (3-6) should be interpreted as

g(ξ) =
n∑
i=1

gi δξi , where ξi = tanh
xi
2
, gi =

8mi(
1− ξ2

i

)2 . (3-7)

Remark 3.1. The specific boundary conditions mentioned in the lemma have been chosen to deal with

the peakon problem. We will choose later a different set of boundary conditions to reflect the focus of this

paper (see 3.2)

3.2 Discrete cubic string

We slighly generalize the cubic string discussed in the previous section in connection with the peakon

problem. In an ordinary string problem different boundary conditions correspond to different ways of

tying down the ends of the string. For us, different boundary conditions will eventually lead to different

spectral measures with respect to which we will define the biorthogonal polynomials.

Definition 3.1. We define the cubic string boundary value problems (BVP) of three types

− fξξξ(ξ) = z g(ξ) f(ξ) for ξ ∈ (0, 1),

f(0) = fξ(0) = 0,

Type 0 (Peakon case) : f(1) = 0, Type 1 : fξ(1) = 0 Type 2 : fξξ(1) = 0

(3-8)

Remark 3.2. For simplicity we have adjusted the length of the string; it is now 1 rather than 2.

We are only interested in the case where the mass distribution consists of a finite collection of point-

masses:

g(ξ) =
n∑
i=1

gi δξi , where 0 < gi, 0 < ξ1 < ξ2 < · · · < ξn < 1. (3-9)

We will consider all three boundary value problems mentioned above with this mass distribution, as well

as one degenerate case in which the last mass is placed at 1 (i.e. ξn = 1: in the latter case we take the

right hand limit to compute the derivatives of f at 1. Moreover, for that case, we consider only the BVP

of type 2.)

We will collectively refer to all these cases as the discrete cubic string.

We will also use an accompanying initial value problem, which is the same for all three types.

Definition 3.2. The cubic string initial value problem (IVP) is defined by the following equations

−φξξξ(ξ) = z g(ξ)φ(ξ) for ξ ∈ (0, 1),

φ(0) = φξ(0) = 0, φξξ(0) = 1
(3-10)

The boundary value problems in Definition 3.1 are not self-adjoint and the adjoint boundary value

problems play an important role.
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Definition 3.3. The adjoint cubic string boundary value problems are described by the following rela-

tions

f∗ξξξ(ξ) = z g(ξ) f∗(ξ) for ξ ∈ (0, 1) (3-11)

1. Type 0

f∗(0) = 0,

f∗(1) = f∗ξ (1) = 0,

2. Type 1

f∗(0) = 0,

f∗(1) = f∗ξξ(1) = 0,

3. Type 2

f∗(0) = 0,

f∗ξ (1) = f∗ξξ(1) = 0.

The corresponding initial value problem is:

Definition 3.4. The adjoint cubic string initial value problems are gives as

φ∗ξξξ(ξ) = z g(ξ)φ∗(ξ) for ξ ∈ (0, 1),

with nonzero initial values as follows

Type 0: φ∗ξξ(1) = 1,Type 1: φ∗ξ(1) = 1,Type 2: φ∗(1) = 1

(3-12)

To avoid cluttering the notation we will use the same symbol φ∗ in all three cases whenever the

context clearly identifies one of the three adjoint boundary/initial value problems. When necessary, we

will attach an index a = 0, 1, 2 referring to the type, for example, φ∗0 will refer to the BVP/IVP of type

0 etc.

In the process of integration by parts one identifies the relevant bilinear symmetric form:

Definition 3.5. Given any twice differentiable f, h the bilinear concomitant is defined as the bilinear

form:

B(f, h)(ξ) = fξξh− fξhξ + fhξξ. (3-13)
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This bilinear symmetric form induces a bilinear symmetric form (denoted also by B) on triples FT :=

(f, fξ, fξξ), namely

B(F,H) = FTJH, J :=

0 0 1
0 −1 0
1 0 0

 . (3-14)

We also define a natural L2 space associated with g, denoted L2[0, 1]g, equipped with the inner product:

(f, h)g =
∫ 1

0
f(ξ)h(ξ)g(ξ) dξ. Since all initial value problems 3.2, 3.4 can be solved for arbitrary z ∈ C, φ

and φ∗ are functions of the spectral parameter z. The following theorem establishes a relation between

these two functions and the relevant boundary value problems.

Lemma 3.2. Suppose φ(ξ; z) and φ∗(ξ;λ) are solutions to the IVPs 3.2, 3.4 with spectral parameters z

and λ.

1. Type 0: the spectrum is determined by the zeros of φ(1, z) = 0. Moreover,

−B(φ(ξ; z), φ∗(ξ, λ)|10 = φ∗(0;λ)− φ(1; z) = (z − λ)(φ(•; z), φ∗(•;λ))g. (3-15)

2. Type 1: the spectrum is determined by the zeros of φξ(1, z) = 0. Moreover,

−B(φ(ξ; z), φ∗(ξ, λ)|10 = φ∗(0;λ) + φξ(1; z) = (z − λ)(φ(•; z), φ∗(•;λ))g. (3-16)

3. Type 2: the spectrum is determined by the zeros of φξξ(1, z) = 0. Moreover,

−B(φ(ξ; z), φ∗(ξ, λ)|10 = φ∗(0;λ)− φξξ(1; z) = (z − λ)(φ(•; z), φ∗(•;λ))g. (3-17)

In addition, in all three cases,

−B(φ(ξ; z), φ(ξ;λ)|10 = (z + λ)(φ(•; z), φ(•;λ))g. (3-18)

Proof. Indeed (3-10) and two integrations by parts imply that

−
∫ 1

0

φξξξ(ξ; z)φ∗(ξ;λ) dξ =−B(φ, φ∗)|10 +
∫ 1

0

φ(ξ; z)φ∗ξξξ(ξ;λ) dξ =

z

∫ 1

0

φ(ξ; z)φ∗(ξ;λ)g(ξ) dξ.

Consequently, using equation (3-12) we obtain:

−B(φ, φ∗)|10 = (z − λ)
∫ 1

0

φ(ξ; z)φ∗(ξ;λ)g(ξ) dξ,

which in view of the initial conditions implies the claim. A similar computation works for the second

identity.
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It is now easy to see that

Corollary 3.1. φ and φ∗ satisfy the following relations:

1. Case 0: φ∗(0; z) = φ(1; z). Case 1: φ∗(0; z) = −φξ(1; z), Case 2: φ∗(0; z) = φξξ(1; z).

2. Case 0: −φz(1; z) = (φ(•; z), φ∗(•; z))g. Case 1: φξz(1; z) = (φ(•; z), φ∗(•; z))g. Case 2: −φξξz(1; z) =

(φ(•; z), φ∗(•; z))g.

We give below a complete characterization of the spectra and of the eigenfunctions for all three BVPs.

Theorem 3.1. Consider a cubic string with a finite measure g as in (3-9).

1. Let za,j denote the eigenvalues of the BVP of type a = 0, 1, 2. In each of the three cases, the

spectrum is positive and simple.

2. For any pair of BVPs of type 0,1,2 the spectra are interlaced in the following order:

z2,j < z1,j < z0,j , j = 1, . . . n

3. The eigenfunctions φ(ξ; za,j) ≡ φa,j(ξ) can be chosen to be real valued and they are linearly inde-

pendent. Moreover, for the following combinations of BVPs, (φa,i, φb,j)g factorizes as:

(a) Type 00:

(φ0,i, φ0,j)g =
φ0,i,ξ(1)φ0,j,ξ(1)

z0,i + z0,j
(3-19)

(b) Type 01

(φ0,i, φ1,j)g = −φ0,i,ξξ(1)φ1,j(1)
z0,i + z1,j

(3-20)

(c) Type 12

(φ1,i, φ2,j)g = −φ1,i,ξξ(1)φ2,j(1)
z1,i + z2,j

(3-21)

(d) Type 22

(φ2,i, φ2,j)g =
φ2,i,ξ(1)φ2,j,ξ(1)

z2,i + z2,j
(3-22)

Proof. It is easy to check (see Section 4.1 in [9]) that φ(1; z)
φξ(1; z)
φξξ(1; z)

 = LnGn(z)Ln−1Gn−1(z) · · ·L1G1(z)L0

0
0
1

 . (3-23)

where

Gk(z) =

 1 0 0
0 1 0
−z gk 0 1

 ,
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Lk =

1 lk l2k/2
0 1 lk
0 0 1

 ,

and

lk = ξk+1 − ξk, ξ0 = 0, ξn+1 = 1. (3-24)

We prove the statement about the spectra by using the results obtained in [9]. By Theorem 3.5 in [9]

φ(1; z) has n distinct positive zeros and so do φξ(1; z) and φξξ(1; z) (denoted there φy, φyy). Indeed

this follows from observing that φξ(1;z)
φz(1;z) and φξξ(1;z)

φz(1;z) are strictly positive on the spectrum of Type 0,

which implies that both φξ(1; z) and φξξ(1; z) change signs n times, hence all three spectra are simple.

Furthermore, φξ(1;−z) > 0, φξξ(1;−z) > 0 for z > 0, so the zeros of φξ(1; z) and φξξ(1; z) are strictly

positive and consequently they interlace with the zeros of φ(1; z). Thus the spectra of type 0 and 1, as

well as 0 and 2 interlace. To see that the spectrum of type 1 interlaces with the spectrum of type 2 we

proceed as follows. By (3-18), after evaluating at z = z2,i, λ = −z2,i, we obtain

φξ(1; z2,i)φξ(1;−z2,i) = φξξ(1;−z2,i)φ(1; z2,i),

which gives

φξ(1; z2,i) =
φξξ(1;−z2,i)
φξ(1;−z2,i)

φ(1; z2,i) (3-25)

For z > 0, sgn(φξ(1;−z)) = sgn(φξξ(1;−z)) = +1 because both are strictly positive there. Since the

zeros of φ(1; z) interlace with the zeros of φξξ(1; z), sgn(φ(1; z2,i)) alternates, which in turn implies that

sgn(φξ(1; z2,i)) alternates as well. Thus the proof that the zeros of φξ(1; z) are simple and they interlace

with the zeros of φξξ(1; z) is complete.

The relative position of the spectra of the three types is best inferred from the fact that φξ(1 : z0,1)

and φξξ(1 : z0,1) are both negative since φξ(1,z)
φz(1,z) and φξξ(1,z)

φz(1,z) are strictly positive on the spectrum of Type

0. Thus the spectra of type 1 and 2 are shifted to the left relative to the spectrum of type 0. In particular,

φ(1, z2,1) > 0 and so is φξ(1, z2,1) by (3-25). Thus, at least the first zero of φξξ occurs to the left of the

zeros of φξ and φ. So z2,1 < z1,1 < z0,1. Suppose this holds for the (j − 1)st eigenvalues. Then we know

that both z0,j−1 < z1,j < z0,j and z0,j−1 < z2,j < z0,j . If z1,j < z2,j then z2,j−1 < z1,j−1 < z1,j < z2,j ,

thus contradicting that the spectra of type 1 and 2 interlace.

The statements about the eigenfunctions follow immediately from equation (3-18) after setting z =

za,i, λ = zb,j . We turn now to the linear independence. We observe that the cubic string boundary value

problem 3.1 can be equivalently written as an integral equation:

φ(ξ; z) = z

∫ 1

0

G(ξ, τ)φ(τ ; z)g(τ) dτ, (3-26)

where G(ξ, τ) is the Green’s function satisfying the boundary conditions of 3.1. Then the linear indepen-

dence of eigenfunctions corresponding to distinct eigenvalues follows from the general result about the

eigenfunctions of a linear operator.
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We now briefly analyze the degenerate case with the mass mn at the end point xn = 1. The remark

right below the next theorem partially explains its relevance . First, we state the main theorem for the

degenerate case.

Theorem 3.2. Let us consider a cubic string with a finite measure g as in (3-9) with xn = 1, and the

BVP of type 2. Then

1. the spectrum is positive and simple

2. the zeros {z0,j}n−1
j of φ(1; z) interlace with the zeros {z2,j} of φξξ(1; z) and

0 < z2,1 < z0,1 < · · · z0,n−1 < z2,n

holds,

3. the eigenfunctions φ(ξ; z2,j) := φj(ξ) can be chosen real, they satisfy

(φi, φj)g =
φi,ξ(1)φj,ξ(1)
z2,i + z2,j

, (3-27)

and they are linearly independent.

Remark 3.3. We notice that deg φ(1; z) = deg φξ(1; z) = n−1 while deg φξξ(1; z) = n. This is in contrast

to the previous cases with all positions x1, . . . , xn inside the interval [0, 1] for which all polynomials have

the same degree n.

Proof. The spectrum is clearly given by the zeros of φξξ(1; z). Let us first consider the case when mn is

placed slightly to the left of the point 1. Thus, initially, ln > 0 (see (3-23)). By Theorem 3.1 φ(1; z) has

n distinct positive zeros and so does φξξ and they interlace. We subsequently take the limit ln → 0 in the

above formulas. We will use the same letters for the limits to ease the notation. By simple perturbation

argument, zn,0 →∞. Since z = 0 is not in the spectrum, z2,1 has to stay away from 0. This shows that

the spectrum is positive. Furthermore, in the limit z0,1, . . . , z0,n−1 approach simple zeros of the BVP of

type 0 for n− 1 masses. Indeed, using (3-23) with ln = 0 there, we obtain:

φ(1 + 0; z) = φ(1− 0; z), φξ(1 + 0; z) = φξ(1− 0; z), φξξ(1 + 0; z) = −zmnφ(1− 0; z) + φξξ(1− 0; z),

(3-28)

where 1 ± 0 refers to the right hand, or the left hand limit at 1. To see that the spectrum is simple

we observe that if in the limit two successive eigenvalues coalesce, namely z2,i = z2,i+1, then necessarily

z2,i = z0,i because of the interlacing property. However now equation (3-28) implies that φ(1− 0; z0,i) =

φξξ(1 − 0; z0,i) = 0 which contradicts Theorem 3.1 for the BVP of type 0 for n − 1 masses. Thus, the

zeros of φ(1 + 0, z) and φξξ(1 + 0, z) interlace and we have

0 < z2,1 < z0,1 < · · · < z2,n−1 < z0,n−1 < z2,n.

13



To prove the statement about the eigenfunctions we use (3-18) and after setting z = zi, λ = zj in that

formula we obtain the required identity. The linear independence is proven by the same type of argument

as in the proof of Theorem 3.1.

We immediately have several results about the adjoint cubic string 3.3.

Corollary 3.2. Given a discrete finite measure g

1. the adjoint cubic string (Definition 3.3) and the cubic string (Definition 3.1) have identical spectra.

2. Let φ∗a,i be the eigenfunction corresponding to the eigenvalue za,i. Then the families of functions

{φa,j} and {φ∗a,j} are biorthogonal, that is:

(φa,i, φ∗a,j)g = 0 whenever i 6= j. (3-29)

3. For i = j,

(φa,i, φ∗a,i)g =


−φz(1; z0,i) 6= 0, a = 0
φξz(1; z1,i) 6= 0, a = 1
−φξξz(1; z2,i) 6= 0, a = 2

(3-30)

holds.

Proof. The first equality in Corollary 3.1 implies that the spectra of the cubic string and its adjoint are

identical. The biorthogonality follows immediately from equations (3-15), (3-16) and (3-17). For i = j

we use Corollary 3.1. Finally, since the spectrum is simple the required derivatives with respect to z are

nonzero.

We conclude this section with the definition and some fundamental properties of two important

functions which play a significant role in the remainder of the paper.

Definition 3.6. We call

W (z) :=
φξ(1; z)
φ(1; z)

, Z(z) =
φξξ(1; z)
φ(1; z)

(3-31)

the Weyl functions associated with the cubic string boundary value problem 3.1 of type 0. We call

W (z) := − φ(1; z)
φξ(1; z)

, Z(z) =
φξξ(1; z)
φξ(1; z)

(3-32)

the Weyl functions associated with the cubic string boundary value problem 3.1 of type 1. We call

W (z) := − φξ(1; z)
φξξ(1; z)

, Z(z) = − φ(1; z)
φξξ(1; z)

(3-33)

the Weyl functions associated with the cubic string boundary value problem 3.1 of type 2.
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Remark 3.4. The definition of the Weyl functions for the BVP of type 2 in the degenerate case is

identical to the one given above for the BVP of type 2.

The Weyl functions W and Z are not independent, they are related by an identity which was originally

formulated for the DP peakons in [9]. As an example we formulate such an identity for the BVP of type

2 (both the degenerate as well as the nondegenerate case).

Lemma 3.3. Consider the BVP of type 2. Then the corresponding Weyl functions satisfy:

W (z)W (−z) + Z(z) + Z(−z) = 0 (3-34)

Proof. By formula (3-18)

B(φ(ξ; z), φ(ξ;−z))|10 = 0, (3-35)

which, when written out explicitly, gives the identity:

φξξ(1; z)φ(1;−z)− φξ(1; z)φξ(1;−z) + φξξ(1;−z)φ(1; z) = 0. (3-36)

Upon dividing the last equation by φξξ(1; z)φξξ(1;−z) we obtain the claim.

We state now the fundamental theorem with regards to W (z) and Z(z). We state only the relevant

results for the BVP of type 2 in the degenerate case , the remaining cases being merely variations of this,

most transparent case.

Theorem 3.3. Consider the BVP of type 2 (degenerate case). Then the Weyl functions W and Z have

the following (Stieltjes) integral representations:

W (z) =
∫

1
z − y

dβ(y), Z(z) =
∫

1
(z − y)(x+ y)

dβ(y)dβ(x), (3-37)

where dβ =
∑n
i=1 biδz2,i , bi = −φ(1;z2,i)

φξξz(1;z2,i)
> 0.

Proof. Since φ(1; z), φξξ(1; z) have simple, interlacing zeros, and deg φ(1; z) = n− 1 while deg φξξ(1; z) =

n, W (z) admits a partial fraction decomposition with simple factors:

W (z) =
n∑
i=1

bi
z − z2,i

,

where, by the residue calculus, bi = −φ(1;z2,i)
φξξz(1;z2,i)

. Moreover the bis are all of the same sign because the

zeros of φ(1; z) and φξξ(1; z) interlace and, consequently, it suffices to check the sign of −φ(1;z2,i)
φξξz(1;z2,i)

at the

first zero z2,1. By Theorem 3.1 sgn(φ(1; z2,1) = 1, and thus b1 > 0 because on the first zero φξξz must be

negative. Consequently, all bi > 0.
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Likewise, Z(z) admits a partial fraction decomposition:

Z(z) =
n∑
i=1

ci
z − z2,i

,

and again, it follows from the second item in Theorem 3.1 that ci > 0. Finally, by residue calculus, it

follows from Lemma 3.3 that

ci =
n∑
j=1

bibj
z2,i + z2,j

,

which proves the integral representation for Z(z).

3.3 Generalized Fourier transform and biorthogonality

Since φa,i are linearly independent we can decompose any f ∈ L2
g[0, 1] in the basis of {φa,i} and use the

dual family {φ∗a,i} to compute the coefficients in the expansion:

f =
∑
i

Ca,iφa,i, Ca,i =
(φ∗a,i, f)g

(φ∗a,i, φa,i)g
.

For each pair a, b for which (φa,i, φb,j)g factorizes (item 3 in Theorem 3.1) we define two Hilbert spaces

Hα := L2(R, dα) and Hβ := L2(R, dβ) where the measures dα and dβ are chosen by splitting the

numerator of (φa,i, φb,j)g followed by a unique choice of measures corresponding to the BVP of type a

and b associated to the respective Weyl functions with matching numerators.

Example 3.1. For types 00, item 3 in Theorem 3.1 and Definition 3.6 imply

dα = dβ =
∑
i

φ0,i.ξ

φz(1; z0,i)
δz0,i

For types 01, item 3 in Theorem 3.1 and Definition 3.6 imply

dα =
∑
i

φ0,i,ξξ

φz(1; z0,i)
δz0,i ,dβ = −

∑
i

φ1,i

φξz(1; z1,i)
δz1,i .

Furthermore, for every pair a, b specified above, we define a natural pairing between Hα and Hβ ,

namely,

Definition 3.7.

〈p|q〉 =
∫
p(x)q(y)
x+ y

dα(x)β(y).

We now introduce a family of generalized Fourier transforms adapted to each of the three types of

BVPs
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Definition 3.8. Given f ∈ L2
g[0, 1] and a = 0, 1, 2

f̂a(z) := (−1)a
∫ 1

0

φ∗a(ξ; z)f(ξ)g(ξ)dξ. (3-38)

Remark 3.5. Observe that

f̂a(z) = ((−1)aφ∗(•, z), f(•))g,

and, in particular,

f̂a(za,i) = ((−1)aφ∗a,i, f)g

whenever z equals to one of the points of the spectrum of (3-8).

Remark 3.6. A map of this type was introduced in the context of an inhomogeneous string problem by

I.S. Kac and M.G. Krein in [16] as a generalization of the Fourier transform.

The main property of this map is captured in the following theorem.

Theorem 3.4. For every pair a, b for which (φa,i, φb,j)g factorizes (item 3 in Theorem 3.1) the generalized

Fourier transforms satisfy Parseval’s identity, that is, for every f, h ∈ L2
g[0, 1]

(f, h)g = 〈f̂a|ĥb〉 = 〈ĥa|f̂b〉. (3-39)

Proof. Let us fix a, b for which (φa,i, φb,j)g factorizes. Consider two functions f, h ∈ L2
g[0, 1]. Writing

their expansions in the bases {φa,i}, {φb,i} respectively, we obtain

f =
∑
i

(φ∗a,i, f)g
(φ∗a,i, φa,i)g

φa,i, h =
∑
j

(φ∗b,j , h)g
(φ∗b,j , φb,j)g

φb,j .

Hence their inner product reads:

(f, h)g =
∑
i,j

(φ∗a,i, f)g
(φ∗a,i, φa,i)g

(φ∗b,j , h)g
(φ∗b,j , φb,j)g

(φa,i, φb,j)g

Applying now item 3 from Theorem 3.1 as well as item 2 from Lemma 3.1 we obtain

Type 00 :(f, h)g =
∑
i,j

(φ∗0,i, f)g
φz(1; z0,i)

(φ∗0,j , h)g
φz(1; z0,j)

φξ(1; z0,i)φξ(1; z0,j)
z0,i + z0,j

,

T ype 01 :(f, h)g =
∑
i,j

(φ∗0,i, f)g
φz(1; z0,i)

(φ∗1,j , h)g
φξz(1; z1,j)

φξξ(1; z0,i)φ(1; z1,j)
z0,i + z1,j

,

T ype 12 :(f, h)g =
∑
i,j

(φ∗1,i, f)g
φξz(1; z1,i)

(φ∗2,j , h)g
φξξz(1; z2,j)

φξξ(1; z1,i)φ(1; z2,j)
z1,i + z2,j

,

T ype 22 :(f, h)g =
∑
i,j

(φ∗2,i, f)g
φξξz(1; z2,i)

(φ∗2,j , h)g
φξξz(1; z2,j)

φξ(1; z2,i)φξ(1; zj,2)
z2,i + z2,j

.
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We now define the weights bj , aj generating the measures dβ =
∑
j Bjδzj , dα =

∑
j Ajδzj respectively,

as residues of W s or Zs:

Type 00 : Ai =
φξ(1; z0,i)
φz(1; z0,i)

, Bj =
φξ(1; z0,j)
φz(1; z0,j)

,

T ype 01 : Ai =
φξξ(1; z0,i)
φz(1, z0,i)

, Bj = − φ(1; z1,j)
φξz(1; z1,j)

,

T ype 12 : Ai =
φξξ(1, z1,i)
φξz(1, z1,i)

, Bj = − φ(1, z2,j)
φξξz(1, z2,j)

,

T ype 22 : Ai = − φξ(1, z2,i)
φξξz(1, z2,i)

, Bj = − φξ(1, z2,j)
φξξz(1, z2,j)

,

and thus indeed

(f, h)g =
∑
i,j

((−1)aφ∗a,i, f)g((−1)bφ∗b,j , h)g
AiBj

za,i + zb,j
.

Thus, in view of Remark 3.5, we obtain

(f, h)g =
∑
i,j

f̂1(za,i)ĥb(zb,j)
AiBj

za,i + z2,j
=
∫
f̂a(x)ĥb(y)
x+ y

dα(x)dβ(y) = 〈f̂a|ĥb〉.

Remark 3.7. Expanding an arbitrary f ∈ L2
g[0, 1]

f =
∑
i

(φ∗a,i, f)g
(φ∗a,i, φa,i)g

φa,i,

allows one to conclude that

δ(ξ, ξ′) :=
∑
i

φa,i(ξ)φ∗a,i(ξ
′)

(φ∗a,i, φa,i)g
(3-40)

plays a role of the Dirac delta on L2
g[0, 1].

Consequently, it is elementary to find the inverse Fourier transforms

Lemma 3.4. Consider the BVP of type a. Let {za,i} be the corresponding spectrum and let dνa =
∑
i δza,i

be an associated measure. Then the inverse generalized Fourier transform of type a is given by

(−1)a
∫
f̂a(z)

φ(ξ; z)
(φ∗a(•, z), φ(•, z))

dνa(z) (3-41)

Proof. This is a direct computation:

(−1)a
∫
f̂a(z)

φ(ξ; z)
(φ∗a(•, z), φ(•, z))

dνa(z) = (−1)a
∑
i

f̂a(za,i)
φa,i(ξ)

(φ∗a,i, φa,i)g
=

∑
i

(φ∗a,i, f)g
φa,i(ξ)

(φ∗a,i, φa,i)g
=
∑
i

(φa,i, f)g
φa,i(ξ)

(φ∗a,i, φa,i)g
=

∫ 1

0

∑
i

φa,i(ξ)
(φ∗a,i, φa,i)g

φa,i(ξ′)f(ξ′)g(ξ′)dξ′ =
∫ 1

0

δ(ξ, ξ′)f(ξ′)g(ξ′)dξ′.
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There are in general two measures associated with each type of the BVP, one generated by W the

other by Z. One can use either one of the them instead of the measure dν. We give as an example the

relevant statement for the the case of the BVP of type 2, both the degenerate as well as the nondegenerate

one.

Lemma 3.5. The inverse generalized Fourier transform of type 2 is given by∫
f̂(z)

φ(ξ; z)
φξ(1; z)

dβ(z) (3-42)

Proof. From the definition of dβ given in Theorem 3.3 we see that∫
f̂(z)

φ(ξ; z)
φξ(1; z)

dβ(z) =
∑
i

f̂(z2,i)
φ2,i(ξ)

φξ(1; z2,i)
bi =

∑
i

f̂(z2,i)
φ2,i(ξ)

φξ(1; z2,i)
(− φξ(1, z2,i)
φξξz(1, z2,i)

) =

∑
i

(φ2,i, f)g
φ2,i(ξ)

φξ(1; z2,i)
(− φξ(1, z2,i)
φξξz(1, z2,i)

=
∑
i

(φ2,i, f)g
φ2,i(ξ)

(φ∗2,i, φ2,i)g
,

where in the last two steps we used Remark 3.5 and equation (3-30) respectively. Thus∫
f̂(z)

φ(ξ; z)
φξ(1; z)

dβ(z) =
∫ 1

0

∑
i

φ2,i(ξ)φ∗2,i(ξ
′)

(φ∗2,i, φ2,i)g
f(ξ′)g(ξ′)dξ′.

Finally, using equation (3-40) we obtain the claim.

We now consider an example of generalized Fourier transforms relevant for the remainder of this

paper.

Example 3.2. Biorthogonal polynomials We consider a sequence χj := χ(ξn−j−ε,ξn−j+ε) of indicator

functions enclosing points ξn−j with ε small enough to ensure non overlapping supports. Consider now

the generalized Fourier transforms for a, b as in Theorem 3.4:

χ̂a,j(x) = (−1)aφ∗a(ξj ;x)mn−j , χ̂b,j(y) = (−1)bφ∗b(ξj ; y)mn−j .

Then, clearly, < χ̂a,i|χ̂b,j >= 0, i 6= j. Also, both χ̂a,i(x) and χ̂b,j(y) are polynomials in x, y respectively,

whose degrees are deg χ̂a,j(x) = deg χ̂b,j(y) = j by (3-12).

4 Total positivity of bimoment matrices

As one can see from previous sections, the kernel K(x, y) = 1
x+y , x, y > 0, which we will refer to as the

Cauchy kernel, plays a significant, albeit mysterious, role. We now turn to explaining the role of this

kernel. We recall, following [21], the definition of the totally positive kernel.
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Definition 4.1. A real function K(x, y) of two variables ranging over linearly ordered sets X and Y,

respectively, is said to be totally positive (TP) if for all

x1 < x2 < · · · < xm, y1 < y2 < · · · < ym xi ∈ X , yj ∈ Y,m ∈ N (4-1)

we have

det


K(x1, y1) K(x1, y2) · · ·K(x1, ym)
K(x2, y1) K(x2, y2) · · ·K(x2, ym)

...
...

...
K(xm, y1) K(xm, y2) · · ·K(xm, ym)

 > 0 (4-2)

We will also use a discrete version of the same concept.

Definition 4.2. A matrix A := [aij ], i, j = 0, 1, · · ·n is said to be totally positive (TP) if all its minors

are strictly positive. A matrix A := [aij ], i, j = 0, 1, · · ·n is said to be totally nonnegative (TN) if all its

minors are nonnegative. A TN matrix A is said to be oscillatory if some positive integer power of A is

TP.

Since we will be working with matrices of infinite size we introduce a concept of the principal trunca-

tion.

Definition 4.3. A finite n + 1 by n + 1 matrix B := [bi,j ], i, j = 0, 1, · · ·n is said to be the principal

truncation of an infinite matrix A := [aij ], i, j = 0, 1, · · · if bi,j = ai,j , i, j = 0, 1, · · ·n. In such a case B

will be denoted A[n].

Finally,

Definition 4.4. An infinite matrix A := [aij ], i, j = 0, 1, · · · is said to be TP (TN) if A[n] is TP (TN)

for every n = 0, 1, · · · .

Definition 4.5. Basic Setup

Let K(x, y) be a totally positive kernel on R+ × R+ and let dα,dβ be two Stieltjes measures on

R+. We make two simplifying assumptions to avoid degenerate cases:

1. 0 is not an atom of either of the measures (i.e. {0} has zero measure).

2. α and β have infinitely many points of increase.

We furthermore assume:

3. the polynomials are dense in the corresponding Hilbert spaces Hα := L2(R+,dα), Hβ := L2(R+,dβ),

4. the map

K : Hβ → Hα, Kq(x) :=
∫
K(x, y)q(y)dβ(y) (4-3)

is bounded, injective and has a dense range in Hα.

20



Under these assumptions K provides a non-degenerate pairing between Hβ and Hα:

〈a|b〉 =
∫∫

a(x)b(y)K(x, y)dαdβ, a ∈ Hα, b ∈ Hβ . (4-4)

Now, let us consider the matrix of generalized bimoments

Iij :=
∫ ∫

xiyjK(x, y)dα(x)dβ(y) . (4-5)

We have our preliminary result

Theorem 4.1. The semiinfinite matrix I is TP.

Proof. According to a theorem of Fekete, (see Chapter 2, Theorem 3.3 in [21] ), we only need to consider

minors of consecutive rows/columns. Writing out the determinant,

∆ab
n := det[Ia+i,b+j ]0≤i,j≤n−1

we find

∆ab
n =

∑
σ∈Sn

ε(σ)
∫∫ n∏

j=1

xaj y
b
j

n∏
j=1

x
σj−1
j yj−1

j K(xj , yj)dnα(X)dnβ(Y ) =

∫∫
C(X)aC(Y )b∆(X)

n∏
j=1

yj−1
j

n∏
j=1

K(xj , yj)dnαdnβ.

Since our intervals are subsets of R+ we can absorb the powers of C(X), C(Y ) into the measures to

simplify the notation. Moreover, the function S(X,Y ) :=
∏n
j=1K(xj , yj) enjoys the following simple

property

S(X,Yσ) = S(Xσ−1 , Y )

for any σ ∈ Sn. Finally, the product measures dnα = dnα(X),dnβ = dnβ(Y ) are clearly permutation

invariant.

Thus, without any loss of generality, we only need to show that

Dn :=
∫∫

∆(X)
n∏
j=1

yj−1
j S(X,Y )dnαdnβ > 0,

which is tantamount to showing positivity for a = b = 0. First, we symmetrize Dn with respect to the

variables X; this produces

Dn =
1
n!

∑
σ∈Sn

∫∫
∆(Xσ)

n∏
j=1

yj−1
j S(Xσ, Y )dnαdnβ =

1
n!

∑
σ∈Sn

∫∫
∆(X)ε(σ)

n∏
j=1

yj−1
j S(X,Yσ−1)dnαdnβ =

1
n!

∑
σ∈Sn

∫∫
∆(X)ε(σ)

n∏
j=1

yj−1
σj S(X,Y )dnαdnβ =

1
n!

∫∫
∆(X)∆(Y )S(X,Y )dnαdnβ.
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Subsequent symmetrization over the Y variables does not change the value of the integral and we obtain

(after restoring the definition of S(X,Y ))

Dn =
1

(n!)2

∑
σ∈Sn

ε(σ)
∫∫

∆(X)∆(Y )
n∏
j=1

K(xj , yσj )d
nαdnβ =

1
(n!)2

∫∫
∆(X)∆(Y ) det[K(xi, yj)]i,j≤ndnαdnβ.

Finally, since ∆(X)∆(Y ) det[K(xi, yj)]i,j≤ndnαdnβ is permutation invariant, it suffices to integrate over

the region 0 < x1 < x2 < · · · < xn × 0 < y1 < y2 < · · · < yn, and, as a result

Dn =
∫∫

0<x1<x2<···<xn
0<y1<y2<···<yn

∆(X)∆(Y ) det[K(xi, yj)]i,j≤ndnαdnβ. (4-6)

Due to the total positivity of the kernel K(x, y) the integrand is a positive function of all variables and

so the integral must be strictly positive.

To simplify future computations we define

[x] := (1, x, x2, . . . )T (4-7)

so that the matrix of generalized bimoments (4-5) is simply given by:

I = 〈[x]|[y]T 〉. (4-8)

Observe that multiplying the measure dα(x) by xi or, multiplying dβ(y) by yj , is tantamount to

multiplying I on the left, respectively on the right, by Λi, respectively by (ΛT )j , which gives us a whole

family of bimoment matrices associated with the same K(x, y) but different measures. Thus we have

Corollary 4.1. For any nonnegative integers i, j the matrix of generalized bimoments ΛiI(ΛT )j is TP.

We conclude this section with a few comments about the scope of Theorem 4.1.

Remark 4.1. Provided that the negative moments are well defined, the theorem then applies to the doubly

infinite matrix Ii,j, i, j ∈ Z.

Remark 4.2. If the intervals are R and K(x, y) = exy then the proof above fails because we cannot

re-define the measures by multiplying by powers of the variables, since they become then signed measures,

so in general the matrix of bimoments is not totally positive. Nevertheless the proof above shows (with

a = b = 0 or a, b ∈ 2Z) that the matrix of bimoments is positive definite and –in particular– the

biorthogonal polynomials always exist, which is known and proved in [14].
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4.1 Biorthogonal polynomials

Due to the total positivity of the matrix of bimoments in our setting, there exist uniquely defined two

sequences of monic polynomials

p̃n(x) = xn + . . . , q̃n(y) = yn + . . .

such that ∫∫
p̃n(x)q̃m(y)K(x, y)dα(x)dβ(y) = hnδmn .

Standard considerations (Cramer’s Rule) show that they are provided by the following formulæ

p̃n(x) =
1
Dn

det

 I00 . . . I0n−1 1
...

...
...

In0 . . . Inn−1 xn

 q̃n(y) =
1
Dn

det


I00 . . . I0n
...

...
In−10 . . . In−1n

1 . . . yn

 (4-9)

hn =
Dn+1

Dn
> 0, (4-10)

where Dj > 0 by equation (4-6). For convenience we re-define the sequence in such a way that they are

also normalized (instead of monic), by dividing them by the square root of hn;

pn(x) = 1√
DnDn+1

det

 I00 . . . I0n−1 1
...

...
...

In0 . . . Inn−1 xn

 , (4-11)

qn(y) = 1√
DnDn+1

det


I00 . . . I0n
...

...
In−10 . . . In−1n

1 . . . yn

 , (4-12)

〈pn|qm〉 = δnm. (4-13)

We note also that the BOPs can be obtained by triangular transformations of [x], [y]

p = Sp[x] , q = Sq[y] (4-14)

where Sp,q are (formally) invertible lower triangular matrices such that S−1
p (S−1

q )T = I, where, we

recall, I is the generalized bimoment matrix. Moreover, our BOPs satisfy, by construction, the recursion

relations:

xpi(x) = Xi,i+1pi+1(x) +Xi,ipi(x) + · · ·Xi,0p0(x),

yqi(y) = Yi,i+1qi+1(y) + Yi,iqi(y) + · · ·Yi,0q0(y),

which will be abbreviated as
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xp(x) = Xp(x) , yq(y)T = q(y)YT , (4-15)

where X and Y are Hessenberg matrices with positive entries on the supradiagonal, and p(x) q(y) are in-

finite column vectors p(x)T := (p0(x), p1(x), p2(x), . . . )t, q(y)T := (q0(y), q1(y), q2(y), . . . )T respectively.

The biorthogonality can now be written as

〈p|qT 〉 = 1 . (4-16)

Moreover

〈xp|qT 〉 = X , 〈p|yqT 〉 = YT (4-17)

Remark 4.3. The significance of the last two formulas lies in the fact that the operator of multiplication

is no longer symmetric with respect to the pairing 〈•|•〉 and as a result the matrices X and YT are

distinct.

4.2 Simplicity of the zeroes

We recall the definition of a Chebyshev system. We refer to [22] and [23] for more information.

Definition 4.6. We call a system of continuous functions {ui(x)|i = 0 · · ·n} defined on a subset U of R
a Chebyshev system of order n on U if any nontrivial linear combination

∑n
i=0 aiui,

∑n
i=0 a

2
i 6= 0 has no

more than n zeros on U .

Another closely related concept is that of a Markov sequence (see [23], p.181).

Definition 4.7. A sequence of continuous functions

u0, u1, u2, . . .

is a Markov sequence on U if for every n the functions {ui(x)|i = 0 · · ·n} form a Chebyshev system of

order n on U .

The following theorem is a convenient restatement of Lemma 2 in [23], p.137.

Theorem 4.2. Given a system of continuous functions {ui(x)|i = 0 · · ·n} let us define the vector field

u(x) =


u0(x)
u1(x)

...
un(x)

 , x ∈ U. (4-18)

Then {ui(x)|i = 0 · · ·n} is a Chebyshev system of order n on U iff the top exterior power

u(x0) ∧ u(x1) ∧ · · ·u(xn) 6= 0 (4-19)
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for all x0 < x1 < · · · < xn in U . Furthermore, for {ui(x)|i = 0 · · · }, if we denote the truncation of u(x)

to the first n + 1 components by un(x), then {ui(x)|i = 0 · · · } is a Markov system iff the top exterior

power

un(x0) ∧ un(x1) ∧ · · ·un(xn) 6= 0 (4-20)

for all x0 < x1 < · · · < xn in U and all n ∈ N.

The following well known theorem is now immediate

Theorem 4.3. Suppose {ui(x)|i = 0 · · ·n} is a Chebyshev system of order n on U , and suppose we are

given n distinct points x1, · · ·xn in U . Then, up to a multiplicative factor, the only generalized polynomial

P (x) =
∑n
i=0 aiui(x), which vanishes precisely at x1, · · ·xn in U is given by

P (x) = u(x) ∧ u(x1) ∧ · · ·u(xn) (4-21)

Theorem 4.4. Denote by ui(x) =
∫
K(x, y)yidβ(y), i = 0 · · ·n. Then {ui(x)|i = 0 · · ·n} is a Chebyshev

system of order n on R+. Moreover, P (x) as defined in Theorem 4.3 changes sign each time x passes

through any of the zeros xj.

Proof. It is instructive to look at the computation. Let x0 < x1 < · · ·xn, then using multi-linearity of

the exterior product,

P (x0) = u(x0) ∧ u(x1) ∧ · · ·u(xn) =∫
K(x0, y0)K(x1, y1) · · ·K(xn, yn)[y0]n ∧ [y1]n ∧ · · · ∧ [yn]ndβ(y0) · · · dβ(yn) =

1
n!

∫
det[K(xi, yj)]ni,j=0∆(Y )dβ(y0) · · · dβ(yn) =∫

y0<y1<···yn
det[K(xi, yj)]ni,j=0∆(Y )dβ(y0) · · · dβ(yn),

where

[y]n =


y0

y1

...
yn

 . (4-22)

Thus P (x0) > 0. The rest of the proof is the argument about the sign of the integrand. To see how sign

changes we observe that the sign of P depends only on the ordering of x, x1, x2, · · ·xn, in view of the total

positivity of the kernel. In other words, the sign of P is sgn(π) where π is the permutation rearranging

x, x1, x2, · · ·xn in in an increasing sequence.

Corollary 4.2. Let {fi(x) :=
∫
K(x, y)qi(y)dβ(y), |i = 0 · · · }. Then {fi(x)|i = 0 · · ·n} is a Markov

sequence on R+,
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Proof. Indeed, Theorem 4.2 implies that the groupGL(n+1) acts on the set of Chebyshev systems of order

n. It suffices now to observe that qj are obtained from {1, y, · · · , yn} by an invertible transformation.

Remark 4.4. Observe that {fi(x)|i = 0 · · ·n} is a Markov sequence regardless of biorthogonality.

Biorthogonality enters however in the main theorem

Theorem 4.5. The zeroes of pn, qn are all simple and positive. They fall within the convex hull of the

support of the measure dα (for pn’s) and dβ (for the qn’s).

Proof. We give first a proof for pn. The theorem is trivial for n = 0. For 1 ≤ n , let us suppose pn has

r < n zeros of odd order in the convex full of supp(dα). In full analogy with the classical case, 1 ≤ r,

since ∫
pn(x)f0(x)dα(x) =

∫∫
pn(x)K(x, y)dα(x)dβ(y) = 0

by biorthogonality, forcing, in view of positivity of K(x, y), pn(x) to change sign in the convex hull

of supp(dα). In the general case, denote the zeros by x1 < x2 < · · ·xr. Using a Chebyshev system

fi(x), i = 0, · · · r on R+ we can construct a unique, up to a multiplicative constant, generalized polynomial

which vanishes exactly at those points, namely

R(x) = F (x) ∧ F (x1) ∧ F (x2) ∧ · · · ∧ F (xr) (4-23)

where

F (x) =


f0(x)
f1(x)

...
fr(x)

 , x ∈ R.

It follows then directly from biorthogonaliy that∫
pn(x)F (x) ∧ F (x1) ∧ F (x2) ∧ · · · ∧ F (xr)dα(x) = 0 (4-24)

On the other hand, R(x) is proportional to P (x) in Theorem 4.3 which, by Theorem 4.4, changes sign

at each of its zeroes, so the product pn(x)R(x) is nonzero and of fixed sign over R+ \ {x1, x2, · · · , xr}.
Consequently, the integral is nonzero, since α is assumed to have infinitely many points of increase. Thus,

in view of the contradiction, r ≥ n, hence r = n, for pn is a polynomial of degree n. The case of qn
follows by observing that the adjoint K∗ is also a TP kernel, and hence it suffices to switch α with β

throughout the argument given above.

Lemma 4.1. In the notation of Corollary 4.2 fn(x) has n zeros and n sign changes in the convex hull

of supp(dα).
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Proof. Clearly, since {ui(x)|i = 0 · · ·n} is a Chebyshev system of order n on R+, the number of zeros of

fn cannot be greater than n. Again, from∫
fn(x)p0(x)dα(x) = 0,

we conclude that fn changes sign at least once within the convex hull of supp(dα). Let then x1 < x2 <

· · ·xr, 1 ≤ r ≤ n be all zeros of fn within the convex hull of supp(dα) at which fn changes its sign. Thus,

on one hand, ∫
ε

r∏
i=1

(x− xi)fn(x)dα(x) > 0, ε = ±,

while, on the other hand, using biortogonality we get∫
ε

r∏
i=1

(x− xi)fn(x)dα(x) = 0, ε = ±,

which shows that r = n.

In view of Theorem 4.3 the statement about the zeros of fn has the following corollary

Corollary 4.3. Heine-like representation for fn

fn(x) = Cu(x) ∧ u(x1) ∧ u(x2) · · · ∧ u(xn) (4-25)

where xj are the zeros of fn.

5 Cauchy BOPs

From now on we restrict our attention to the particular case of the totally positive kernel

K(x, y) =
1

x+ y
(5-1)

and we call this case “Cauchy kernel” and correspondingly “Cauchy BOPs” because of the appearance

of Cauchy matrices. Thus, from this point onward, we will be studying the general properties of BOPs

for the pairing ∫∫
pn(x)qm(y)

dα(x)dβ(y)
x+ y

= 〈pn|qm〉 . (5-2)

Until further notice, we do not assume anything about the relationship between the two measures dα,dβ,

other than what is in the basic setup of Definition 4.5.
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5.1 Rank One Shift Condition

It follows immediately from equation (5-1) that

Ii+1,j + Ii,j+1 = 〈xi+1|yj〉+ 〈xi|yj+1〉 =
∫
xidα

∫
yjdβ , (5-3)

which, with the help of the shift matrix Λ and the matrix of generalized bimoments I, can be written as:

ΛI + IΛT = αβT ,

α = (α0, α1, . . . )T , αj =
∫
xjdα(x) > 0,

β = (β0, β1, . . . )T , βj =
∫
yjdβ(y) > 0.

Moreover, by linearity and equation (4-17), we have

X + YT = πηT , π :=
∫

pdα , η :=
∫

qdβ (5-4)

which connects the multiplication operators in Hα and Hβ . Before we elaborate on the nature of this

connection we need to clarify one aspect of equation (5-4).

Remark 5.1. One needs to exercise a great deal of caution using the matrix relation given by equation

(5-4). Its only rigorous meaning is in action on vectors with finitely many nonzero entries or, equivalently,

this equation holds for all principal truncations.

Proposition 5.1. The vectors π,η are strictly positive (have nonvanishing positive coefficients).

Proof. We prove the assertion only for π, the one for η being obtained by interchanging the roles of dα

and dβ.

From the expressions (4-12) for pn(x) we immediately have

πn =

√
1

DnDn+1
det

 I00 . . . I0n−1 α0

...
...

...
In0 . . . Inn−1 αn

 . (5-5)

Since we know that Dn > 0 we need to prove the positivity of the other determinant. Determinants of

this type were studied in Lemma 4.10 in [9].

We nevertheless give a complete proof of positivity. First, we observe that

πn
√
Dn+1Dn =

∑
σ∈Sn+1

ε(σ)
∫ n+1∏

j=1

x
σj−1
j

n∏
j=1

yj−1
j

dn+1αdnβ∏n
j=1(xj + yj)

=

=
∫

∆(Xn+1
1 )

n∏
j=1

yj−1
j

dn+1αdnβ∏n
j=1(xj + yj)

. (5-6)
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Here the symbol Xn+1
1 is to remind that the vector consists of n + 1 entries (whereas Y consists of n

entries) and that the Vandermonde determinant is taken accordingly. Note also that the variable xn+1

never appears in the product in the denominator. Symmetrizing the integral in the xj ’s with respect to

labels j = 1, . . . , n , but leaving xn+1 fixed, gives

πn
√
Dn+1Dn =

1
n!

∫
∆(Xn+1

1 )∆(Y )
dn+1αdnβ∏n
j=1(xj + yj)

. (5-7)

Symmetrizing now with respect to the whole set x1, . . . , xn+1 we obtain

πn
√
Dn+1Dn =

1
n!(n+ 1)!

∫
∆(Xn+1

1 )∆(Y ) det


K(x1, y1) . . . K(xn+1, y1)

...
...

K(x1, yn) . . . K(xn+1, yn)
1 . . . 1

dn+1αdnβ (5-8)

Moreover, since the integrand is permutation invariant, it suffices to integrate over the region 0 <

x1 < x2 < · · · < xn < xn+1 × 0 < y1 < y2 < · · · < yn, and, as a result

πn
√
Dn+1Dn =

∫∫
0<x1<x2<···<xn+10<y1<y2<···<yn

∆(Xn+1
1 )∆(Y ) det


K(x1, y1) . . . K(xn+1, y1)

...
...

K(x1, yn) . . . K(xn+1, yn)
1 . . . 1

dn+1αdnβ.

(5-9)

We thus need to prove that the determinant containing the Cauchy kernel 1
x+y is positive for 0 < x1 <

x2 < · · · < xn+1 and 0 < y1 < y2 < · · · < yn. It is not difficult to prove that

det


1

x1+y1
. . . 1

xn+1+y1
...

...
1

x1+yn
. . . 1

xn+1+yn

1 . . . 1

 =
∆(Xn+1

1 )∆(Y )∏n+1
j=1

∏n
k=1(xj + yk)

(5-10)

and this function is clearly positive in the above range.

5.2 Interlacing properties of the zeroes

From (4-8), (4-14) and 4-15 the following factorizations are valid for all principal truncations:

I = S−1
p (S−1

q )T , X = SpΛ(Sp)−1 , Y = SqΛS−1
q .

Moreover, since I is TP, the triangular matrices S−1
p and S−1

q are totally nonnegative (TN) [24] and have

the same diagonal entries: the nth diagonal entry being
√
Dn/Dn−1. Furthermore, one can amplify the

statement about S−1
p and S−1

q using another result of Cryer ([25]) which implies that both triangular

matrices are in fact triangular TP matrices (all notrivial in the sense defined in [25] minors are strictly

positive). This has the immediate consequence
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Lemma 5.1. All principal truncations X[n],Y[n] are invertible.

Proof. From the factorization X = SpΛ(Sp)−1 we conclude that it suffices to prove the claim for ΛS−1
p [n]

which in matrix form reads:

(S−1
p )10 (S−1

p )11

(S−1
p )20 (S−1

p )21 (S−1
p )22

@
@

@
@

@
@

0
...

... (S−1
p )n+1,n+1

(S−1
p )n+1,0 (S−1

p )n+1,1 · · · (S−1
p )n+1,n


.

However, the determinant of this matrix is strictly positive, because S−1
p is a triangular TP.

Remark 5.2. This lemma is not automatic, since Λ[n] is not invertible.

We now state the main theorem of this section.

Theorem 5.1. X and Y are TN.

Proof. We need to prove the theorem for every principal truncation. Let n ≥ 0 be fixed. We will suppress

the dependence on n, for example X in the body of the proof means X[n] etc. First, we claim that X

and Y admit the L-U factorization: X = X−X+, Y = Y−Y+, where A+ denotes the upper triangular

factor and A− is the unipotent lower triangular factor in the Gauss factorization of a matrix A. Indeed,

X+ = (ΛS−1
p )+, Y+ = (ΛS−1

q )+ are upper triangular components of TN matrices ΛS−1
p and ΛS−1

q and

thus are totally nonnegative invertible bi-diagonal matrices by Lemma 5.1.

From X + YT = πηT we then obtain

(YT
+)−1X− + Y−X−1

+ =
(
(YT

+)−1π
) (

ηTX−1
+

)
:= ρµT .

We need to show that vectors ρ , µ have positive entries. For this, notice that

ρ = ((Y+)T )−1Spα = (((ΛS−1
q )+)T )−1Spα ,

µ = ((X+)T )−1Sqβ = (((ΛS−1
p )+)T )−1Sqβ.

Now, it is easy to check that if the matrix of generalized bimoments I is replaced by IΛT (see

Corollary 4.1 ) then Sp → (((ΛS−1
q )+)T )−1Sp, while α is unchanged, which implies that ρ is a new π in

the notation of Proposition 5.1 and hence positive by the same Proposition. Likewise, considering the

matrix of generalized bimoments ΛI, for which β is unchanged, Sq → (((ΛS−1
p )+)T )−1Sq and µ is a new

η in the notation of Proposition 5.1 implying the claim.

Thus

ρ = Dρ1 ,µ = Dµ1,
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where Dρ , Dµ are diagonal matrices with positive entries and 1 is a vector of 1s.

We have

D−1
ρ (YT

+)−1X−D−1
µ +D−1

ρ Y−X−1
+ D−1

µ = 1 1T .

The first (resp. second) term on the left that we can call X̃ (resp. ỸT ) is a lower (resp. upper) triangular

matrix with positive diagonal entries . The equality above then implies that (i) X̃ij = Ỹij = 1 for all

i > j and (ii) X̃ii + Ỹii = 1 for all i. In particular, both X̃ii and Ỹii are positive numbers strictly less

then 1.

This means that X̃, Ỹ admits factorizations

X̃ = (Id− ΛT )−1LX , Ỹ = (Id− ΛT )−1LY ,

where

LX =
∞∑
i=0

X̃iiEii + (1− X̃ii)Ei+1 i , LY =
∞∑
i=0

ỸiiEii + (1− Ỹii)Ei+1 i .

Since all entries of bi-diagonal matrices LX , LY are positive, these matrices are totally nonnegative and

so are

X = YT
+(Id− ΛT )−1LXX+ , Y = XT

+(Id− ΛT )−1LY Y+ . (5-11)

Corollary 5.1. X and Y are oscillatory matrices.

Proof. We give a proof for X. The factorization (5-11) we have just obtained shows that X is the product

of an invertible lower-triangular TN matrix YT
+(Id−ΛT )−1 and a tri-diagonal matrix J = LXX+. Note

that LX has all positive values on the main diagonal and the first sub-diagonal. Entries on the first super-

diagonal of X+ coincide with corresponding entries of X and thus are strictly positive by construction.

Moreover, leading principal minors of X are strictly positive (see the proof of Lemma 5.1), which implies

that all diagonal entries of X+ are strictly positive too. Thus J is a tri-diagonal matrix with all non-trivial

entries strictly positive.

Since diagonal entries of YT
+(Id − ΛT )−1 are strictly positive and all other entries are non-negative,

every zero entry of X implies that the corresponding entry of J is zero. In view of that all entries on

the first super- and sub-diagonals of X must be strictly positive, which, by a fundamental criterion of

Gantmacher and Krein (Theorem 10, II, [23]), ensures that X is oscillatory.

Thus interlacing properties for zeros of polynomials pn, qn, as well as other properties of Sturm

sequences, follow then from Gantmacher-Krein theorems on spectral properties of oscillatory matrices

(see II, Theorem 13, in [23]). We summarize the most important properties implied by Gantmacher-

Krein theory.
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Theorem 5.2. The sequences of BOPs {qn} and {pn} are Sturm sequences. Moreover,

1. their respective zeros are positive and simple,

2. the roots of adjacent polynomials in the sequences are interlaced,

3. the following alternative representations of the biorthogonal polynomials hold

pn(x) =

√
Dn

Dn+1
det(x−X[n− 1]), 1 ≤ n,

qn(y) =

√
Dn

Dn+1
det(y − Y [n− 1]), 1 ≤ n.

Remark 5.3. The fact that the roots are positive and simple follows indeed from the fact that X and Y

are oscillatory. Theorem (4.5), however, indicates that this property is true even for a more general case

when the totally positive kernel K(x, y) is not necessarily the Cauchy kernel.

6 Four-term recurrence relations and Christoffel Darboux iden-
tities

We establish in this section a basic form of recurrence relations and an analog of classical Christoffel-

Darboux identities satisfied by {qn} and {pn}. First, we introduce the following notation for semi-infinite,

finite-band matrices.

Definition 6.1. Given two integers a ≤ b , a semi-infinite matrix A is said to have the support in [a, b]

if

j − i < a or j − i > b imply Aij = 0 (6-1)

The set of all matrices with supports in [a, b] is denoted M[a,b].

The content of this section relies heavily on the relation (5-4) which we recall for convenience:

X + YT = πηT = Dπ11TDη

where Dπ, Dη respectively, are diagonal matrices of averages of p and q. Since the vector 1 is a null

vector of Λ− Id we obtain

Proposition 6.1. X and Y satisfy:

1. (Λ− Id)D−1
π X + (Λ− Id)D−1

π YT = 0.

2. A := (Λ− Id)D−1
π X ∈M[−1,2].
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3. XD−1
η (ΛT − Id) + YTD−1

η (ΛT − Id) = 0.

4. Â := XD−1
η (ΛT − Id) ∈M[−2,1].

It is easy to check that the bordering (maximally away from the diagonal) elements in (Λ− Id)D−1
π X

and XD−1
η (ΛT − Id) are nonzero. Thus

Corollary 6.1. p and q satisfy four-term recurrence relations.

Proof. We give the proof for p. Indeed, from

xp = Xp,

it follows that

x(Λ− Id)D−1
π p = (Λ− Id)D−1

π Xp,

hence the claim, since (Λ− Id)D−1
π ∈M[0,1] and (Λ− Id)D−1

π X ∈M[−1,2].

Theorem 6.1 (Christoffel-Darboux Identities for q and p). Let

L := (Λ− Id)D−1
π , L̂ := D−1

η (ΛT − Id)

respectively, denote the multipliers used in Proposition 6.1. Moreover, let us define

q̃(y) = L−1q(y), p̂(x) = L̂−1p(x).

Then

(x+ y)
n−1∑
j=0

qj(y)pj(x) = q̃T (y)[Π, L(x−X)]p(x) (6-2a)

(x+ y)
n−1∑
j=0

qj(y)pj(x) = qT (y)[Π, (y −YT )L̂]p̂(x) (6-2b)

where Π := Πn is the diagonal matrix diag(1, 1, . . . , 1, 0, . . . ) with n ones (the entries are labeled from 0

to n− 1). The explicit form of the commutators is:

[Π, L(x−X)] = −An−2,nEn−2,n −An−1,n+1En−1,n+1−

(An−1,n −
x

πn
)En−1,n −An,n−2En,n−2 +An,n−1En,n−1, (6-3)

[Π, (y −YT )L̂] = Ân−1,nEn−1,n − (
y

ηn
+ Ân,n−1)En,n−1−

Ân,n−2En,n−2 − Ân+1,n−1En+1,n−1, (6-4)

where Ai,j, Âi,j respectively, denote the (i, j)th entries of A, Â, occurring in Proposition 6.1.
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Proof. We give the proof of equation (6-2b). Since (y −Y)q = 0, it suffices to prove that the left hand

side equals qTΠ(y − Y T )L̂p̂(x). ¿From the definition of p̂ and equation (4-15) we obtain

(x+ y)qT (y)Πp(x) = qT (y)ΠyL̂p̂(x) + qT (y)ΠXp(x) = qT (y)ΠyL̂p̂(x) + qT (y)ΠXL̂p̂(x),

which, after switching XL̂ with −YT L̂ in view of Proposition 6.1, gives equation (6-2b). To get either

one of the commutator equations (6-3), (6-4), one needs to perform an elementary computation using, as

appropriate, the definitions of either A or Â.

Remark 6.1. The theory from this point onward could be developed using p̂, or using q̃. We choose to

work with p̂.

We establish now basic properties of p̂ and its biorthogonal partner q̂ defined below.

Proposition 6.2. The sequences of polynomials

p̂ = L̂−1p , q̂T = qT L̂ (6-5)

are characterized by the following properties

1. deg q̂n = n+ 1, deg p̂n = n;

2.
∫
q̂ndβ = 0;

3.
∫∫

p̂n(x)q̂m(y)
dαdβ
x+ y

= δmn ;

4. q̂n(y) = 1
ηn+1

√
Dn+1
Dn+2

yn+1 +O(yn);

In addition

a. q̂ and p̂ satisfy the intertwining relations with q and p

yq̂T = −qT Â,

xp = Âp̂; (6-6)

b. q̂ and p̂ admit the determinantal representations:

q̂n(y) =
1

ηnηn+1

√
DnDn+2

det


I00 . . . I0n+1

...
...

In−1 0 . . . In−1n+1

β0 . . . βn+1

1 . . . yn+1

 (6-7)

p̂n(x) =
1

Dn+1
det


I00 . . . I0n 1
...

...
In−1 0 . . . In−1n xn−1

In0 . . . Inn xn

β0 . . . βn 0

 (6-8)
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c. β0

∫∫
p̂n(x)yj

dαdβ
x+ y

= βj

∫∫
p̂n(x)

dαdβ
x+ y

, j ≤ n.

Proof. Assertions (1), (2) and (4) follow directly from the shape of the matrix L̂. Assertion (3) follows

from 〈p,qt〉 = 1 by multiplying it by L̂ on the right and by L̂−1 on the left. Assertion (c) follows from

assertions (1), (2) and (3); indeed from (2) and (3), it follows that the polynomial p̂n is biorthogonal

to all polynomials of degree ≤ n with zero dβ–average and {β0y
j − βj : 0 ≤ j ≤ n} is a basis for such

polynomials.

The intertwining relations follow from the definitions of the matrices L̂, Â and of the polynomials p̂, q̂.

The determinantal expression for q̂n follows by inspection since the proposed expression has the

defining properties (1) and (2) and is biorthogonal to all powers 1, x, . . . , xn−1. The normalization is

found by comparing the leading coefficients of q̂n = 1
ηn+1

qn+1 +O(yn). The determinantal expression for

p̂n(x) follows again by inspection; indeed if F (x) is the determinant in (6-8) then

〈F (x)|yj〉 = det


I00 . . . I0n I0j
...

...
In−1 0 . . . In−1n In−1 j

In0 . . . Inn In j
β0 . . . βn 0

 = −βjDn+1 =
βj
β0
〈F (x)|1〉. (6-9)

where the determinants are computed by expansion along the last row. The proportionality constant is

again found by comparison.

One easily establishes a counterpart to Theorem 6.1 valid for q̂ and p̂.

Proposition 6.3 (Christoffel–Darboux identities for q̂ and p̂ ). We have

(x+ y)
n−1∑
j=0

q̂j(y)p̂j(x) = qT (y)[(x−X)L̂,Π]p̂(x) = qT (y)[Π, (−x− Y T )L̂]p̂(x). (6-10)

Remark 6.2. Observe that the commutators occurring in both theorems have identical structure; they only

differ in the variable y in Theorem 6.1 being now replaced by −x. We will denote by A(x) the commutator

[Π, (−x − YT )L̂] and by An(x) its nontrivial 3 × 3 block. Thus the nontrivial block in Proposition 6.3

reads:

An(x) =

 0 0 Ân−1,n

−Ân,n−2
x

ηn+1
− Ân,n−1 0

0 −Ân+1,n−1 0

 (6-11)

while the block appearing in Theorem 6.1 is simply An(−y).

With this notation in place we can present the Christoffel-Darboux identities in a unified way.
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Corollary 6.2 (Christoffel–Darboux identities for q,p, and q̂, p̂ ). The biorthogonal polynomials q,p,

and q̂, p̂ satisfy

(x+ y)
n−1∑
j=0

qj(y)pj(x) = qT (y)A(−y)p̂(x), (6-12)

(x+ y)
n−1∑
j=0

q̂j(y)p̂j(x) = qT (y)A(x)p̂(x). (6-13)

7 Approximation problems and perfect duality

We will associate a chain of Markov functions with measures dα and dβ. These are defined as Stieltjes’

transforms of the corresponding measures. They are abstract analogs of Weyl functions discussed in

earlier sections (see Definition 3.6).

Definition 7.1. Define

Wβ(z) =
∫

1
z − y

dβ(y), Wα∗(z) =
∫

1
z + x

dα(x),

Wα∗β(z) = −
∫∫

1
(z + x)(x+ y)

dα(x)dβ(y), Wβα∗(z) =
∫∫

1
(z − y)(y + x)

dα(x)dβ(y). (7-1)

We recall now an important notion of a Nikishin system associated with two measures (see [22], p.

142, called there a MT system of order 2).

Definition 7.2. Given two measures dµ1 and dµ2 with disjoint supports ∆1, ∆2 respectively, a Nikishin

system of order 2 is a pair of functions

f1(z) =
∫

∆1

dµ1(x1)
z − x1

(7-2)

f2(z) =
∫

∆1

dµ1(x1)
z − x1

∫
∆2

dµ2(x2)
x1 − x2

. (7-3)

Remark 7.1. The definition of a Nikishin system depends on the order in which one ”folds” measures.

If one starts from dµ2 , rather than dµ1 one obtains a priory a different system. As we show below

the relation between these two Nikishin systems is in fact of central importance to the theory we are

developing.

The following elementary observation provides the proper framework for our discussion.

Lemma 7.1. Let dα∗ denote the measure obtained from dα by reflecting the support of dα with respect

to the origin. Then Wβ ,Wβα∗ and Wα∗ ,Wα∗β are Nikishin systems associated with measures dβ and dα∗

with no predetermined ordering of measures.
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The relation between these two Nikishin systems can now be readily obtained.

Lemma 7.2.

Wβ(z)Wα∗(z) = Wβα∗(z) +Wα∗β(z). (7-4)

Proof. Elementary computation gives:

Wβ(z)Wα∗(z) =
∫∫

1
(z − y)(z + x)

dα(x)dβ(y) =
∫∫

1
(x+ y)

[ 1
z − y

− 1
z + x

]
dα(x)dβ(y),

which implies the claim.

Remark 7.2. Equation (7-4) was introduced in [9] for the DP peakons (see Lemma 4.7 there). This

equation represents a generalization of the formula in Lemma 3.3 of the present paper. Observe that this

formula is valid for any Nikishin system of order 2.

We formulate now the main approximation problem, modeled after that of [9].

Definition 7.3. Let n ≥ 1. Given two Nikishin systems Wβ ,Wβα∗ and Wα∗ ,Wα∗β we seek polyno-

mials Q(z), degQ = n, Pβ(z), degPβ = n − 1 and Pβα∗(z), degPβα∗ = n − 1, which satisfy Padé-like

approximation conditions as z →∞, z ∈ C±:

Q(z)Wβ(z)− Pβ(z) = O(
1
z

), (7-5a)

Q(z)Wβα∗(z)− Pβα∗(z) = O(
1
z

), (7-5b)

Q(z)Wα∗β(z)− Pβ(z)Wα∗(z) + Pβα∗(z) = O(
1

zn+1
) (7-5c)

Remark 7.3. In the case that both measures have compact support we can remove the condition that

z ∈ C± since all the functions involved are then holomorphic around z =∞.

Remark 7.4. In the terminology used, for example in [26], the triplets of polynomials Q,Pβ , Pβα∗ provide

a Hermite-Padé approximation of type I to the Nikishin system Wβ ,Wβα∗ and, simultaneously, a Hermite-

Padé approximation of type II to the Nikishin system Wα∗ ,Wα∗β.

Definition 7.4. We call the right hand sides of approximation problems (7-5) Rβ , Rβα∗ and Rα∗β re-

spectively, referring to them as remainders.

The relation of the approximation problem (7-5) to the theory of biorthogonal polynomials q and p

is the subject of the next theorem.
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Theorem 7.1. Let qn(y) be defined as in (4-12), and let us set Q(z) = qn(z) Then Q(z) is the unique,

up to a multiplicative constant, solution of the approximation problem (7-5). Moreover, Pβ , Pβα∗ and all

the remainders Rβ , Rβα∗ and Rα∗β are uniquely determined from Q with the help of the formulas:

Pβ(z) =
∫
Q(z)−Q(y)

z − y
dβ(y), (7-6a)

Pβα∗(z) =
∫∫

Q(z)−Q(y)
(z − y)(x+ y)

dα(x)dβ(y), (7-6b)

Rβ(z) =
∫

Q(y)
z − y

dβ(y), (7-6c)

Rβα∗(z) =
∫∫

Q(y)
(z − y)(x+ y)

dα(x)dβ(y), (7-6d)

Rα∗β(z) = −
∫∫

Q(y)
(z + x)(x+ y)

dα(x)dβ(y) =
∫
Rβ(x)
z − x

dα∗(x). (7-6e)

Proof. We start with the first approximation problem involving Q(z)Wβ(z). Writing explicitly its first

term we get: ∫
Q(z)
z − y

dβ(y) =
∫
Q(z)−Q(y)

z − y
dβ(y) +

∫
Q(y)
z − y

dβ(y).

Since
∫ Q(z)−Q(y)

z−y dβ(y) is a polynomial in z of degree n − 1, while
∫ Q(y)

z−y dβ(y) = O( 1
z ), we get the

first and the third formulas. The second and fourth formulas are obtained in an analogous way from the

second approximation problem. Furthermore, to get the last formula we compute Pβ and Pβα∗ from the

first two approximation problems and substitute into the third approximation problem, using on the way

Lemma 7.2, to obtain:

RβWα∗ −Rβα∗ = Rα∗β .

Substituting explicit formulas for Rβ and Rβα∗ gives the final formula. To see that Q(z) is proportional

to qn(z) we rewrite −Rα∗β in the following way:∫∫
Q(y)

(z + x)(x+ y)
dα(x)dβ(y) =

∫∫
Q(y)

(x+ y)

[
1

z + x
−

1− (−(xz ))n

z + x

]
dα(x)dβ(y)+∫∫ n−1∑

j=0

(−x)j

zj+1

Q(y)
(x+ y)(z + x)

dαdβ =
∫∫

Q(y)
(x+ y)

[
(−xz )n

z + x

]
dα(x)dβ(y) +

∫∫ n−1∑
j=0

(−x)j

zj+1

Q(y)
(x+ y)(z + x)

dαdβ

To finish the argument we observe that the first term is already O( 1
zn+1 ), hence the second term must

vanish. This gives: ∫∫
xjQ(y)
x+ y

dα(x)dβ(y) = 0, 0 ≤ j ≤ n− 1,

which characterizes uniquely (up to a multiplicative constant) the polynomial qn.

Remark 7.5. In the body of the proof we used an equivalent form of the third approximation condition,

namely

RβWα∗(z)−Rβα∗(z) = Rα∗β(z) = O(
1

zn+1
). (7-7)
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By symmetry, we can consider the Nikishin systems associated with measures α and β∗ with the

corresponding Markov functions Wα,Wαβ∗ and Wβ∗ ,Wβ∗α. We then have an obvious interpretation of

the polynomials pn.

Theorem 7.2. Let pn(x) be defined as in (4-12), and let us set Q(z) = pn(z). Then Q(z) is the unique,

up to a multiplicative constant, solution of the approximation problem for z →∞, z ∈ C±:

Q(z)Wα(z)− Pα(z) = O(
1
z

), (7-8a)

Q(z)Wαβ∗(z)− Pαβ∗(z) = O(
1
z

), (7-8b)

Q(z)Wβ∗α(z)− Pα(z)Wβ∗(z) + Pαβ∗(z) = O(
1

zn+1
), (7-8c)

where Pα, Pαβ∗ are given by formulas of Theorem 7.1 after switching α with β.

Clearly, one does not need to go to four different types of Nikishin systems in order to characterize

qn and pn. The following corollary is an alternative characterization of biorthogonal polynomials which

uses only the first pair of Nikishin systems.

Corollary 7.1. Consider the Nikishin systems Wβ ,Wβα∗ and Wα∗ ,Wα∗β. Then the pair of biorthogonal

polynomials {qn, pn} solves:

1. Q(z) = qn(z) solves Hermite-Padé approximations given by equations (7-5),

Q(z)Wβ(z)− Pβ(z) = O(
1
z

),

Q(z)Wβα∗(z)− Pβα∗(z) = O(
1
z

),

Q(z)Wα∗β(z)− Pβ(z)Wα∗(z) + Pβα∗(z) = O(
1

zn+1
)

2. Q(z) = pn(−z) solves switched (Type I with Type II) Hermite-Padé approximations

Q(z)Wα∗(z)− Pα∗(z) = O(
1
z

), (7-10a)

Q(z)Wα∗β(z)− Pα∗β(z) = O(
1
z

), (7-10b)

Q(z)Wβα∗(z)− Pα∗(z)Wβ(z) + Pα∗β(z) = O(
1

zn+1
) (7-10c)

We finish this section with a few results which pave the way to the Riemann-Hilbert problem approach

to biortogonal polynomials {qn, pn} which will be presented in the next section.

Definition 7.5. We define the auxiliary vectors in addition to the main polynomial vectors q0(w) := q(w)

and p0(z) := p(z), as

q1(w) :=
∫

q(y)
dβ(y)
w − y

,
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q2(w) :=
∫

q1(x)
w − x

dα∗(x), (7-11)

p1(z) :=
∫

p(x)dα(x)
z − x

, (7-12)

p2(z) :=
∫

p1(y)
z − y

dβ∗(y). (7-13)

Moreover,

p̂1(z) := L̂−1(p1(z) +
1
β0
〈p|1〉) = L̂−1p1(z)− 1, (7-14)

p̂2(z) :=
∫

p̂1(y)
z − y

dβ∗(y). (7-15)

Here 1 is the vector of ones.4.

Remark 7.6. Note that the definition above unifies the approximants and their respective remainders

(see Theorem 7.1), thus, for example, q1(w) = Rβ(w),q2(w) = Rα∗β(w) etc. The definition of “hatted”

quantities is justified below.

Theorem 7.3 (Extended Christoffel-Darboux Identities). Let a, b = 0, . . . 2. Then

(w + z)qT
a

(w)Πp
b
(z) = qT

a
(w)A(−w)p̂

b
(z)− F(w, z)ab (7-16)

where

F(w, z) =

0 0 1
0 1 Wβ∗(z) +Wβ(w)
1 Wα(z) +Wα∗(w) Wα∗(w)Wβ∗(z) +Wα∗β(w) +Wβ∗α(z)

 . (7-17)

Proof. The proof goes by repeated applications of the Christoffel-Darboux Identities given by Theorem

6.1 and Padè approximation conditions 7-5. We observe that all quantities with labels a = 1, 2 have

asymptotic expansions around ∞ in the open half-planes C± (they are holomorphic expansions in the

case of compactly supported measures dα,dβ). We will subsequently call the part of the expansion

corresponding to negative powers of z or w, of a function f(z, w) the regular part of f and denote it

(f(z, w))−,z, (f(z, w))−,w respectively. In all cases the regular parts are obtained by subtracting certain

polynomial expressions from functions holomorphic in C± and as such the regular parts are holomorphic

in these half-planes with vanishing limits at ∞ approach from within the respective half-planes.

We the indicate the main steps in computations for each entry, denoted below by (a, b).

(0,1):

With the help of the first approximation condition, we have

qT1 (w)Πp0(z) =
(∫

qT0 (w)Πp0(z)
w − y

dβ(y)
)
−,w

.

4The formula β−1
0 < bpn, 1 >= −1 follows directly from the determinantal expression in Proposition 6.2
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Using the Christoffel-Darboux Identities and the notation of Corollary 6.2 we get

qT1 (w)Πp0(z) =
(∫

qT0 (w)A(−w)p̂0(z)
(w + z)(w − y)

dβ(y)
)
−,w

=∫
qT0 (y)A(−w)p̂0(z)

(w + z)(w − y)
dβ(y) +

(∫
(qT0 (w)− qT0 (y))A(−w)p̂0(z)

(w + z)(w − y)
dβ(y)

)
−,w

,

where we dropped the projection sign in the first term because A(−w) is a polynomial of degree one.

Using now the partial fraction decomposition

1
(w + z)(w − y)

=
1

z + y

(
1

w − y
− 1
w + z

)
,

we get that(∫
(qT0 (w)− qT0 (y))A(−w)p̂0(z)

(w + z)(w − y)
dβ(y)

)
−,w

= −

(∫
(qT0 (−z)− qT0 (y))[Π, (−z −YT )L̂]p̂0(z)

(w + z)(z + y)
dβ(y)

)
−,w

.

Observe that (−z−YT )L̂p̂0(z) = 0, qT0 (−z)(−z−YT )L̂ = 0 and qT0 (y)(−z−YT )L̂ = −(y+z)qT0 (y)L̂

so (∫
(qT0 (w)− qT0 (y))A(−w)p̂0(z)

(w + z)(w − y)
dβ(y)

)
−,w

=

(∫
(qT0 (y))(z + YT )L̂Πp̂0(z)

(w + z)(z + y)
dβ(y)

)
−,w

=

∫
qT0 (y)L̂Πp̂0(z)

w + z
dβ(y) = 0,

because the β averages of q̂ are zero. Thus

(w + z)qT1 (w)Πp0(z) = qT1 (w)A(−w)p̂0(z).

(2,0):

Using the second Padè approximation condition and biorthogonality we easily obtain

RT
βα∗(w)Πp0(z) =

RT
βα∗(w)A(−w)p̂0(z) + 1

w + z
,

Now, substituting this formula into the formula for the third approximation condition, written as in

equation (7-7), gives:

RT
α∗β(w)Πp0(z) =

RT
α∗β(w)A(−w)p̂0(z)− 1

w + z
.

Restoring the collective notation of qa,pa we obtain :

(w + z)qT2 (w)Πp0(z) = qT2 (w)A(−w)p̂0(z)− 1.

(0,1):
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To compute qT0 (w)Πp1(z) we use the Padè approximation conditions 7-8, in particular the first con-

dition gives us:

qT0 (w)Πp0(z)Wα(z)− qT0 (w)ΠPα(z) = qT0 (w)ΠRα(z).

We observe that this time we have to project on the negative powers of z. Thus the goal is to compute(
qT0 (w)Πp0(z)Wα(z)

)
−,z. We have(∫

qT0 (w)Πp0(z)dα(x)
z − x

)
−,z

=
(∫

qT0 (w)A(−w)p̂0(z)dα(x)
(z − x)(w + z)

)
−,z

=(∫
qT0 (w)A(−w)p̂0(x)dα(x)

(z − x)(w + z)

)
−,z

+
(∫

qT0 (w)A(−w)(p̂0(z)− p̂0(x))dα(x)
(z − x)(w + z)

)
−,z

.

We see that the first term is already regular in z. To treat the second term we perform the partial fraction

expansion 1
(z−x)(w+z) = 1

w+x [ 1
z−x −

1
w+z ] and observe that the term with 1

z−x does not contribute, while

the second term

−
(∫

qT0 (w)A(−w)(p̂0(z)− p̂0(x))dα(x)
(w + x)(w + z)

)
−,z

= −
(∫

qT0 (w)A(−w)(p̂0(−w)− p̂0(x))dα(x)
(w + x)(w + z)

)
−,z

=∫
qT0 (w)A(−w)p̂0(x)dα(x)

(w + x)(w + z)
.

Thus

qT0 (w)Πp1(z) =
qT0 (w)A(−w)L̂−1p1(z)

w + z
− qT0 (w)A(−w)L̂−1p1(−w)

w + z
.

In other words,

(w + z)qT0 (w)Πp1(z) = qT0 (w)A(−w)L̂−1(p1(z)− p1(−w)).

More explicitly, the second term above can be rewritten as

−qT0 (w)A(−w)L̂−1p1(−w) = qT0 (w)Π
∫

p(x)dα(x).

On the other hand

qT0 (w)A(−w)
∫∫

p̂(x)dα(x)dβ(y)
β0(x+ y)

= qT0 (w)Π
∫∫

(w + x)p(x)dα(x)dβ(y)
β0(x+ y)

=

qT0 (w)Π
∫

p(x)dα(x) + qT0 (w)Π
∫∫

(w − y)p(x)dα(x)dβ(y)
β0(x+ y)

.

Now the second term qT0 (w)Π
∫∫ (w−y)p(x)dα(x)dβ(y)

β0(x+y) = 0 because qT0 (w)Π〈p(x)|•〉 is a projector on poly-

nomials of degree ≤ n− 1 and thus wqT0 (w)Π〈p(x)|1〉 − qT0 (w)Π〈p(x)|y〉 = w − w = 0, hence

(w + z)qT0 (w)Πp1(z) = qT0 (w)A(−w)p̂1(z),

where p̂1(z) = L̂−1(p1(z) + 1
β0
〈p|1〉) as advertised earlier.
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(1, 1):

We use again the Padè approximation conditions 7-8, this time multiplying on the left by qT1 (w)Π

and projecting on the negative powers of z , to obtain:(
qT1 (w)Πp0(z)Wα(z)

)
−,z = qT1 (w)Πp1(z).

With the help of the result for the (0, 1) entry, after carrying out the projection, we obtain

(w + z)qT1 (w)Πp1(z) = qT1 (w)A(−w)p̂1(z) + qT1 (w)A(−w)
(∫

p̂(x)dα(x)
w + x

− 1
β0
〈p̂|1〉

)
.

We claim that

qT1 (w)A(−w)
(∫

p̂(x)dα(x)
w + x

− 1
β0
〈p̂|1〉

)
= −1.

Indeed, the left hand side of the equation equals:

1
β0

qT1 (w)Π
∫∫

(y − w)p(x)dα(x)dβ(y)
x+ y

=
1
β0

∫
qT0 (ξ)
w − ξ

Π(〈p|y〉 − w〈p|1〉)dβ(ξ) =

1
β0

∫
ξ − w
w − ξ

dβ(ξ) = −1.

Thus

(w + z)qT1 (w)Πp1(z) = qT1 (w)A(−w)p̂1(z)− 1.

(2, 1):

This time we use projections in both variables, one at a time, and compare the results. First, let us

use the projections in z. Thus

qT2 (w)Πp1(z) =
(
qT2 (w)Πp0(z)Wα(z)

)
−,z .

Carrying out all the projections we obtain an expression of the form:

qT2 (w)Πp1(z) =
qT2 (w)A(−w)p̂1(z)

w + z
− Wα(z) + F (w)

w + z
.

Observe that, since qT2 (w) is O(1/w) and the first term on the right is much smaller, F (w) = O(1). More

precisely, by comparing the terms at 1/w on both sides, we conclude that in fact, F (w) = O(1/w). Now,

we turn to the projection in w, resulting in an expression of the form:

qT2 (w)Πp1(z) =
qT2 (w)A(−w)p̂1(z)

w + z
− Wα∗(w) +G(z)

w + z
.

This, and the fact that F (w) = O(1/w), implies that F (w) = Wα∗(w), G(z) = Wα(z). Hence

(w + z)qT2 (w)Πp1(z) = qT2 (w)A(−w)p̂1(z)− (Wα(z) +Wα∗(w)).
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(0, 2):

We use the projection in the z variable and the fact that by the Padè approximation condition (7-7),

after exchanging α with β, p2(z) = p1(z)Wβ∗(z) − Rαβ∗(z). Using the result for the (0, 1) entry we

obtain:

qT0 (w)Πp2(z) =
qT0 (w)A(−w)p1(z)Wβ∗(z)

w + z
−
(

qT0 (w)A(−w)p0(z)Wαβ∗(z)
w + z

)
−,z

.

Carrying out the projection and reassembling terms according to the definition of p̂2(z) we obtain:

qT0 (w)Πp2(z) =
qT0 (w)A(−w)p̂2(z)

w + z
− qT0 (w)Π〈p0|1〉

w + z
=

qT0 (w)A(−w)p̂2(z)
w + z

− 1
w + z

.

(1, 2):

We use the projection in the z variable and the Padè approximation condition p2(z) = p1(z)Wβ∗(z)−
Rαβ∗(z).

Consequently,

qT1 (w)Πp2(z) = qT1 (w)Πp1(z)Wβ∗(z)− qT1 (w)ΠRαβ∗(z) =(
qT1 (w)A(−w)p̂1(z)− 1

w + z

)
Wβ∗(z) −

(
qT1 (w)Πp0(z)Wαβ∗(z)

)
−,z .

Using the existing identities and carrying out the projection in the second term we obtain:

(w + z)qT1 (w)Πp2(z) = qT1 (w)A(−w)p̂2(z)−Wβ∗(z)−Wβ(w).

(2, 2):

The computation is similar to the one for (1, 2) entry; we use both projections. The projection in the

z variable gives:

qT2 (w)Πp2(z) =
qT2 (w)A(−w)p̂2(z)

w + z
+
F (w)− (Wα∗(w) +Wα(z))Wβ∗(z) +Wαβ∗(z)

w + z
.

On the other hand, carrying out the projection in the w variable we obtain:

qT2 (w)Πp2(z) =
qT2 (w)A(−w)p̂2(z)

w + z
+
G(z)− (Wβ(w) +Wβ∗(z))Wα∗(w) +Wβα∗(w)

w + z
.

Upon comparing the two expressions and using Lemma 7.2 we obtain F (w) = −Wα∗β(w), hence

(w + z)qT2 (w)Πp2(z) = qT2 (w)A(−w)p̂2(z)−Wα∗β(w)− (Wα∗(w) +Wα(z))Wβ∗(z) +Wαβ∗(z) =

qT2 (w)[Π,A(−w)]p̂2(z)− (Wα∗(w)Wβ∗(z) +Wα∗β(w) +Wβ∗α(z)),

where in the last step we used again Lemma 7.2.
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We point out that if we set w = −z in the CDI’s contained in Theorem 7.3, the left hand side

vanishes identically and the RHS contains terms of the form qa(−z)A(z)p̂
b
(z) minus Fab(−z, z). The

main observation is that the second term is constant, independent of both z and n, and hence one ends

up with the perfect pairing (see [15]) between the auxiliary vectors. For the reader’s convenience we

recall the definition of A(z) to emphasize the implicit dependence on the index n hidden in the projection

Π.

Theorem 7.4. (Perfect Duality)

Let

J =

0 0 1
0 1 0
1 0 0

 .
Then

qT
a

(−z)A(z)p̂
b
(z) = Jab,

where

A(z) = [(z −X)L̂,Π].

Proof. The only nontrivial entry to check is (2, 2). In this case, after one substitutes w = −z into

Wα∗(w)Wβ∗(z) +Wα∗β(w) +Wβ∗α(z), one obtains the identity of Lemma 7.2.

There also exists an analog of the extended Christoffel-Darboux identities of Theorem 7.3 for the

“hatted” quantities.

We first define:

Definition 7.6. For a = 0, 1, 2,

q̂T
a

:= qT
a
L̂. (7-18)

The following identities follow directly from the respective definitions.

Lemma 7.3.

wq̂Ta (w) =

{
qTa (w)YT L̂, a = 0, 1
qT2 (w)YT L̂− 〈1|q̂T0 〉, a = 2.

(z −X)L̂p̂b(z) =


0, b = 0,
〈p0|z+y〉

β0
, b = 1,

−〈p0|1〉+ 〈p0|z+y〉Wβ∗ (z)

β0
, b = 2.

Theorem 7.5 (Extended Christoffel-Darboux Identities). Let a, b = 0, . . . 2. Then

(w + z)q̂Ta (w)Πp̂b(z) = qTa (w)A(z)p̂b(z)− F̂(w, z)ab (7-19)

where

F̂(w, z) = F(w, z)− w + z

β0

0 1 Wβ∗(z)
0 Wβ(z) Wβ(w)Wβ∗(z)
1 Wα∗β∗(w) Wα∗β∗(w)Wβ∗(z)

 . (7-20)
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Proof. We give an outline of the proof. For a = 0, 1, in view of Lemma 7.3

(w + z)q̂Ta (w)Πp̂b(z) = qTa (w)A(z)p̂b(z) + qTa (w)Π(z −X)L̂p̂b(z).

The second term equals, again by Lemma 7.3,

qTa (w)Π


0, b = 0,
〈p0|z+y〉

β0
, b = 1,

−〈p0|1〉+ 〈p0|z+y〉Wβ∗ (z)

β0
, b = 2.

Now, one goes case by case, using biorthogonality of qT0 and p0, and the definition of qT1 (w). After a

few elementary steps one arrives at the claimed result. The computation for a = 2 is only slightly more

involved. From Lemma 7.3 we obtain:

(w + z)q̂T2 (w)Πp̂b(z) = qT2 (w)A(z)p̂b(z)− 〈1|q̂0〉Πp̂b(z) + qT2 (w)Π(z −X)L̂p̂b(z).

In view of biorthogonality of q̂T0 and p̂, after some intermediate computations, one obtains:

〈1|q̂0〉Πp̂b(z) =


1, b = 0
Wα(z) + 〈1|1〉

β0
, b = 1,

Wβ∗α(z) + 〈1|1〉
β0

Wβ∗(z), b = 2.

Likewise,

qT2 (w)Π(z −X)L̂p̂b(z) =


0, b = 0
w+z
β0

Wα∗β(w)−Wα∗(w) + 〈1|1〉
β0

, b = 1,
w+z
β0

Wβ∗(z)Wα∗(w)−Wα∗β(w)−Wβ∗(z)Wα∗(w) + 〈1|1〉
β0

Wβ∗(z), b = 2,

and the claim follows.

8 Riemann–Hilbert problems

In this section we set up two Riemann–Hilbert problems characterizing the Cauchy BOPs that enter the

Christoffel–Darboux identities of the previous section. This is done in anticipation of possible applications

to the study of universality for the corresponding two–matrix model. Moreover, since the Christoffel–

Darboux kernels contain also the hatted polynomials, it is useful to formulate the Riemann–Hilbert

problems for those polynomials as well.

We will also make the assumption (confined to this section) that the measures dα,dβ are absolutely

continuous with respect to Lebesgue’s measure on the respective axes. Thus one can write

dα
dx

= e−
U(x)

~ ,
dβ
dy

= e−
V (y)

~ , (8-1)
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for the respective (positive!) densities on the respective supports: the signs in the exponents are conven-

tional so as to have (in the case of an unbounded support) the potentials U, V bounded from below. The

constant ~ is only for convenience when studying the asymptotics of biorthogonal polynomials for large

degrees (small ~).

Since the Christoffel–Darboux identities involve the expressions q
a
Ap̂

b
, we are naturally led to char-

acterize the sequences q and p̂. However, the other sequences can be characterized in a similar manner

by swapping the rôles of the relevant measures and symbols.

8.1 Riemann–Hilbert problem for the q–BOPs

We will be describing here only the RHP characterizing the polynomials qn(y), where the characterization

of the polynomials pn(x) is obtained by simply interchanging α with β (see for example Theorem 7.2).

We consider the real axis R oriented as usual and define

~q(n)
0 (w) :=

 qn−2(w)
qn−1(w)
qn(w)

 ,

~q(n)
1

(w) :=
∫
~q(n)(y)

dβ(y)
w − y

,

~q(n)
2

(w) :=
∫
~q(n)

1 (x)
dα∗(x)
w − x

(8-2)

For simplicity of notation we will suppress the superscript (n) in most of the following discussions, only

to restore it when necessary for clarity; the main point is that an arrow on top of the corresponding

vector will denote a “window” of three consecutive entries of either the ordinary vector q (index a = 0),

or the auxiliary vectors q
a

(index a = 1, 2, see Def. 7.5) which, as we might recall at this point, combine

the polynomials and the corresponding remainders in the Hermite-Padè approximation problem given by

Theorem 7.1. Some simple observations are in order;

• the vector ~q1(w) is an analytic vector which has a jump–discontinuity on the support of dβ contained

in the positive real axis. As w → ∞ (away from the support of dβ) it decays as 1
w . Its jump-

discontinuity is (using Plemelj formula)

~q1(w)+ = ~q1(w)− − 2πi
dβ
dw

~q0(w) , w ∈ supp(dβ). (8-3)

Looking at the leading term at w =∞ we see that

~q1(w) =

ηn−2

ηn−1

ηn

 1
w

+O(1/w2) . (8-4)
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• The vector ~q2(w) is also analytic with a jump discontinuity on the reflected support of dα (i.e.

on supp(dα∗)). In view of Theorem 7.1, recalling that q2 are remainders of the Hermite-Padè

approximation problem of type II, we easily see that

~q2(w) =



cn−2

(−w)n−1

cn−1

(−w)n

cn
(−w)n+1


(1 +O(1/w))

cn := 〈xn|qn〉 =
√
Dn+1

Dn
> 0. (8-5)

The jump-discontinuity of ~q2 is

~q2(w)+ = ~q2(w)− − 2πi
dα∗

dw
~q1(w) w ∈ supp(dα∗). (8-6)

• The behavior of ~q0(w) at infinity is

~q0(w) =



wn−2

cn−2

wn−1

cn−1

wn

cn


(1 +O(1/w)), (8-7)

with the same cn’s as in 8-5.

Define the matrix

Γ(w) :=

=:Nq︷ ︸︸ ︷1 −cnηn 0
0 1 0
0 (−1)n−1 ηn−2

cn−2
1


 0 0 cn

0 1
ηn−1

0
(−1)n

cn−2
0 0

[~q(n)
0

(w), ~q(n)
1

(w), ~q(n)
2

(w)] (8-8)

Proposition 8.1. The matrix Γ(w) is analytic on C \ (supp(dβ)∪ supp(dα∗). Moreover, it satisfies the

jump conditions

Γ(w)+ = Γ(w)−

 1 −2πi dβ
dw 0

0 1 0
0 0 1

 , w ∈ supp(dβ) ⊂ R+

Γ(w)+ = Γ(w)−

 1 0 0
0 1 −2πidα∗

dw
0 0 1

 , w ∈ supp(dα∗) ⊂ R−

(8-9)
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and its asymptotic behavior at w =∞ is

Γ(w) = (1 +O(w−1))

 wn 0
0 w−1 0
0 0 w−n+1

 (8-10)

Moreover, Γ(w) can be written as:

Γ(w) =

cnηn 0 0
0 1

ηn−1
0

0 0 (−1)n−1ηn−2
cn−2


q̂n−1 q̂1,n−1 q̂2,n−1

qn−1 q1,n−1 q2,n−1

q̂n−2 q̂1,n−2 q̂2,n−2

 . (8-11)

Proof. All the properties listed are obtained from elementary matrix computations.

Remark 8.1. An analogous problem with the rôles of α, β, etc., interchanged, characterizes the monic

orthogonal polynomials pn−1(x) of degree n− 1 in x.

Corollary 8.1. Given n ∈ N, the absolutely continuous measures dβ ⊂ R+ and dα∗ ⊂ R−, and assuming

the existence of all the bimomoments Iij there exists a unique matrix Γ(w) solving the RHP specified by

equations (8-9), (8-10). The solution characterizes uniquely the polynomials qn−1 as well as q̂n−1. In

particular, the normalization constants cn−1, ηn−1 (i.e. the “norm” of the monic orthogonal polynomials

and the β average of the qn−1) are read off the following expansions

Γ2,1(w) =
1

cn−1ηn−1
wn−1 +O(wn−2) , (8-12)

Γ2,3(w) = (−1)n
cn−1

ηn−1wn
+O(w−n−1) (8-13)

or, equivalently,

1
η2
n−1

= (−1)n lim
w→∞

wΓ2,1(w)Γ2,3(w),

c2n−1 = (−1)n lim
w→∞

w2n−1 Γ2,3(w)
Γ2,1(w)

.

(8-14)

Proof. Given dβ and dα∗ it suffices to construct the Nikishin systems Wβ ,Wβα∗ and Wα∗ ,Wα∗β followed

by solving the Hermite-Padé approximation problems given by equations (7-5). The existence of the

solution is ensured by the existence of all bimoments Iij (see equation (4-5) for the definition). Then

one constructs the polynomials q̂j , finally the matrix Γ(w) using equation (8-11). By construction Γ(w)

satisfies the Riemann-Hilbert factorization problem specified by equations (8-9) and (8-10). Since the

determinant of Γ(w) is constant in w (and equal to one), the solution of the Riemann–Hilbert problem

is unique. The formulas for ηn−1 and cn−1 follow by elementary matrix computations.

49



8.1.1 A Riemann–Hilbert problem with constant jumps

Let us recall that

dα
dx

= e−
1
~U(x) , x ∈ supp(dα)

dβ
dy

= e−
1
~V (y) , y ∈ supp(dβ). (8-15)

In order to modify the RHP into one with constant jumps we make the (restrictive) assumption (only for

this subsection) that the potentials can be extended to analytic functions off the real axis. An example

is if U(x), V (y) are real–analytic functions. The matrix

Y(w) := Γ(w)


exp

(
− 2V+U?

3~

)
0 0

0 exp
(
V−U?

3~

)
0

0 0 exp
(

2U?+V
3~

)
 (8-16)

solves a similar RH problem but with constant jump-discontinuity (and still with unit determinant);

hence one can conclude immediately that it solves a linear ODE in the complex plane (or in the maximal

domain of meromorphicity of U, V ). The detailed singularity structure of this ODE depends on the

analyticity properties of the potentials but the issue is of no relevance for the moment. For similar

situation in the ordinary OP case see [27].

This new RHP exhibits the following jumps

Y+(w) = Y−(w)

1 −2πi 0
0 1 0
0 0 1

 , w ∈ supp(dβ)

Y+(w) = Y−(w)

1 0 0
0 1 −2πi
0 0 1

 , w ∈ supp(dα∗) (8-17)

Remark 8.2. Since the jumps are constants it follows straightforwardly that Y(w) solves a linear ODE

with the same singularities as V ′, U?′; for example if U ′, V ′ are rational functions then so is the coefficient

matrix of the ODE and the orders of poles do not exceed those of V ′, U ′. It would be possible to express

this ODE directly in terms of the coefficients of the recurrence relations using methods already exploited in

[28, 29, 30, 15]; such expressions should be used in proving that the principal minors Dn of the matrix of

bimoments Iij are also isomonodromic tau–functions in the sense of Jimbo–Miwa–Ueno [31]. In a certain

sense this is to be expected a priori because the vanishing of the isomonodromic tau function characterizes

the non–solvability of the Riemann–Hilbert problem, i.e. the (non)–existence of the BOPs, exactly as the

principal minors of I do.

8.2 Riemann–Hilbert problem for the p̂–BOPs

Referring to the defining properties of p̂n(x) as indicated in Prop. 6.2 we are going to define a second

3× 3 local RHP that characterizes them.
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Define

~̂p0(z) :=

 p̂n−2(z)
p̂n−1(z)
p̂n(z)

 (8-18)

and ~̂p1,2(z) as the same windows of the auxiliary vectors p̂1,2 introduced in Definition 7.5. We first

study the large z asymptotic behavior of p̂0,n(z), p̂1,n(z), p̂2,n(z).

Lemma 8.1. The asymptotic behavior at z →∞, z ∈ C± is given by:

p̂0,n(z) = −ηn
cn
zn(1 +O(1/z)), (8-19)

p̂1,n(z) = −1 +O(1/z), (8-20)

p̂2,n(z) = (−1)n
cn+1ηn+1

zn+2
(1 +O(1/z)). (8-21)

Proof. We give a proof for p̂1,n(z) =
∫ bp0,n(x)

z−x dα(x)+ 1
β0
〈p̂0,n|1〉. The first term is O( 1

z ), while the second

term can be computed using biorthogonality and the fact that p̂0,n = −(ηnp0,n+ηn−1p0,n−1+· · ·+η0p0,0).

Thus the second term equals − η0
β0
〈p0,0|1〉 = −1, since η0 = q0β0, hence the claim for p̂1,n(z) follows. The

remaining statements are proved in a similar manner.

For reasons of normalization, and in full analogy with equation (8-8), we arrange the window of all

p̂s wave vectors into the matrix

Γ̂(z) =

=:Nbp︷ ︸︸ ︷ 0 0 − cn
ηn

0 −1 0
(−1)n

cn−1ηn−1
0 0


 1 −1 0

0 1 0
0 −1 1

[~̂p(z), ~̂p1(z), ~̂p2(z)
]
. (8-22)

Proposition 8.2. The matrix Γ̂(z) is analytic in C \ supp(dα) ∪ supp(dβ∗). Moreover, it satisfies the

jump conditions

Γ̂(z)+ = Γ̂(z)−

 1 −2πidα
dz 0

0 1 0
0 0 1

 , z ∈ supp(dα) ⊆ R+

Γ̂(z)+ = Γ̂(z)−

 1 0 0
0 1 −2πidβ∗

dz
0 0 1

 , z ∈ supp(dβ∗) ⊆ R−,

(8-23)

and its asymptotic behavior at z =∞ is

Γ̂(z) =
(

1 +O
(

1
z

)) zn 0
0 1 0
0 0 1

zn

 . (8-24)
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Γ̂(z) can be written as:

Γ(z) =

cn 0 0
0 −1 0
0 0 (−1)n

cn−1

 p0,n p1,n p2,n

p̂0,n−1 p̂1,n−1 p̂2,n−1

p0,n−1 p1,n−1 p2,n−1

 . (8-25)

The existence and uniqueness of the solution of the Riemann-Hilbert problem (8-23), (8-24) is proved

in a similar way to the proof of Corollary 8.1.

Corollary 8.2. Given n ∈ N, the absolutely continuous measures dα ⊂ R+ and dβ∗ ⊂ R−, and assuming

the existence of all the bimomoments Iij there exists a unique matrix Γ(z) solving the RHP specified by

equations (8-23), (8-24). The solution characterizes uniquely the polynomials p̂n−1 and pn.
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