
CRM-3205 (2005)

Biorthogonal polynomials for 2-matrix models with
semiclassical potentials

M. Bertola
���

12�
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Abstract

We consider the biorthogonal polynomials associated to the two–matrix model where the potentials

V1, V2 have arbitrary rational derivative and are constrained on an arbitrary union of intervals (hard-

edges). We show that these polynomials satisfy certain recurrence relations with a number of terms

di depending on the number of hard-edges and on the degree of the rational functions V �i . Using

these relations we derive Christoffel–Darboux identities satisfied by the biorthogonal polynomials:

this enables us to give explicit formulæ for the differential equation satisfied by di � 1 consecutive

polynomials, We also define certain integral transforms of the polynomials and use them to formulate

a Riemann–Hilbert problem for � di � 1 �
	�� di � 1 � matrices constructed out of the polynomials and

these transforms. Moreover we prove that the Christoffel–Darboux pairing can be interpreted as a

pairing between two dual Riemann–Hilbert problems.
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1 Introduction and setting

In this paper we consider the biorthogonal polynomials associated to the two–matrix model. The

model is defined by a measure on the space of pairs of Hermitean matrices M1,M2 of the form

dµ �M1,M2 � : � dM1dM2e 
 Tr � V1 � M1 � 
 V2 � M1 ��� M1M2 � . (1-1)
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Using Itzykson–Zuber/Harish-Chandra’s formula, the model can be reduced to the study of biorthog-

onal polynomials [10] (BOPs for short), namely two sequences of polynomials � πn � x ��� , � σn � y ����
R

�
R

dxdye 
 V1 � x � 
 V2 � y ��� xyπn � x � σm � y ��� δnm . (1-2)

For the model to have a probabilistic interpretation, the potentials should be real and satisfy certain

growth conditions to ensure the convergence of the integrals. In order to introduce the setting of

this paper we consider the following situation (which is strictly included in the more general setting

to be expounded later)

1. There is a finite collection of disjoint intervals I ��� Ij � Rx and J ��� j Jj � Ry (Rx

denotes the real axis of the x-variable), in the complement of which the potentials are ��� : in

other words the matrices M1,M2 have spectrum confined to these multi-intervals, so that the

associated BOPs satisfy �
I

�
J

dxdye 
 V1 � x � 
 V2 � y ��� xyπn � x � σm � y ��� δnm (1-3)

2. The two potentials V1 � x � and V2 � y � are the restriction to I, J (respectively) of real-analytic

functions with rational derivative (with poles symmetrically placed off the real axis, or on the

complement of the intervals on the real axis) together with the necessary growth condition if

the intervals are unbounded.

This situation has been addressed in [2] within the general context of bilinear moment functionals.

Indeed it is convenient to recast the orthogonality condition in a more abstract setting where one

considers a bimoment functional L : C � x �! C � y �#" C defined by

L � xi $ yj � : � �
I

�
J

dxdy xiyje 
 V1 � x � 
 V2 � y �%� xy � µij . (1-4)

and then extended by linearity to arbitrary polynomials. The biorthogonality condition then reads

L � πn
$σm �&� δnm . (1-5)

The properties of the potentials V1, V2 and the supports of integration can be dealt with on the same

footing by purely algebraic methods: to this end one introduce four polynomials Ai, Bi, i � 1, 2

according to the strategy outlined hereafter. Let � xj ,mj � be the location of the poles of V �1 � x � with

their order (we include all of the poles, in this case also the complex conjugates, which clearly come

in with the same multiplicities) and let aj be the endpoints of I. We define then A1, B1 (and similar

expressions for A2, B2) as follows

B1 � x �&�(')� x * xj � mj '+� x * aj � , A1 : � V �1B1 * B �1 , (1-6)
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so that now V �i � Ai � B ,i
Bi

. It is a straightforward exercise to verify (using integration by parts) that the

bimoment functional satisfies the following distributional identities for arbitrary p � x �.- C � x � , s � y ��-
C � y �

L /0* B1 � x � p � � x � � A1 � x � p � x �2111 s � y �435� L / B1 � x � p � x �6111 ys � y �43 , (1-7)

L / p � x �6111 * B2 � y � s � � y � � A2 � y � s � y � 3 � L / xp � x �2111B2 � y � s � y � 3 . (1-8)

Abstracting formulæ (1-7,1-8) from the specific context, we will say that a bimoment functional L

is semiclassical if it satisfies those same relations (1-7,1-8) for some given (and fixed) polynomials

Ai, Bi. The name comes from a similar usage in the context of ordinary orthogonal polynomials [9].

Such functionals have been studied in [2], where it was shown that

Proposition 1.1 For given Ai, Bi, i � 1, 2, a semiclassical moment functional L is the linear

combination of s1s2 independent functionals Lν,µ, µ � 1 . . . , s1, ν � 1, . . . , s2, where si �
max � degAi,degBi � 1 �
More importantly (at least in the case degAi 7 degBi � 1) all of these moment functionals Lµ,ν

can be given an integral representation completely analog to (1-4), but without any restriction on

the reality of the potentials or of the contours of integration: this is the setting of the present paper.

1.1 Connection to other orthogonal polynomials

The algebraic properties of semiclassical bilinear moment functionals apply to a slightly different class

of orthogonal polynomials. Let us consider in fact orthogonal polynomials in the complex plane with

respect to a measure of the form

dµ � z, z � : � e 
98 z 8 2 � 2<V � z � d2z (1-9)

where V � z � is a holomorphic function such that V � � z � is rational. The convergence of the measure

mandates that the residues of V � � z � dz must have real part greater than * 1
2

and that the behavior at� of V cannot exceed the second power (and also a certain open condition on the coefficient of this

quadratic term which we do not specify here). Orthogonal polynomials are defined as a holomorphic

basis of L2 � C,dµ � . It is amusing to note that the moment functional

L � zj $ zk � : �;:
C

zizkdµ � z, z ��� : µjk (1-10)

is a semiclassical moment functional (using Stokes’ thm. in vece of integration by parts) with just

some (obvious) reality constraint on the bimoments. Therefore all the algebraic manipulations that

rely on the semiclassicity alone carry out verbatim to this case. In particular (with very minor

and trivial modifications) Section 2 almost entirely generalizes (in particular Thm. 2.1. Significant

differences (sufficient to require a different analysis to appear elsewhere) arise in the construction of

the fundamental systems and the Riemann–Hilbert problem.
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1.2 Connection to 2-Toda equations

The framework of this paper is connected to the general theory of 2-Toda equations [16, 1]. This is

the theory of a pair of (semi)-infinite matrices P,Q (in our notation) where Q is lower-Hessenberg

and P is upper–Hessenberg3 which evolve under a bi-infinite set of commuting flows � tj , <tj � j = N>
tJ
Q �?* 1

J
� Q, � QJ � 
 0 � , >6@

tJ
Q �?* 1

J
� Q, � P J � 
 0 � (1-11)>

tJ
P �?* 1

J
� P, � QJ � � 0 � , > @

tJ
P �A* 1

J
� P, � P J � � 0 � (1-12)

where the subscript B 0 denotes the upper/lower triangular part plus half of the diagonal (we are

assuming the normalization such that the upper triangular part of Q coincides with the transposed

of the lower-triangular part of P ).

Let now Q,P be semi-infinite matrices. We can use Q,P to denote the matrices expressing the

multiplicative recurrence relations of a sequence of polynomials,

xπn � n � 1C
j D 0

Qnjπj , yσn � n � 1C
j D 0

Pnjσn , (1-13)

where the polynomials are recursively defined by this relation. Using the generalization of Favard’s

theorem proved in our [2] we prove the existence of (unique) a bimoment functional L : C � x �4 C � y �#"
C such that

L � πn
$σm �&� δnm . (1-14)

It then follows easily that the 2-Toda flows are linearized by this moment map, in the sense that

the solutions Q � t, <t � , P � t, <t � are simply the multiplication matrices for the biorthogonal polynomials

of the moment functional

L
t,

@
t
�FE $ EG� : � L / e 
.H tJ

J
xJ E $ e 
IHKJtJ

J
yJ E 3 . (1-15)

The moment functionals of semiclassical type (eqs. 1-7, 1-8) that we are going to analyze form a

particular class of reductions of the above-mentioned 2-Toda hierarchy. The simplest situation is

the one of bimoment semiclassical functionals with polynomial potentials as the ones considered in

[3], where the matrices P,Q are also finite band. Moreover the solutions which arise in the context

of semiclassical bilinear functionals also satisfy the (compatible) constraint of the string equation� P,Q ��� ~1 (1-16)

3We say that a matrix is lower Hessenberg its L i, i M 1 M k N entries vanish ( O k P 1, 2, . . .) and also all L i, i M 1 N -
entries are nonzero. A matrix is upper Hessenberg if its transposed is lower-Hessenberg.

4



(the constant ~ can be disposed of by a rescaling). The parameter of the (finite–dimensional)

reduction are the coefficients of the potentials: for more general semiclassical moment functionals

as the ones considered in this paper, the parameters involve not only the coefficients of the partial

fraction expansions of the (derivatives of the) potentials, but also the position of the poles and the

position of the end-points of the supports of the measure (the hard–edge endpoints).

The paper is organized as follows

1. In Section 2 we derive the recurrence relation satisfied by the biorthogonal polynomials of

a semiclassical moment functional. There are two types of recurrence relations: one which

involves the multiplication by the spectral parameter (and plays the rôle of the more standard

three–term recurrence relation for orthogonal polynomials) and one which involves a differential

operator acting on the polynomials.

2. In Section 3 we recall some possibly not well known facts about a certain class of linear

homogeneous ODEs. These equations are next in simplicity to the class of constant coefficients

ODEs, inasmuch as the coefficients are allowed to be linear functions of the independent

variable. When considering the formal adjoint equation then the classical bilinear concomitant

provides a nondegenerate pairing between the solution spaces of the pair of mutually adjoint

ODEs. In this case we give an interpretation of it in terms of an intersection pairing

between certain contours used in the representation of the solutions as contour-integrals. This

part of the paper is logically quite independent on the rest but it is nevertheless necessary in

order to understand certain constructs of the following section.

3. In Section 4 we define the auxiliary wave vectors for our functionals, using a certain multiple

integral transform which relies upon the form of the bilinear concomitant associated to our

semiclassical moment functional (extending the some of the results of [5]). These expression

will prove crucial in the formulation of a first order ODE of rank di � deg � Ai � satisfied by

the biorthogonal polynomials. We also derive the analog of the Christoffel–Darboux identities

satisfied by standard orthogonal polynomials to our case of biorthogonal polynomials: similar

expression were extensively used in [3, 5] for the case where the potentials Vi are polynomi-

als (which is a subcase strictly included in our present setting) and in absence of hard-edge

endpoints. The novel feature is that these new identities involve not only the biorthogonal

polynomials of the moment functional L itself, but also those of the associated bilinear

semiclassical moment functionalsQ
L : � L � B1 E $ EG� ; RL : � L �FE $B2 EG� . (1-17)

This feature appears prominently in the perfect duality of the Riemann–Hilbert problems ap-

pearing in the next section.
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4. In Section 5 we define a pair4 of piecewise–analytic matrices constructed out of the entries

of the wave-vectors and their auxiliary wave-vectors. They satisfy certain jump conditions on

contours in the complex plane and some asymptotic behavior at the zeroes of B1. Moreover

they satisfy rational first order ODEs with poles at the zeroes of B1. The Christoffel–Darboux

identity, when written as a bilinear expression for these matrices becomes a perfect pairing

(Thm. 5.1) in the sense that establishes a nondegenerate constant (in x) duality-pairing

between the two solution spaces. This pairing is should be thought of as the “dressed” form

of the bilinear concomitant pairing introduced in Sect. 3. Similar Riemann–Hilbert problems

have appeared elsewhere in the literature, e.g. [14, 13, 5, 3].

In order to facilitate the navigation through the paper all proofs of more technical nature are collected

in appendix and only those that may help the understanding are left in the main body of the paper.

Acknowledgments. The author would like to thank R. Teodorescu for discussion during

the summer 2005 conference on Random Matrices at CRM and John Harnad for daily stimulating

interaction.

2 Semiclassical bilinear moment functionals of type BB

We consider an arbitrary bilinear semiclassical moment functional (as defined in the introduction) [2],

i.e. satisfying (1-7, 1-8). Let qi � deg � Bi � and di � deg � Ai � : we assume that di 7 qi � 1 (”type BB”

in the terminology of [2]). We also make the assumption that the two pairs of polynomials Ai, Bi

are reduced in the sense that the only common zeroes of Ai and Bi (i � 1, 2) are simple zeroes of

Bj. Any moment functional coming from a representation like the one in the introduction (1-4) has

this property of reducedness. In [2] the case of non-reduced moment functional is also considered,

and it corresponds to functionals which may be expressed as delta functions (or derivatives thereof):

we refer ibidem for details.

It is known [2] that any such reduced moment functional can be expressed in integral form

µij : � L � xi $ yj ��� d1C
µ D 1

d2C
ν D 1

κµ,νLµ,ν � xi $ yj � (2-1)

Lµν � xi $ yj ��� �
Γx,µ

�
Γy,ν

e 
 V1 � x � 
 V2 � y ��� xydxdy (2-2)

V �i � y �&� Ai � B �i
Bi

(2-3)

L � �S�
κ

xiyje 
 V1 � x � 
 V2 � y ��� xydxdy (2-4)

(2-5)

4In fact there are two such pairs, the other being obtained by interchanging the rôles of x, y, B1, B2 etc.
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The two sets of contours of integration Γx,µ and Γy,ν are defined in the x and y complex planes

respectively and in completely parallel fashion: we will define them in Section 3.1. We have also

introduced the short-hand notation�S�
κ

: � d1C
µ D 1

d2C
ν D 1

κµ,ν

�
Γx,µ

�
Γy,ν

(2-6)

Note that the case of hard-edges is included (in this case the fraction defining V �i s has common

divisors vanishing at the endpoints of the hard-edges).

The constants κµ,ν - C are arbitrary (not all zero). In the paper we will often invoke ”genericity”

conditions for the moment functional L: by this we mean that the genericity is in the choice of the

κ-constants and not in the choice of Ai, Bi which we consider as given once and for all. All of

the genericity conditions that we will use can be translated into the nonvanishing of certain infinite

sequences of minors of the matrix of bimoments M �T� µij � : since the moments µij are linear in κ

as per (2-1), this genericity boils down to avoiding an at-most-denumerable collection of divisors of

homogeneous polynomials in the κ-space.

2.1 Biorthogonal polynomials

Let us consider the biorthogonal polynomials associated to this bilinear moment functional, namely

two sequences of monic polynomials satisfying the following conditions� πn � x � , σn � y ��� n = N
πn � x �&� xn � O � xn 
 1 �
σn � y �&� yn � O � yn 
 1 �
L � πn

$σm �&� hnδnm . (2-7)

The existence of these BOPs is guaranteed provided that the principal minors of the matrix of

bimoments do not vanish

∆n � L � : � det � µij � 0 U i,j, U n 
 1 V 0 W n - N , (2-8)

which also guarantees that hn V 0 , W n - N ([2]). We find it more convenient to deal with the

normalized BOPs;

pn : � πnX
hn

, sn : � σnX
hn

(2-9)

We will use the following quasipolynomials

ψn : � pne 
 V1 � x � , φn : � sne 
 V2 � y � (2-10)
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and the following semi-infinite vectors (wave vectors)

p � x � : �Y� p0, p1, . . . , pn, . . . � t , s � y � : �Y� s0, s1, . . . , sn, . . . � t (2-11)

ΨZ : � p � x � e 
 V1 � x � , ΦZ : � s � y � e 
 V2 � y � (2-12)

It will become necessary to consider the following associated semiclassical functionals defined by

the relations RL � p $ s � : � L � p $B2 s � , Q
L � p $ s � : � L � B1 p

$ s � . (2-13)

We leave to the reader the simple check that these are also semiclassical moment functionals where

the potentials are replaced –respectively– byRV2 � y � : � V2 � y �#* lnB2 � y � , Q
V1 � x � : � V1 � x �[* lnB1 � x � . (2-14)

Note, however, that they have the same κ’s and are defined along the same contours as L.

2.2 Multiplicative recurrence relations

We now prove

Theorem 2.1 The BOPs satisfy the following finite-term recurrence relations:

x \ pn � q2C
j D 1

`j � n � pn 
 j ] � d2C
j D 
 1

αj � n � pn 
 j (2-15)

y \ sn � q1C
j D 1

mj � n � sn 
 j ] � d1C
j D 
 1

βj � n � sn 
 j (2-16)

qi � deg � Bi � , di � deg � Ai � ,
where `j � n �^� 0 for n _ d2 and mj � n �^� 0 for n _ d1, under a genericity assumption specified in

the proof. The coefficients α 
 1 � n � and β 
 1 � n � are nonzero for any n; furthermore, under the same

genericity assumptions letting ai, bi be the leading coefficients of Ai, Bi we have

b2αd2
� n �a` hn 
 d2

� a2`q2
� n � ` hn 
 q2 V 0 , n 7 d2

b1βd1
� n � ` hn 
 d1

� a1mq1
� n �a` hn 
 q1 V 0 , n 7 d1 (2-17)

Proof. We prove only one relation, the other being proved by interchanging the rôles.

The statement α 
 1 � n � V 0 follows from the form of the recurrence relation by comparison of the

leading coefficients, which gives

α 
 1 � n ���cb hn � 1

hn
V 0 . (2-18)
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The fact that `j � n �^� 0 for n _ d2 is a choice of convenience: indeed, since d2 d q2 any xpn can

be written as a linear combination of the same BOPs of degrees m � 0, . . . , n � 1 for n _ d2.

Consider xpn � x � : by ”integration by parts” (i.e. using relation 1-8 from right to left), we immediately

conclude that

xpn � x �fe B2 � y � C � 1, y, . . . , yn 
 d2 
 1 �0� : V � 2 �n (2-19)

Therefore V
� 2 �

n 
 q2
is in the common annihilator of xpn � x � , . . . , xpn 
 q2

� x � . We now show that it is

generically possible to fix the coefficients `n � j � of a linear combination as the left hand side of eq.

(2-15) such that the result is perpendicular to any polynomial q � y � of degree deg � q �&g n * d2. Let

q � y �&� B2 � y � a � y � � b � y � (2-20)

be the long division of q by B2 with remainder b: then

L \ xpn � x � 1111 q � y � ] � L \ xpn � x � 1111B2 � y � a � y � � b � y � ] � L \ xpn � x � 1111 b � y � ] (2-21)

Since the remainder b � y � is of degree at most q2 * 1, we can find the aforementioned linear combination

by solving the system

0 � L \ x h pn � q2C
j D 1

`j � n � pn 
 j i 1111 yk ] , k � 0, . . . , q2 * 1 . (2-22)

After doing so we have that a suitable linear combination in xC � pn, . . . , pn 
 q1
� is perpendicular to

any q � B2a � b with deg � a �jg n * d2 * q2, deg � b �j_ q2 * 1, or -in other words - to any q � y � of

degree less than n * d2, thus proving the shape of the recurrence relation.

In order to clarify the genericity assumption we are imposing we express the above condition as

a nonvanishing condition of certain submatrices of the matrix of moments. Indeed the polynomials<pn : � pn �Kk q2 `n � j � pn 
 j are uniquely determined by the condition that (for n 7 q2)

1. The degree of <pn is n;

2. The polynomial <pn is L-orthogonal to 1, y, . . . , yn 
 q2 
 1

3. The polynomial x <pn is L-orthogonal to 1, y, . . . , yq2 
 1 .
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This determines them as the following determinant (up to a nonzero multiplicative constant)

<pn : � cn det

lmmmmmmmmmmmmmmmmn
µ01 µ0,n � 1

µ11 µ1,n � 1

...
...

µq2 
 1,1 µq2 
 1,n � 1

µ00 µ0n

µ10 µ1n

...
...

µn 
 q2 
 1,0 µn 
 q2 
 1,n

1 x x2 . . . xn 
 1 xn

oqppppppppppppppppr
(2-23)

The genericity condition is then the nonvanishing of the principal minor of size n of the above

expression, namely the nonvanishing of the following matrices

∆n,2 : � det

lmmmmmmmmmmmmmn
µ01 µ0,n

µ11 µ1,n

...
...

µq2 
 1,1 µq2 
 1,n

µ00 µ0n 
 1

µ10 µ1n 
 1

...
...

µn 
 q2 
 1,0 µn 
 q2 
 1,n 
 1

oqpppppppppppppr , n - N. (2-24)

The normalization that <pn � pn � � lower degree � gives for the cn of eq. (2-23)

cn � 1

∆n,2

X
hn

(2-25)

Let us now check that this genericity assumption is actually equivalent to requiring αn � d2 � V 0 , W n.

Denoting by a2, b2 the leading coefficients of A2 � y � , B2 � y � we find

b2αd2
� n � ` hn 
 d2

� L � x <pn
$B2y

n 
 d2 
 q2 �&� L � <pn
$A2y

n 
 d2 
 q2 * O � yn 
 d2 
 1 �a�&� L � <pn
$ a2y

n 
 q2 �&� `q2
� n � a2 ` hn 
 q2

(2-26)
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This proves the identity (2-17): to prove that it does not vanish under our genericity conditions we

compute

L � <pn
$ a2y

n 
 q2 �&� a2

∆n,2

X
hn

det

lmmmmmmmmmmmmmn
µ01 µ0,n � 1

µ11 µ1,n � 1

...
...

µq2 
 1,1 µq2 
 1,n � 1

µ00 µ0n

µ10 µ1n

...
...

µn 
 q2,0 µn 
 q2,n

oqpppppppppppppr �
a2∆n � 1,2

∆n,2

X
hn

V 0 (2-27)

Q.E.D.

We can represent the previous recurrence relations in matrix form as follows

Proposition 2.1 The wave vectors satisfy the following recurrence relations

x � 1 � L � ΨZ � AΨZ , y � 1 � M � ΦZ � BΦZ (2-28)

where L is the lower triangular matrix with q2 subdiagonals whose matrix entries are Lnm � `n � n * m �
and A is a lower Hessenberg matrix with entries Anm � αn � m * n � (similarly for M,B). The entries

in the lowest and highest diagonals in 1 � L,A are non vanishing.

2.3 Differential recurrence relations

Proposition 2.2 Under a genericity assumption for the moment functional (specified in the proof)

the BOPs satisfy the following differential finite–term recurrence relations

∇x h pn � q1C
1

Q
mj � n � j � pn � j i �A* d1C

j D 
 1

Q
βj � n � j � pn � j (2-29)

∇y h sn � q2C
1

R̀ j � n � j � sn � j i �?* d2C
j D 
 1

Rαj � n � j � sn � j (2-30)

∇x : � > x * V �1 � x � , ∇y : � > y * V �2 � y � . (2-31)

In matrix form we have

∇x � 1 �YsM t � p �?* QBtp

∇y � 1 � RLt � s �?*tRAts , (2-32)
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where the matrices above are defined bysMnk � Q
mn 
 k � n � , Q

Bnk � Q
βn 
 k � n �RLnk � R̀ n 
 k � n � , RAnk � Rαn 
 k � n � . (2-33)

Note that they have the same shape as M,B,L,A respectively (whence the mnemonics of the

symbols).

Proof. We prove only the first of the two relations, the other being proved analogously. Consider the

unique (generically existing) vector p̃n in C � pn, . . . , pn � q1
� which is divisible by B1 � x � and ”monic”

w.r.t. pn in the sense that p̃n � pn � C � pn � 1, . . . , pn � q1
� . Writing then p̃n � B1qn we find

eV1
>
xp̃ne 
 V1 � B �1qn � B �1q �n * V �1B1qn � B1q �n * A1qn. (2-34)

This implies that �u* > x � V �1 � p̃n is a polynomial of degree n � d1 in spite of the fact that V �1 is

rational. Moreover

L \9�u* > x � V �1 � p̃n
1111 yk ] � L \v* B1q �n � A1qn 1111 yk ] � L \ B1qn 1111 yk � 1 ] � L \ p̃n

1111 yk � 1 ]cw 0 (2-35)

k g n * 1 (2-36)

This concludes the proof. The genericity condition that we are using now is the nonvanishing of

the principal minors of the associated moment functional

Q
L or (which is the same) the existence of

biorthogonal polynomials for

Q
L. Q.E.D.

For later convenience we remark that the genericity condition we are invoking now is also equiv-

alent to requiring that the vectors (the superscript � r � denoting the r-th derivative)x
p � r �n � xj � , . . . , p � r �n � q1 
 1 � xj �4y , (2-37)

B1 � xj �&� 0, r � 0 . . . rj , B1 � x �&� b1 s'
j D 1

� x * xj � rj (2-38)

be linearly independent: indeed

pn � q1C
1

Q
mj � n � j � pn � j � en

lmmmmmmmmmn
pn � x1 � pn � q1

� x1 �
...

...

p
� r1 �
n � x1 � p

� r1 �
n � q1

� x1 �
...

...

p
� rs �
n � xs � p

� rs �
n � q1

� xs �
pn � x � pn � 1 � x � . . . pn � q1

� x �
oqpppppppppr (2-39)

where en is the inverse of the � q1 � 1, 1 � –cofactor of the above matrix. The proposition can be

rewritten for the wave vectors as follows
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Proposition 2.3 The wave vectors satisfy the following differential equations>
x � 1 �AsM t � ΨZ �?* QBt

ΨZ ,
>
y � 1 � RLt � ΦZ �?*tRAt

ΦZ , (2-40)

where zMnk � Rmk 
 n � n � and RAnk � Rαk 
 n � n � (and similar expressions for zM, RB).

The matrices sM,

Q
B, RL, RA play the same role of M,B and L,A for the moment functionals

Q
L and RL

respectively.

Proposition 2.4 The vectors of polynomialsRp � x � : �A� 1 � RL �{
 1p , Rs � y � : � 1

B2 � y � � 1 � RLt � s � y � (2-41)

(where RL (and sM) are defined by eqs.(2-32) of Prop. 2.2) are the biorthogonal polynomials for RL.

Similarly the vectors of polynomialsQ
p � x � : � 1

B1 � x � � 1 � sM � 
 1p ,

Q
s � y � : �A� 1 � sM t � s (2-42)

are the biorthogonal polynomials for

Q
L

Proof. The two statements are completely parallel and hence we prove only the first.

By definition of the matrix RL in Prop. 2.2 the polynomial entries of � 1 � RLt � s are all divisible by

B2, therefore Rs is indeed a vector of polynomials. Next we have (using an obvious matrix notation)RL \ Rp 1111 Rst ] � L \|� 1 � RL � 
 1p 1111 st � 1 � RL � ] �Y� 1 � RL � 
 1
L \ p 1111 st ] � 1 � RL ��� 1 Q.E.D (2-43)

We also have

Lemma 2.1 The matrices L,A,M,B and the matrices RL, RA, sM,

Q
B are related by

A � 1 � RL ���A� 1 � L �}RA , B � 1 �YsM �&�Y� 1 � M � QB . (2-44)

Proof. Once more we prove only the first.

A � 1 � RL �&� L \ Ap 1111 st � 1 � RL � ] � L \ x � 1 � L � p 1111 st � 1 � RL � ] �� L \ x � 1 � L � p 1111B2 Rst ] � L \|� 1 � L � p 1111 �u* B2

>
y � A2 � Rst ] � L \~� 1 � L � p 1111 * ∇yB2 Rst ] �� L \~� 1 � L � p 1111 * ∇ys

t � 1 � RL � ] � L \|� 1 � L � p 1111 stA ] �A� 1 � L �|RA Q.E.D.(2-45)
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Lemma 2.2 The associated wave vectors Rp, Rs and

Q
p,

Q
s satisfy

x � 1 � RL � Rp ��RA Rp
y � 1 �AsM � Qs � Q

B

Q
s (2-46)

Moreover, under the same genericity assumptionsQ
mq1

� n � V 0 V R̀ q2
� n � W n (2-47)

b2 Rαd2
� n �a� Rhn 
 d2

� a2 R̀ q2
� n � � Rhn 
 q2 V 0 (2-48)

Proof. Recalling that Rp �A� 1 � RL � 
 1p (by definition), we find

x � 1 � RL � Rp � xp �A� 1 � L � 
 1Ap � RA � 1 � RL � 
 1p � RA Rp . (2-49)

The relations (2-48) for the moment functionals RL, QL are proved in exactly the same way relations

(2-17) are proved for L. Q.E.D.

We can summarize all the relations collected so far in the following table:

Functional BOPs Mult. rec. Diff. Rec.

L �FE $ EG� p, s
x � 1 � L � p � Ap

y � 1 � M � s � Bs

∇x � 1 � sM t � p �?* QBtp

∇y � 1 � RLt � s �?* RAtsRL �FE $ EG��� L �FE $B2 EG� Rp : �Y� 1 � RL � 
 1pRs : � 1
B2

� 1 � RLt � s x � 1 � RL � Rp ��RA Rp� ∇x � 1 �A�M t � Rp �?* <Bt Rp�Q
L �FE $ EG��� L � B1 E $ EG� Q

p � 1
B1

� 1 � sM t � pQ
s �A� 1 � sM � 
 1s

�
y � 1 �AsM � Qs � Q

B

Q
s

�
∇y � 1 � <Lt � Qs �?* <At

Q
s<L �FE $ EG�&� L � B1 E $B2 EG� <p ��� 1

B1

� 1 � �M t � Rp� 1 � <L � 
 1

Q
p<s � � � 1 �A�M � 
 1 Rs

1
B2

� 1 � <Lt � Qs x � 1 � <L � <p � <A <p
y � 1 �?�M � <s � <B <s �

� 1 � L ��RA � A � 1 � RL � (2-50)� 1 � RL � <A ��RA � 1 � <L � (2-51)� 1 � M � QB � B � 1 � sM � (2-52)� 1 � sM � <B � Q
B � 1 � �M � (2-53)

Here the matrices A, RA, <A are lower–Hessenberg matrices with d2 nontrivial sub-diagonals, B, RB, <B
are lower–Hessenberg with d1 nontrivial sub–diagonals. The matrices L, RL, <L and M, zM, �M are

strictly lower triangular matrices with q2 or q1 nontrivial subdiagonals respectively.

The � ’s mean that there are (possibly under similar genericity requirements for the corresponding

functional) similar relations as in the corresponding box on the first line, for which however we do

not need to define symbols for our purposes.
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3 Adjoint differential equations and the bilinear concomitant

In this section we recall some results which –although simple– I was not able to find in the literature.

We consider a n * th order differential equations of the form\ A � > x �#* xB � > x � ] f � x ��� 0 (3-1)

where A � D � and B � D � are polynomials and n � max � deg � A � ,deg � B �a� : the reader should keep

in mind the polynomials Ai, Bi of our matrix model. If we look for solutions written as “Fourier–

Laplace” transforms

fΓ � x � : � �
Γ

dy exy 
 V � y � , (3-2)

–where the contour of integration is so far unspecified–, simple formal manipulations involving inte-

gration by parts show that

V � � y �&� A � y � � B �%� y �
B � y � , (3-3)

where the relation between A,B, V and Ai, Bi, Vi should be now completely clear.

In the situation of interest to us we will have A,B reduced

Definition 3.1 Two polynomials A,B are called reduced if they share at most a simple zero of B

It is a simple exercise to see that

Lemma 3.1 Two polynomials A,B are reduced if and only if A � B � and B are.

This ”duality” of the notion of reducedness will be important when considering the adjoint

differential operator.

We now remark that V � is a rational function with poles at a subset of the zeroes of B

B � y �&� c r'
j D 1

� y * bj � mj � 1 , c V 0 ,degB � rC
j D 1

mj , mj - N . (3-4)

V � � y �&� dC̀ D 0

v` � 1y
` * C

j = J � 1,...,r

mjC
k D 0

tk,j� y * bj � k � 1
(3-5)

e 
 V � y � �('
j = J � y * bj � t0,j exp � dC̀ D 0

v` � 1

` � 1
y` � 1 � C

j = J mjC
k D 1

tk,j

k � y * bj � k � (3-6)

W � y � : � e 
 V � y � (3-7)

d : � deg � A �#* deg � B � . (3-8)

[Here it is understood that if deg � A �&g deg � B � then the first sum in V � is absent.]
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Some of the zeroes of B � y � may appear also as zeroes of A � y � � B �%� y � and hence in the partial

fraction expansion of V � those points do not appear. Since A,B are reduced, all multiple zeroes of

B are not shared with A � B � . We will call the zeroes of B which are common with A � B � the

hard-edge points (note that not all simple zeroes of B are hard-edge points, but all hard-edge

points are simple zeroes).

We now define some sectors S
� j �
k , j � 1, . . . p1, k � 0, . . . mj * 1. around the multiple zeroes of

B (bj for which mj d 0) in such a way that

< � V � y �a���|"
y � bj ,

y = S � j �
k

��� . (3-9)

The number of sectors for each pole is the degree of that pole in the exponential part of W � x � , that

is d � 1 for the pole at infinity and gj for the j-th pole. Explicitly

S
� 0 �
k : ��� y : - C;

2kπ * π
2 � ε

d � 1
g arg � y � � arg � vd � 1 �

d � 1
g 2kπ � π

2
* ε

d � 1 � ,
k � 0 . . . d ;

S
� j �
k : ��� y : - C;

2kπ * π
2 � ε

mj
g arg � y * bj � � arg � tmj ,j �

mj
g 2kπ � π

2
* ε

mj � , (3-10)

k � 0, . . . ,mj * 1, j - J .

These sectors are defined precisely in such a way that approaching any of the essential singularities

(i.e. an bj such that mj d 0) the function W � y � tends to zero faster than any power.

3.1 Definition of the contours

The contours we are going to define are precisely the type of contours Γx,µ,Γy,ν entering the definition

of the bimoment functional L. Let A,B be reduced: we then define n � max � deg � A � ,deg � B �a�
contours. The definition of the contours follows directly [2, 15]. We first remark that the weight

W � y � is –in general– multivalued since it contains powers like � y * c � t with non-integer t; the

multivaluedness is multiplicative and in fact is not very important which branch one chooses in the

definition of the integrals (3-2) since different choices correspond to multiplying the same function by

a nonzero constant. Nonetheless it will be convenient at some point to have a reference normalization

for the integrals and hence we define some cuts so as to have a simply connected domain where

W � y � is single-valued. We do so by removing semi-infinite arcs extending from each branch-point

of W � y � to infinity: for convenience we choose the cuts approaching each singularity in one of the

sectors, for example S
� j �
0 , and approaching infinity within S

� 0 �
0 . If deg � A ��_ deg � B �.* 1 there no

sector is defined at � and then we just choose arbitrarily an asymptotic direction for these cuts.
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Note that if deg � A ��_ deg � B �.* 2 then the sum of the finite residues of V � dy is zero, hence we

could define the cuts as finite arcs joining in a chain the finite branch-points of W � y � : the resulting

domain is not simply connected, however W � y � is single valued in such domain precisely because

of the vanishing of the sum of the residues of its logarithmic derivative. We will denote by D the

connected domain obtained after such surgery.

In the following our primary focus is on the case det � A � 7 deg � B � � 1 and we leave to the reader

to check the literature [15] for the remaining cases (only minor modifications are needed).

1. For any zero bj of B for which there is no essential singularity in W we have two cases

(a) If bj is a branch point (i.e. t0,j - C � Z) we take a loop (referred to as a lasso) starting

at infinity in some fixed sector (e.g. S
� 0 �
0 ) encircling the singularity and going back to

infinity in the same sector.

(b) If bj is a pole of W (i.e. t0,j -�* N � ) then we take a small circle around it.

(c) If bj’s which is a regular points (t0,j - N) we take a line joining bj to infinity and

approaching � in the same sector S
� 0 �
0 as before (this case includes the hard-edge points

for which we may say that t0,j � 0).

2. For any multiple zero bj for which there is an essential singularity (i.e. for which mj d 0) we

define mj contours (which we call the petals) starting from bj in the sector S
� j �
0 and returning

to bj in the next (counterclockwise) sector. Finally we join the singularity bj to � by a path

(called the stem) approaching � within the sector S
� 0 �
0 chosen at point 1(a).

3. If deg � A � 7 deg � B � � 1 we define b0 : � � and we take d : � deg � A ��* deg � B � contours

starting at X0 in the sector S
� 0 �
k and returning at X0 in the sector S

� 0 �
k � 1

.

The reasons for the ”floral” names should be clear by looking at an example like the one in Fig.

1. Cauchy’s theorem grants us large freedom in the choices of such contours; we use this freedom

so that the contours do not intersect each other in C ��� bj � j D 1,...,deg � B � and do not cross the chosen

cuts.

We will refer to these contours collectively as admissible contours for the differential W � y � dy.
Note that we have defined exactly n � max � deg � A � ,deg � B �a� contours.

It is a straightforward check to see that

fΓ � x � : � �
Γ

dy exy 
 V � y � � �
Γ

exyW � y � dy , (3-11)

all satisfy the differential equation (3-1): in these checks one is always allowed to perform integration

by parts discarding all boundary terms because of the properties of the contours. We leave this check

to the reader.

The content of [15] (and of the fix contained in [2]) was to show that these functions are also

linearly independent, hence providing a basis for the solution space.
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Figure 1: An example of contours Γ and RΓ for a pair of reduced adjoint differential operators.

The black contours are the admissible ones for L while the red ones are the admissible ones for L � .
Also shown in the picture are the cuts for W � y � and zW � s � (line-dotted black lines and line-dotted

red lines respectively).
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3.2 Adjoint differential operators and the bilinear concomitant

In general, given a n-th order linear operator with polynomial coefficients

L : � nC
j

aj � x � > jx , (3-12)

its classical adjoint is defined as

L � : � nC
j

�u* > x � jaj � x � . (3-13)

Between the solution spaces of a pair of adjoint such operators Legendre defined a nondegenerate

pairing called the bilinear concomitant. We will show that this pairing for our class of reduced

operators admits a natural interpretation as intersection pairing.

We begin by noticing that in our case the pair of adjoint operators is written

L : � A � > x �#* xB � > x � , L � : � A �u* > x �#* B �u* > x � x . (3-14)

Since A,B are reduced then L � is also reduced since

L � � A �u* > x ��* B � �u* > x �#* xB �u* > x � (3-15)

in view of Lemma 3.1 (here the polynomials are A �u* y ��* B ���u* y � and B �u* y � which are clearly

reduced iff A � z �!* B ��� z � and B � z � are). Therefore L � is in the same class of operators as L and can

be solved by contour integrals in the same way. The solutions of L � g � 0 are of the form

g � ���
Γ

e 
 xs � V̂ � s � ds (3-16)RV � s � � : � A � s �
B � s � � V � � s �#*�� lnB � s �a� � . (3-17)

A simple inspection shows that the sectors around the multiple zeroes of B � s � where < � V̂ � s �a��"+* �
are precisely the complementary sectors defined in (3-10) for V . We normalize RV � s � by choosing the

integration constant in such a way thatzW � s � : � e

�
V � s � � 1

B � s � eV � s � (3-18)

(here eV is supposed to be defined on the simply connected domain RD). One then proceeds in the

definition of the admissible contours RΓ for the weight zW � s � and of the simply connected domain RD
in exactly the same way used for W � y � . We make the following important remarks:
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1. If bj is a hard-edge point for W � y � (i.e. it is a zero of B � y � but a regular point for W � y � where

W does not vanish) then bj is a simple pole of zW � s � .
2. If bj is a zero of multiplicity m of W � y � (i.e. a simple zero of B � y � such that the residue of� A � B � ��  Bdy is a negative integer) then it is a pole of order m � 1 for zW � s � .
3. In all other cases, the type of singularity of W and zW is the same (logarithmic branch-points

or essential singularities of the same exponential type).

4. The intersection D ¡KRD is the disjoint union of simply connected domains whereW � y � zW � y � B � y �
is constant. These constants depend only on the residues of V ��� y � dy mod Z.

These observations and the fact that B � y � W � y � zW � y � is locally constant (where they are both

defined) follows immediately from their definition and eq. (3-18).

From the definitions of the contours it is not difficult to realize that dual contours can be chosen

such that

1. For each flower (petal + stem) one can choose a dual flower whose elements intersect only the

arcs of the given flower. (This includes the petals at � , in the case deg � A � 7 deg � B � � 1).

2. For each pole c of W � y � (whose corresponding admissible contours Γ is a small circle) the

dual admissible contour for zW � s � is a semi-infinite arc starting at c and going to � and can

be chosen so that it intersects only its dual.

3. For each zero or hard-edge point a of W � y � (whose corresponding admissible contour is a

semi-infinite arc starting at a) the dual admissible contours for zW � s � (which is a small circle

around a) intersects only Γ.

4. For each non-essential other singularity of W � y � (i.e. a simple zero c of B � y � such that the

residue of � A � B � ��  Bdy is in C � Z), where the admissible contour Γ is a lasso around c, the

dual loop RΓ (also a lasso around c) is also chosen so that it intersects only the dual lasso (at

two points).

Lemma 3.2 Consider the two adjoint differential equations\ A � > x �#* xB � > x � ] f � x ��� 0 (3-19)\ A �u* > x �#* B �u* > x � x ] g � x ��� 0 . (3-20)
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The solutions are of the form

f � x ��� fΓ � x � : � �
Γ

e 
 V � y �%� xydx , V : � � A � y � � B � � y �
B � y � dy (3-21)

g � x �0� g �
Γ
� x � : � � �

Γ

e

�
V � s � 
 xsds , RV � s � : � � A � s �

B � s � ds (3-22)

Then the following expression is constant and defines a nondegenerate bilinear pairing (the bilinear

concomitant) between the solutions spaces of the two adjoint equations:

B � f, g � : � � �
Γ

�
Γ

� \ B � y ��* B � s � ] � x

y * s * 1� y * s � 2 � * A � y �#* A � s �#* B ��� s �
y * s � ex � y 
 s � 
 V � y ��� �V � s �(3-23)

Proof. The integral representation of the solution is easily verified. We now write

0 w g � x � �
Γ

� xB � y ��* A � y �a� e 
 V � y ��� xydy (3-24)

0 w f � x � � �
Γ ¢ xB � s ��* A � s �#* B � � s �u£ e

�
V � s � 
 xsds (3-25)

We take the difference and obtain

0 w � �
Γ

�
Γ ¢ x � B � y ��* B � s �a��*�� A � y �[* B � � s �#* A � s �a� £ ex � y 
 s � 
 V � y ��� �V � s � dyds (3-26)

It is promptly seen that the integrand of this double integral is absolutely summable w.r.t. the

arclength parameters along Γ and RΓ, hence we can integrate w.r.t. x under the integral sign, thus

obtaining the bilinear concomitant;�
Γ

� �
Γ

\~� B � y ��* B � s �a��\ x

y * s * 1� y * s � 2 ] * A � y ��* B � � s �#* A � s �
y * s ] ex � y 
 s � 
 V � y ��� �V � s � dsdy(3-27)

Note that the expression under integration is regular at y � s, and is –in fact– a polynomial in

y, s\9� B � y �#* B � s �a��\ x

y * s * 1� y * s � 2 ] * A � y �[* B � � s ��* A � s �
y * s ]¥¤

y � s
xB � � s ��* 1

2
B ¦�� s ��* A � � s � � O � y * s �

In particular the integrand is absolutely integrable w.r.t. the arclength parameters and hence the

order of integrations is irrelevant. This concludes the proof. Q.E.D.

The bilinear concomitant is –in a certain sense– an integral representation of the intersection

pairing of the contours of integration. To make this statement more precise we first prove the

following standard
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Lemma 3.3 Let Ω � y, s � be an analytic function D 	§RD where D and RD are simply connected domains.

Suppose that in each connected component of D ¡ RD there is a constant c such that

Ω � y, s �&� c� y * s � � O � 1 � (3-28)

as y " s within the intersection domain. Let Γ ¨ D be a smooth curve such that�
Γ

Ω � y, s � dy w 0 (3-29)

Let RΓ ¨©RD be a curve of finite length intersecting once Γ at p and oriented positively w.r.t. Γ: then�
Γ

dy

� �
Γ

dsΩ � y, s ��� 2iπc � p � (3-30)

Proof. The integral

f � s � : � �
Γ

Ωdy (3-31)

defines –in principle– different holomorphic functions in the connected components of RD � Γ: the

difference among them -however- is the residue

res
y D s

Ω � y, s � dy (3-32)

which is zero by the assumption on Ω. Hence the analytic continuations of f � s � from one component

to the other all coincide. In our case they are all zero. The key fact is that, since Ω is singular on

the diagonal, the orders of integration matters (otherwise (3-30) would give zero by interchanging

the order of integration).

We compute the integral as a limit of regular integrals where we can interchange the order of

integration � 3-30 ��� lim
ε � 0

�
Γε

dy

� �
Γ

dsΩ � y, s � , (3-33)

where Γε is the curve (or union of curves) obtained by removing a small ε-arc (which we denote by

Γε, i.e. an arc from p * ε to p � ε, where these two points lie on the curve Γ at distance $ ε $ from
the intersection and the direction of ε is the same as the orientation of Γ) around the intersection

point p. This allows us to interchange the order of integration under the limit sign

lim
ε � 0

�
Γε

dy

� �
Γ

dsΩ � y, s �I� lim
ε � 0

� �
Γ

ds

�
Γε

dyΩ � y, s ���?* lim
ε � 0

� �
Γ

ds

�
Γε

dyΩ � y, s ����?* lim
ε � 0

� �
Γ

ds

�
Γε

dy \ c � p �� y * s � 2 � O � 1 � ] �?* lim
ε � 0

� �
Γ

ds

�
Γε

dy
c � p �� y * s � 2 (3-34)
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where we have dropped the O � 1 � part since the length of RΓ is finite and that of Γε tends to zero.

In the last expression the inner integral is –strictly speaking– defined only for s V p: however on the

”left” and ”right” the result is the same and gives* lim
ε � 0

� �
Γ

ds

� p � ε

p 
 ε

dy
c � p �� y * s � 2 � c � p � limε � 0

� �
Γ

ds \ 1

b * p * ε * 1

b * p � ε ] �� c � p � lim
ε � 0

ln \ b * p * ε
a * p * ε ] * ln \ b * p � ε

a * p � ε ] (3-35)

In this last limit the logarithms appearing have different branches: in particular the second differ by

2iπ from the first, hence the result follows by taking the limit. Q.E.D.

We now come back to the computation of the concomitant: first of all, since we know that the

result is independent of x we set x � 0, so that we have to compute

B � f, g � : � � �
Γ

�
Γ

�ª* B � y ��* B � s �� y * s � 2 * A � y �#* A � s ��* B � � s �
y * s � e 
 V � y ��� �V � s � (3-36)

We have already remarked that this integral can be computed in either orders and gives the same

result. We express it in terms of

B � f, g ���A� 2 �#*�� 1 � (3-37)� 1 � : � �
Γ

dy

���
Γ

ds � B � y �� y * s � 2 * A � y �
y * s � W � y �SzW � s � (3-38)� 2 � : � �

Γ

dy

� �
Γ

ds � B � s �� y * s � 2 * A � s � � B � � s �
y * s � W � y � zW � s � (3-39)

The integral � 2 � is zero because the inner integral w.r.t. s defines (for y « RΓ) the identically zero

function, as it is easily seen after an integration by parts. The integral � 1 � is computed using Lemma

3.3 after noticing that

Ω � y, s � : � � B � y �� y * s � 2 * A � y �
y * s � W � y � zW � s �&� B � s � W � s �SzW � s �� y * s � 2 � O � 1 � . (3-40)

and hence satisfies the condition of the Lemma for Ω. The contour Γ satisfies the condition of the

Lemma. The contour RΓ is not necessarily of finite length, but we can take only a small arc around

the point of intersection and the remainder will be computed to be zero by interchanging the order

of the integrals. To rigor one should also consider the common endpoints of contours like the petals

and dual petals: it is easily seen, however that those points do not correspond to a singularity of the

integrals (w.r.t. the arclength parameters) because of the fast decay of the weights W and zW . For

example, if the two contours Γ, RΓ form an angle θ -¬� 0 � ε, π * ε � (asymptotically) near a point b
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(where W, zW have an essential singularity) then11111W � y � zW � s �� y * s � 2 11111 _ 111W � y �SzW � s �6111
sin2 θ $ y * b $ 2 (3-41)

θ

s

y

which is still jointly integrable w.r.t. the arc lengths (recall that the directions of approach of Γ

and RΓ are such that the weights tend to zero faster than any power of the local coordinate).

It is then clear that if Γ RΓ are a circle and a semi-infinite arc (or vice-versa) the bilinear concomitant

for the corresponding dual solutions is a nonzero constant (which depends on the choices of the

branches of W and zW ). This is immediate for a pair of contours which intersect only once. For

a pair of lassoes (which intersect twice and with opposite orientations), calling p1, p2 the points of

intersection we have

B � fΓ, g

�
Γ
�&�?�­� W � p1 �SzW � p1 � B � p1 ��* W � p2 �SzW � p2 � B � p2 �a� (3-42)

Since the local behavior at the singularity embraced by the lassoes is a noninteger power, let’s say� y * c � t, then the values of BW zW on the two intersection points (which lie on different sizes of the

union of the cuts for W and zW ) satisfies

W � p1 � zW � p1 � B � p1 ��� e2iπtW � p2 � zW � p2 � B � p2 � (3-43)

so that

B � fΓ, g

�
Γ
���?�­� W � p1 � zW � p1 � B � p1 �ª� 1 * e2iπt � V 0 (3-44)

For dual flowers it is convenient to choose different paths for the dual contours as shown in Fig. 2,

where the petals have been replaced by stems using a linear combination of the contour-integrals

of the same petals and stem. It is easy to realize that the sub-block of the concomitant involving

these contours is nondegenerate, since it can be given a diagonal form with nonzero entries on the

diagonal. The precise values are not important since we are free to rescale each solution fΓ and gΓ.

Summarizing we have proved that

Proposition 3.1 There is a normalization of the integrals fΓ and g

�
Γ

such that the bilinear con-

comitant is precisely the intersection pairing of the contours Γ and RΓ. With appropriate choice and

labeling of the contours the pairing is represented by the identity matrix.

4 Auxiliary wave vectors

Caveat In this section we will make statements concerning the biorthogonal polynomials pn, sn and

the corresponding quasipolynomials ψn, φn. It will be understood that
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Figure 2: The equivalent choice of contours for the dual admissible petals.

1. Any statement made on the ψn’s and the Fourier–Laplace transforms of the φn’s admits a

specular statement for the φn’s and the F-L transforms of the ψn’s.

2. Any statement made on the ψn’s admits an analog statement for the Rψn’s and

Q
ψn’s by replacing

the moment functional L with RL or

Q
L, and specular statements for Rφn,

Q
φn.

Consider the functions

B2 � x; y, s � : �®\ B2 � y ��* B2 � s �
y * s \ x * 1

y * s ] * A2 � y �#* B �2 � s �#* A2 � s �
y * s ] (4-1)

ψ � �Γ �n : � 1

2iπ

� �
Γ

ds

�S�
κ

dξdyB2 � x; y, s � eξy 
 xs 
 V2 � y �%� �V2 � s � ψn � ξ �
x * ξ (4-2)

If x belongs to a contour Γx,µ of the integration ¯ ¯
κ

we obtain

ψ � �Γ �n � x � � � ψ � �Γ �n � x � 
 � C
ν

B2 �FRΓ,Γy,ν � κµ,νψn � ξ � (4-3)

where the subscript x B denotes the boundary values from the left/right and B2 � RΓ,Γy,ν � stands for

the constant (in x) bilinear concomitant

B2 �FRΓ,Γy,ν � : � 1

2iπ

� �
Γ

ds

�
Γy,ν

dyB2 � x; y, s � e �V2 � s � 
 V2 � y ��� x � y 
 s � . (4-4)
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Therefore their jump across the contours of discontinuity is a constant multiple of ψn � x � .
We have

Proposition 4.1 The sequences of functions � ψ � �Γ �n � n = N satisfy the same recurrence relations (for n

large enough) as the quasipolynomials ψn

x h ψ � �Γ �n � q2C
j D 1

`j � n � ψ � �Γ �n 
 j i � d2C 
 1

αj � n � ψ � �Γ �n 
 j , n 7 d2 � q2 (4-5)>
x h ψ � �Γ �n � q1C

j D 1

Q
mj � n � j � ψ � �Γ �n � j i � d1C 
 1

Q
βj � n � j � ψ � �Γ �n � j , n 7 1 (4-6)

(For the proof see App. A.1)

Definition 4.1 Beside the wave vector ΨZ we define the following d2 auxiliary wave-vectors

ΨZ � ν � � x � : � 1

2iπ

���
Γy,ν

ds

�{�
κ

dξdyB2 � x; y, s � eξy 
 xs 
 V2 � y ��� �V2 � s � 1

x * ξΨZ � ξ � , ν � 1, . . . , d2 (4-7)

ΨZ � 0 � � x � : � ΨZ � x � . (4-8)

We also define the dual wave vectors

ΦZ � 0 � � x � : � eV1 � x � ���
κ

eξy 
 V1 � ξ � 1

x * ξΦZ � y � (4-9)

ΦZ � µ � � x � : � �
Γy,ν

dy exyΦZ � y � , ν � 1, . . . , d2 (4-10)

Proposition 4.2 The components of the dual wave vectors satisfy the recurrence relations

x h φ � ν �
n � q2C

j D 1

R̀ j � n � j � φ � ν �n � j i � d2C
j D 
 1

Rαj � n � j � φ � ν �n � j � δν0δn0 ` h0e
V1 � x � , ν � 0, . . . , d2(4-11)>

x h φ � ν �n � q1C
j D 1

mj � n � φ � ν �n 
 j i � d1C
j D 
 1

βj � n � φ � ν �n 
 j
, ν � 1, . . . , d2 . (4-12)

Remark 4.1 The wave vector ΦZ � 0 � does not satisfy a finite-term differential recurrence relation: a

formula can be derived but it is not useful for our purposes.

Proof The formulæ for the Fourier–Laplace transforms follow from integration by parts from the

relations satisfied by φn � y � (Prop. 2.3). We only point out that integration by parts does not give

any boundary contribution because sn � k R̀ j � n � j � sn � j � y � is divisible by B2 � y � and hence vanishes

at the hard-edge end-points.
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The only relation that needs to be checked is the multiplicative relation for ν � 0. Denoting

temporarily by a tilde the linear combination<φn : � φn � q1C
1

R̀ j � n � j � φn � j , (4-13)

we have

x <φ � 0 � � x ��� eV1 � x � �S�
κ

eξy 
 V1 � ξ � x

x * ξ <φn � y ���� eV1 � x � �S�
κ

eξy 
 V1 � ξ � <φn � y � � eV1 � x � ���
κ

eξy 
 V1 � ξ � ξ

x * ξ <φn � y �&�� eV1 � x � δn0 ` h0 � eV1 � x � ���
κ

eξy 
 V1 � ξ � * > y
x * ξ <φn � y ���� eV1 � x � δn0 ` h0 � d2C

j D 
 1

Rαj � n � j � φ � 0 �n � j
. Q.E.D. (4-14)

4.1 Christoffel–Darboux identities

In the general theory of the two–matrix model the following kernels plays an essential rôle in the

computation of statistical correlation functions

KN
12 � x, y � : � N 
 1C

j D 0

pj � x � sj � y � e 
 V1 � x � 
 V2 � y � � N 
 1C
j D 0

ψj � x � φj � y � . (4-15)

In a previous paper by the author and collaborators [3, 5] the case of polynomial potentials Vi was con-

sidered (without hard-edges) and it was of capital importance the existence of a Christoffel–Darboux

identity allowing to express KN
12 (or rather some transform of it) in terms of bilinear combinations of

the BOPs involving only a number of BOPs depending only on the degrees of the potentials.

We look for a similar bilinear expression in this model.

Definition 4.2 We define the windows of the wave vectors ΨZ � µ � and ΦZ � µ � , µ � 0, . . . , d2

Φ � µ �n � x � : ��� φ � µ �
n 
 1

, . . . , φ � µ �
n � d2 
 1

� , Ψ � µ �n � x � : �Y� ψ � µ �n 
 d2

, . . . , ψ � µ �n � t . (4-16)

We rewrite (4-15) in terms of the wave vectors

KN
12 � ΦZ t � y � ΠNΨZ � x � , ΠN : �°� δij , 0 _ i _ N * 1

0 otherwise .
(4-17)
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Recall the multiplicative and differential recurrence relations in Prop. 2.1 and Prop. 2.3 (which we

rewrite here for the reader’s convenience)>
yΦZ t � 1 � RL ���?* ΦZ t RA , x � 1 � L � ΨZ � AΨZ� 1 � L � 
 1A � RA � 1 � RL � 
 1 � : Q .

Consider now the following expressions� x � > y � ΦZ t � y �ª� 1 � RL � Π � 1 � RL �S
 1
ΨZ � x �&�� ΦZ t � y �ª� 1 � RL � Π � 1 � RL � 
 1 RA � 1 � RL � 
 1ΨZ � x �[* ΦZ t � y � RAΠ � 1 � RL � 
 1ΨZ � x ���� ΦZ tΠ RA � 1 � RL � 
 1ΨZ � ΦZ � RL,Π ��� 1 � RL � 
 1 RA � 1 � RL � 
 1ΨZ �* ΦZ tΠ RA � 1 � RL � 
 1ΨZ * ΦZ t � RA,Π ��� 1 � RL � 
 1ΨZ �� ΦZ �FRL,Π �±RQ � 1 � RL � 
 1ΨZ * ΦZ t �²RA,Π ��� 1 � RL � 
 1ΨZ �� ΦZ �FRL,Π �±RQ RΨZ * ΦZ t �²RA,Π � RΨZ (4-18)

where we have set RQ : ��� 1 � RL � 
 1 RA. We now use the fact that RQ is the recurrence matrix for the

associated RΨZ wave vector (see Prop. 2.2 where RΨZ : � Rpe 
 V1 � x � ) and obtain� x � > y � ΦZ t � y �ª� 1 � RL � Π � 1 � RL � 
 1ΨZ � x ��� ΦZ � y �³� x RL * RA,Π � RΨZ � x � (4-19)RΨZ �A� 1 � RL � 
 1ΨZ � Rp � x � e 
 V1 � x � (4-20)RΦZ �A� 1 � RLt � ΦZ � Rs � y � B2e 
 V2 � y � � Rs � y � e 
 �V2 � y � (4-21)

With these notation we have

Theorem 4.1 (Christoffel–Darboux identity) For the kernelsRKN,ν
11 � x, x � ��� �

Γy,ν

exy RΦZ t � y � ΠN RΨZ � x � ��� RΦZ � j � � x � tΠN RΨZ � x � � , (4-22)

K
N,ν
11 � x, x � ��� �

Γy,ν

exyΦZ t � y � ΠNΨZ � x � ��� ΦZ � j � � x � tΠNΨZ � x � � , j � 1, . . . , d2 (4-23)

we have the identities � x � * x �|RKN,j
11 � x � , x �&� ΦZ � j � � x � � t RA

N
� x � RΨZ � x � (4-24)� x � * x � KN,j

11 � x � , x �&� ΦZ � j � � x � � t RA
N
� x � � RΨZ � x � . (4-25)

(note the argument of RAN in the two formulæ) where RAN � x � : � x RA * x RL,ΠN y .
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Proof The identity for RKN,j
11 � x, x �q� follows by performing integration by parts on (4-19) and noticing

that the boundary contributions vanish since RΦ � y ��� B2 � y � Rs � y � e 
 V2 � y � and B2 � y � vanishes at the

hard-edges. The identity for KN,j
11 � x, x � � follows from the one for RKN,j

11 and this manipulation� x � * x � RΦZ � j � � x � � tΠ RΨZ � x ���A� x � * x � ΦZ � j � � x � � t � 1 � RL � Π RΨZ � x �&��A� x � * x �´\ ΦZ � j � � x � � t �FRL,Π � RΨZ � x � � ΦZ � j � � x � � tΠΨZ � x � ] ��A� x � * x � KN,j
11 � x � , x � � � x � * x � ΦZ � j � � x � � t � RL,Π � RΨZ � x � (4-26)

so that � x � * x � KN,j
11 � x � , x ����A� x � * x ��RKN,j

11 � x � , x �#*�� x � * x � ΦZ � j � ,t � x � �³�FRL,Π � RΨZ � x ��� ΦZ � j � ,t � x � � RA
N
� x � � RΨZ � x � (4-27)

Q.E.D.

Note that –with a slight abuse of notation– in the RHS of the CDIs we can replace the wave

vectors ΦZ by the corresponding window Φn since the matrix RAn has a nonzero square block of size

d2 � 1 with top-right corner in the � n * 1, n � entry, and hence the bilinear expression ΦZ RAΨZ only

involves the terms in the dual windows Φn and RΨn. We will denote from now on by RA only the

d2 � 1 square matrix which is relevant to the pairing.

The importance of the theorem is that we can express the kernel K11 in terms of the dual

quantities φ
n
� x � and Rψn � x �q� involving only the indexes N * d2 _ n _ N .

Note, however, that we must introduce the orthogonal polynomials Rp for the associated moment

functional RL in order to find a Christoffel–Darboux relation similar to the standard one for orthogonal

polynomials.

Theorem 4.2 (Auxiliary CDIs) The auxiliary wave vectors enter in the following auxiliary Christoffel–

Darboux identities� a �j� z * x � ΦZ � 0 � � z � tΠnΨZ � 0 � � x �&� Φ � 0 �n � z � RA � z � RΨn � x � � eV1 � z � 
 V1 � x �� z * x �6RΦZ � 0 � � z � tΠn RΨZ � 0 � � x �&� Φ � 0 �n � z � RA � x �GRΨn � x � � eV1 � z � 
 V1 � x � (4-28)� b �T� z * x � ΦZ � j � � z � tΠnΨZ � k � � x �&� Φ � j �n � z �6RA � z �GRΨn � x �#* 1

2iπ

�
Γy,ν

� �
Γk

B2 � x; y, s � eyz 
 xs � �V2 � s � 
 V2 � y � ,� z * x �6RΦZ � j � � z � tΠn RΨZ � k � � x �&� Φ � j �n � z �6RA � x �GRΨn � x �#* 1

2iπ

�
Γy,ν

� �
Γk

B2 � x; y, s � eyz 
 xs � �V2 � s � 
 V2 � y � ,
j, k � 1, . . . , d2 . (4-29)

(For the proof see App. A.2).

29



4.2 Ladder matrices

In this section we derive an expression for the ODE satisfied by the polynomials in terms of the so-

called ”folding” (see [3]). This will have certain advantages when explaining the relations between

the various ODEs that naturally appear in the problem: a different explicit representation of the ODE

will be given in the next section as well, using a completely different approach based upon the explicit

integral representations of the wave vectors and on the duality provided by the Christoffel–Darboux

pairing.

We first have the simple lemma

Lemma 4.1 (Ladder matrices) The multiplicative recurrence relations for the wave vectors ΨZ � 0 � ,ΦZ �
ΦZ � j � (j � 1, . . . d2)

x � 1 � L � ΨZ � 0 � � AΨZ � 0 � , x � 1 � RLt � ΦZ � j � ��RAtΦZ � j � (4-30)

are equivalent to the relations

Ψ
� 0 �
n � 1 � x �&� an � x � Ψ � 0 �n � x � , (4-31)

Φ � j �n � x ��� Φ
� j �
n � 1 � x � Ran � x � (4-32)

where

an � x �&� Λ * 1

α 
 1 � n �
lmmmmn 0

...

0

1

o ppppr � αd2
� n � , . . . , α0 � n ��� � x

α 
 1 � n �
lmmmmn 0

...

0

1

o ppppr � 0, . . . , `q2
� n � , . . . , `1 � n � , 1 �(4-33)

Ran � x �&� Λ * 1Rα 
 1 � n * 1 �
lmmmmn Rα0 � n �Rα1 � n � 1 �

...Rαd2
� n � d2 �

oqppppr � 1, 0, . . . , 0 � � xRα 
 1 � n * 1 �
lmmmmmmmmmn 1R̀ 1 � n � 1 �

...R̀ q2
� n � q2 �
0
...

oqpppppppppr � 1, 0, . . . , 0 �(4-34)

and Λ denotes the upper shift matrix (of size d2 � 1). The relations (4-31) and (4-32) hold also for

the other sequences of windows Ψ
� j �
n and Φ

� 0 �
n provided that n 7 d2 � q2 (n 7 1 respectively).

Proof. The proof follows immediately from the recurrence relations for the wave vectors ΨZ � 0 � (the

quasipolynomials) and ΦZ � j � (the Fourier–Laplace transforms) by solving for ψn � 1 � x � (or φ
n 
 1

) in
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terms of ψn 
 d2
, . . . , ψn (φ

n
, . . . , φ

n � d2

) and rewriting the relation in matrix form. The statement for

the other sequences of windows follows from the fact that the corresponding wave vectors satisfy the

same finite-term recurrence relations in the specified range (see Prop. 4.1 and Prop. 4.2). Q.E.D.

Lemma 4.2 (Folded recursion relations) The differential recurrence relations for the wave-vector

ΨZ >
x � 1 � sM t � ΨZ �?* QBtΨZ (4-35)

are equivalent to the relations>
x \ sMn � x � Ψn ] �?* QBn � x � Ψn (4-36)sMn : � 1 � q1C

j D 1
smj � n � an µ³µ³µ an � j 
 1 (4-37)smj � n � : � diag � Qmj � n � j * d2 � , . . . , Qmj � n � j �a� (4-38)Q

Bn : � Qβ 
 1 � n �ª� an 
 1 � 
 1 � Qβ0 � n � � d1C
j D 1

Q
βj � n � an µ³µ³µ an � j 
 1 (4-39)Q

βj � n � : � diag � Qβj � n � j * d2 � , . . . , Qβj � n � j �a� (4-40)

Proof. The formula is an iterated application of the ladder recurrence relations (on a window of

consecutive elements with indexes n * d2, . . . , n) to the differential recurrence relation for the wave

vector (see [3] for more details). Q.E.D.

Remark 4.2 A completely analogous statement can be derived for the windows of the dual vector

Φ
� j �
n , j � 1, . . . , d2.

Remark 4.3 The matrices an have a companion-form and are invertible since the determinant is* αd2
� n �

α ¶ 1 � n � which has been proved nonvanishing in Thm. 2.1. Moreover the inverse is also linear in x

(Exercise).

Remark 4.4 By the very definition sMn � x � Ψn � Q
Ψn is the window of quasipolynomial (and associ-

ated functions) for the moment functional

Q
L.

Corollary 4.1 The d2 � 1 columns provided by the windows of the auxiliary wave vectors ΨZ � j � � x �
provide a fundamental system for the ODE (4-36) for n 7 d2 � q2.
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Proof. From Prop. 4.1 we know that the components of the auxiliary wave vectors satisfy the

same recurrence relations (both multiplicative and differential) as the quasipolynomials provided n

is large enough. Moreover the recurrence relations always involve a fixed number of terms with

indexes ”around n”: since the derivation of the ODE is entirely based on the recurrence relations

the statement follows. Q.E.D.

Proposition 4.3 The determinant of sMn � x � is proportional to B1 � x � by a nonzero constant.

Proof. Consider the window of polynomials pn : �·� pn 
 d2
, . . . , pn � t: from the definition of the

matrix sM it follows that sMn � x � pn � x �&� B1 � x � Qpn � x � (4-41)

We first prove that det sMn (which is a fortiori a polynomial) is divisible by B1. Let c be a zero

of B1 of multiplicity r: at least one component (say the `-th) of pn � c � is nonzero because of the

very genericity assumption which guarantees the existence of sM (2-38). Let E � x � be the matrix

obtained by replacing the `-th column of the identity with pn � x � . Clearly detE � x � is nonzero in a

neighborhood of x � c by our definition of `. It follows that the `-th column of sMnE is precisely

B1

Q
pn and hence each component vanishes at c of order r. Also

det sMnE � pn 
 d2 � ` 
 1 � x � det sMn (4-42)

and pn 
 d2 
 1 � ` � c � V 0. On the other hand det sMnE must vanish at x � c of order r since the whole

`-th column does. Repeating this for all roots of B1 we find the assertion of divisibility of det sMn

by B1 � x � .
On the other hand, using a technique of evaluation of determinants used in [3],

det sMn � det

lmmmmn
1 � d2 � 1 � � q1 � 1 � * lmmmmn an � q1

. . .

ansmq1
� n � µ³µ³µ sm1 � n � 0

oqppppr
oqppppr (4-43)

Considering carefully the structure of the sparse matrix in the last identity, one realizes that the

highest power in x is

det sMn � xq1

Q
mq1

� n � q1 �¸ q1

j D 1 α 
 1 � n � j � � O � xq1 
 1 � (4-44)

This shows that (since the coefficient does not vanish as per (2-17,2-48)) the determinant is of

degree q1 � degB1; since it must be also divisible by B1, this concludes the proof. Q.E.D.
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Corollary 4.2 The windows Ψn,

Q
Ψn satisfy>

xΨn �?* sM 
 1
n \ QBn � > x sMn ] Ψn (4-45)>

x

Q
Ψn �?* QBn sM 
 1

n

Q
Ψn (4-46)

where

Q
Bn, sMn are defined in ((4-37)–(4-40)). The ODEs have the same singularity structure as V �1 .

The first relation follows from (4-36) and the second from the fact that sMn � x � Ψn � x �&�°RΨn � x � .
This shows that the ODE’s for Ψn and

Q
Ψn are gauge-equivalent, the gauge being provided by

the (polynomial) matrix sMn. Moreover formula (4-46) together with Prop. 4.3 shows that the

singularities of the differential equation are at the zeroes of B1 � x � .
4.3 Differential equations for the dual pair of systems

In this section we present an explicit formula for the ODE satisfied by the dual pair of fundamental

systems, in particular the polynomials Rψn and the Fourier–Laplace transforms φ
n
’s. The result

generalizes those of [4] but the method of derivation is similar to the one adopted in [5], with

additional complications deriving from the presence of boundary contributions in the integration by

parts at various steps of the derivation.

Notation. In the proof of this and the following theorems we will encounter integrations by parts

that yield nonzero boundary contributions. Typically we will encounter integrals of the form���
κ

yeρy 
 V1 � ρ � F � ρ � φm � y � dydρ , (4-47)

where F � ρ � is some expression (typically polynomial or rational in ρ) possibly depending on “external”

variables. If we attempt an integration by parts on the term yeyρ � > ρeyρ, we obtain a certain number

of boundary terms. In all cases they will be boundary evaluation on the various contours Γx,µ; it is

the nature of all these integrals that only the contours emanating from a hard–edge point give a

contribution, due to the fast decay of e 
 V1 � ρ � at all the boundary points of the other contours. In

the above example and in all minute detail, we have���
κ

yeρy 
 V1 � ρ � F � ρ � φm � y �&�?* �S�
κ

eρy 
 V1 � ρ � �u* > ρ � V �1 � ρ �a� F � ρ � φm � y � � (Boundary terms)

(Boundary terms) � d1C
µ D 1

e 
 V1 � ρ � F � ρ � d2C
ν D 1

κµ,ν

�
Γy,ν

eρyφm � y � 1111 ρ =S¹ Γx,µ

(4-48)

The evaluation at the boundary points of the various contours Γx,µ is clearly to be understood as

limits along the contours; the decay of e 
 V1 � ρ � along the contours gives zero contributions except for
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the hard–edge contours, at the (finite) boundary of which V1 � ρ � is regular. In order to economize

on space, we introduce the following shorthand notation for the above boundary terms

F � ρ � e 
 V1 � ρ � φ � κ � � ρ � 1111 ρ =S¹ xκ

: � (Boundary terms) (4-49)

Theorem 4.3 The dual fundamental system.

Φn � x � : � lmn
Φ
� 0 �
n

...
Φ � d2 �

n

o pr � lmmmmn φ � 0 �n 
 1 φ
� 0 �
n . . . φ

� d2 �
n � d2 
 1

φ
� 1 �
n 
 1 φ

� 1 �
n . . . φ

� d2 �
n � d2 
 1

...
...

φ
� d2 �
n 
 1 φ

� d2 �
n . . . φ

� d2 �
n � d2 
 1

oqppppr (4-50)

satisfies the ODE

Φ 
 1
n � x � Φ �n � x �&�

lmmmmmmn V �1 � x � 0 . . . 0

Pn,n 
 1 Pn,n . . . Pn,n � d2 
 1

0 Pn � 1,n

...

0 0
. . .

0 0 0 Pn � d2,n � d2 
 1 Pn � d2 
 1,n � d2 
 1

oqppppppr �
� diag � Pn � d2,n 
 1, . . . , Pn � d2,n � d2 
 1 � an 
 1 � x � � RA � x ��º RΨn � ρ � Φ � κ �n � ρ �

x * ρ »
ρ =S¹ xκ

* RA � x � W � x �
Wab � x � : � L \ Rpn 
 d2 � a � ρ � V1 � ρ �#* V1 � x �

ρ * x 1111 sn 
 1 � b � y � ] , a, b � 0, 1, . . . , d2 (4-51)

Pj,k : � L � pj
$ ysk � . (4-52)

where an is the ladder matrix for the dual wave vector (Note that P �A�a� 1 � M � 
 1B � t)
(For the proof see App. A.3).

Theorem 4.4 The direct system

RΨn � x � : � x RΨ � 0 �n
$ RΨ � 1 �n 
 1 µ³µ³µ RΨ � d2 �

n y � lmmmmn Rψ � 0 �n 
 d2

Rψ � 1 �n 
 d2

. . . Rψ � d2 �
n 
 d2

...
...Rψ � 0 �n 
 1 Rψ � 1 �n 
 1 . . . Rψ � d2 �

n 
 1Rψ � 0 �n Rψ � 1 �n . . . Rψ � d2 �
n

oqppppr (4-53)

satisfies the ODE

RΨ �n RΨ 
 1

n �f*
lmmmmmmmn RPn 
 d2,n 
 d2

. . . RPn 
 d2,n 
 1 0RPn 
 d2 � 1,n 
 d2

... 0

0
. . .

...

0 RPn 
 1,n 
 2 RPn 
 1,n 
 1 0RPn,n 
 1 V �1 � x �
oqpppppppr � diag �¼RPn � 1,n 
 d2

, . . . , RPn � 1,n � Ra 
 1
n 
 1 �
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� º RΨn � ξ � Φ � κ �n � ξ �
ξ * x »

ξ =S¹ xκ

RA � x � � W � x �6RA � x �RPj,k : �½RL � Rpj
$ y Rsk � , (4-54)

where W � x � was defined in the previous theorem and Ran 
 1 is the ladder matrix implementing the

multiplicative recurrence relations RΨn � Ran 
 1Ψn 
 1 as per Lemma 4.1 (in particular eq. (4-31))

specified to the hat-wave vectors.

(For the proof see App. A.4).

5 Dual Riemann–Hilbert problems

The shape of the Christoffel–Darboux identity (Thm. 4.1) suggests that the duality of the Riemann–

Hilbert problems (and of the differential equations) involves naturally the dual pair of fundamental

systems Φn � x � , RΨn � x � defined in Thm. 4.3 and Thm. 4.4. Recall (from Section 3) that we can

choose a basis in the relative homology of contours Γy,ν and RΓy,ν (and a rescaling of the RΨZ � j � wave

vectors depending only on the residues of V �2 � y � dy) which span the solution space of the two adjoint

equations and with bilinear concomitant

B2 � Γy,ν , RΓy,µ � : � Γy,ν ¾ RΓy,µ � δµν . (5-1)

We can rewrite (Thm. 4.1) as� x * x � � n 
 1C
j D 0

Rφ � ν �
j
� x � Rψ � 0 �j � x � �&� Φ � ν �n � x � RA � x � � RΨ � 0 �n � x � � (5-2)� x * x � � n 
 1C

j D 0

φ � ν �
j
� x � ψ � 0 �j � x � ��� Φ � ν �n � x �6RA � x � RΨ � 0 �n � x � � (5-3)

ν � 1, . . . , d2, where we stress the fact that on the LHS we have the quasipolynomials ψn whereas

on the RHS we have the Rψn’s.

Theorem 5.1 The fundamental dual pair is put in perfect duality by the Christoffel–Darboux

matrix RA
Φn � x �¿RAn � x �´RΨn � x �&�®º 1 0

0 B2 �FE , EG� » (5-4)

where B2 �FE , EG� represents the (constant in x) bilinear concomitant for the solutions of the adjoint

ODEs along the contours Γy,ν , RΓy,µ, µ, ν � 1, . . . , d2. By suitable choice of the homology classes we

have seen that we can always assume it to be diagonal. The entries on the diagonal are nonzero and
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may be set to 1 by suitable rescaling of the d2 left-most columns of Ψn: these rescalings depend on

the way we have performed the cuts in the definitions of V2 and RV2 but depend only on the residues

of V �2 mod Z.

(For the proof see App. A.5).

5.1 Riemann–Hilbert data

In this section we summarily indicate how to obtain the data of the Riemann–Hilbert problems solved

by the dual fundamental systems. The details are considerably involved and not strictly necessary in

this paper. They will appear in a different publication.

Since the two matrices Φn and RΨn are put in perfect duality by the Christoffel–Darboux pairing,

it is -in principle- sufficient to describe the Riemann–Hilbert data of one of the two members of the

pair, the data for its partner being completely determined by duality.

It is significantly simpler to analyze the RH data for the matrix Φn. We recall that this means

controlling the jump discontinuities and the asymptotic behaviors near the singularities.

Jump discontinuities. They are uniquely due to the first row in the definition of Φn and

occur at the contours Γx,ν:

Φn � x � �&�
lmmmmmmmmmmn

1 2iπκν,1 2iπκν,2 . . . 2iπκν,d2

1

. . .

1

oqppppppppppr Φn � x 
 � (5-5)

where x B denote the boundary values on the left/right of the point x - Γx,ν.

Note that the fundamental matrix RΨn � x � satisfies a similar jump condition which can be read

off eq. (4-3) (specified to the Rψn quasipolynomials).

Singularities The bottom d2 rows (the Fourier–Laplace transforms) are entire functions. The

only singularities in the finite part of the plane arise from the first row Φ
� 0 �
n � x � : apart from the jump

discontinuities (discussed above) we have all the singularities of eV1 � x � and the logarithmic branching

singularities around the hard-edge endpoints. Note that the (piecewise analytic) function

Fn � x � : � �{�
κ

~Φn � y � e 
 V1 � ξ �%� ξy

x * ξ � e 
 V1 � x � Φn � x � (5-6)
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has a well defined limit as x approaches any of the non hard-edge endpoints (where it is understood

that the approach occurs within one connected component of its domain of analyticity). Indeed, if

c is such a point one finds

Fn � c ��� �S�
κ

~Φn � y � e 
 V1 � ξ ��� ξy

c * ξ (5-7)

which is a well-defined value. In other words, near a non hard-edge singularity one has

Φn � x � ¤ diag / eV1,sing � x � , 1, . . . , 1 3 Y0 � 1 � O � x * c �a� . (5-8)

where Y0 is just the evaluation of the Fourier–Laplace rows and the Fn � x � defined above at the point

c, and V1,sing denotes the singular part of V1 at c.

Near a hard–edge point x � a, if Γx,νa
is the the hard-edge contour originating from a, we find

that the matrix

Y � x � : � lmmmmmmn 1 ln � x * a � κνa,1 . . . ln � x * a � κνa,d2

. . .

1

o ppppppr Φn � x � (5-9)

has a removable singularity at x � a and from this we can obtain the asymptotic behavior near the

hard–edge endpoints.

Stokes Phenomenon. Possibly the most intricate part is the description of the Stokes’ phe-

nomenon at x � � .

Indeed, apart from the aforementioned jump-discontinuities of Φ
� 0 �
n in a neighborhood of �

(which may be interpreted as part of the Stokes data), the first row displays no Stokes’ phenomenon,

and has an asymptotic behavior which encodes the orthogonality

φ � 0 �
n
� x �&� eV1 � x � �S�

κ

e 
 V1 � ξ �%� ξyφn � y �
x * ξ ¤ ` hneV1 � x � x 
 n 
 1 � 1 � O � 1   x �a� (5-10)

The remaining part of the Stokes phenomenon is given by the asymptotic behavior of the d2 Fourier–

Laplace transforms: this is precisely the same Stokes’ phenomenon displayed by the solutions of the

ODE � A2 � > x �[* xB2 � > x �a� f � 0 (5-11)

These solutions are described by contour integrals of the same kind as the ones appearing in the

expressions for Φ
� ν �
n ; a standard steepest descent formal argument shows that the leading asymptotic

is determined by the saddle-point equation

A2 � y � � B �2 � y �
B2 � y � � V �2 � y ��� x (5-12)
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(x " � ) which has d2 * H solutions (H being the number of hard-edge contours, i.e. the number

of (simple) zeroes of B2 which cancel against corresponding zeroes of the numerator in (5-12)).

Whereas it is not very difficult to analyze the formal properties of the asymptotic, it is considerably

harder and outside of the intents of the present paper to present the Stokes matrices associated to

this Stokes’ phenomenon. We leave this topic to a different publication.

5.1.1 Isomonodromic deformations

The (generalized) 2-Toda equations for this reduction as explained in the introduction, determine

the evolution of the biorthogonal polynomials under infinitesimal deformations of the parameters

entering the semiclassical data Ai, Bi. It is more convenient to parametrize the polynomials Ai, Bi

not by their coefficients but by the location of the zeroes of Bi and the coefficients in the partial

fraction expansions of the derivative potentials V �i . Following the strategy in our [3, 6, 8] one could

easily write the pertinent 2-Toda flows corresponding to these infinitesimal deformations.

At the level of the pair of fundamental systems the flows will generate isomonodromic defor-

mations for the ODEs satisfied by Φn and RΨn, provided that the exponents of formal monodromy

at the singularities remain unchanged. In this case these are precisely the residues of V �1 � x � dx and

V �2 � y � dy at the various singularities.

The reason why the deformations are isomonodromic is that –by their very definition– the fun-

damental systems are functions of these deformation parameters and the matrices ÀΦnΦn 
 1 (andÀRΨn RΨ 
 1

n , the dot representing a derivative w.r.t. one of the monodromy-preserving parameters) are

rational (or polynomial) functions of x, which follows from the analysis of their behavior at the

various singularities ([12, 7] for details on the general properties of isomonodromic deformations).

The details of this isomonodromic system could be derived from the complete Riemann–Hilbert

characterization of the fundamental systems and are beyond the scope of this paper, although their

derivation is -in principle- a straightforward computation.

A Proofs

In this appendix we report all proof of more technical nature. The expressions are rather long and

hence to shorten them we have decided to suppress explicit reference to the variables of integration in

the multiple integrals below, since which variables are integrated on which contour is unambiguously

implied by the context. We have adhered to the following general naming scheme: the variables

ξ, ρ are integrated along the contours Γx,ν appearing in the integral ¯ ¯
κ
, the variables y and η are

variables integrated on the Γy,µ’s. The variable s is always running along the dual contours RΓy,µ (the

admissible contours for the differential zW � s � ds � e

�
V2 � s � ds � eV2 Á s Â

B2 � s � ds).
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A.1 Proof of Prop. 4.1

We temporarily denote by a tilde the following linear combination<ψn � ψn � q2C
1

`j � n � ψn 
 j (1-1)

and notice that

x <ψn � d2C 
 1

αj � n � ψn 
 j . (1-2)

For the transformed functions ψ
� �Γ �
n (denoting by a tilde the same linear combination)

x <ψ � �Γ �n � x

2iπ

���
Γ

�S�
κ

B2 � x; y, s � eξy 
 xs 
 V2 � y ��� �V2 � s � <ψn � ξ �
x * ξ � (1-3)� 1

2iπ

���
Γ

�S�
κ

B2 � x; y, s � eξy 
 xs 
 V2 � y �%� �V2 � s � h <ψn � ξ � � ξ <ψn � ξ �
x * ξ i � (1-4)� d2C 
 1

αj � n � ψ � �Γ �n 
 j � � �
Γ

���
κ

B2 � x; y, s � eξy 
 xs 
 V2 � y �%� �V2 � s � <ψn � ξ �Ã³Ä ÄÅÄqÄÅÄÅÄÅÄqÄqÄÆÄqÄÅÄÅÄÅÄqÄÅÄÅÄÅÄqÄqÄÆÄqÄÅÄÅÄÅÄ ÄÅÇÈÄ ÄqÄÅÄqÄÆÄqÄqÄÆÄqÄÅÄqÄÆÄqÄÅÄqÄÆÄqÄqÄÆÄqÄÅÄqÄÆÄqÄ ÄqÉD 0 for n Ê d2 � q2

(1-5)

where the last term vanishes for n 7 q2 � d2 because the bilinear concomitant kernel B2 � x; y, s � is

a polynomial in y of degree d2 * 1 and the linear combination <ψn contains the orthogonal function

ψn 
 q2
.

For the differential equation we have (by definition of the

Q
ψn’s)Q

ψn : � ψn � q1C
1

Q
mj � n � j � ψn � j (1-6)

We then have>
x

Q
ψ � �Γ �n � � �

Γ

�S�
κ

e 
 xs � > x * s � B2 � x; y, s �
x * ξ eξy 
 V2 � y �%� �V2 � s � Qψn � ξ �&�� � �

Γ

�S�
κ

e 
 xsB2 � y ��* B2 � s �
y * s eξy 
 V2 � y ��� �V2 � s � Qψn � ξ �

x * ξ �� � �
Γ

���
κ

eξy 
 xs 
 V2 � y �%� �V2 � s � Qψn � ξ �ª�u* > ξ * s � B2 � x; y, s �
x * ξ ��� ���

Γ

�S�
κ

B2 � y �[* B2 � s �
y * s eξy 
 xs 
 V2 � y ��� �V2 � s � Qψn � ξ �

x * ξ �� � �
Γ

���
κ

B2 � x; y, s �
x * ξ � > ξ * s � eξy 
 xs 
 V2 � y �%� �V2 � s � Qψn � ξ �&�
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�f* d1C 
 1

Q
βj � n � j � ψ �qËΓ �n � j �� � �

Γ

���
κ

B2 � y ��* B2 � s �
y * s eξy 
 xs 
 V2 � y �%� �V2 � s � Qψn � ξ �

x * ξ �� � �
Γ

���
κ

B2 � x; y, s �ª� y * s � eξy 
 xs 
 V2 � y �%� �V2 � s � Qψn � ξ �
x * ξ ��f* d1C 
 1

Q
βj � n � j � ψ � ËΓ �n � j �� � �

Γ

���
κ

� x � B2 � y �#* B2 � s �a�#* A2 � y � � B �2 � s � � A2 � s �a� eξy 
 xs 
 V2 � y �%� �V2 � s � Qψn � ξ �
x * ξ (the s-part is a total derivative)��f* d1C 
 1

Q
βj � n � j � ψ �qËΓ �n � j � � �

Γ

���
κ

� xB2 � y ��* A2 � y �a� eξy 
 xs 
 V2 � y �%� �V2 � s � Qψn � ξ �
x * ξ ��f* d1C 
 1

Q
βj � n � j � ψ � ËΓ �n � j � � �

Γ

���
κ

B2 � y � eξy 
 xs 
 V2 � y �%� �V2 � s � Qψn � ξ � �
� total derivative in yÌ³Í ÍÅÍÅÍÅÍqÍÆÍqÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍÆÍqÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍÆÍqÍqÍÅÍÎÍqÍ ÍÆÍqÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍÆÍqÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍÆÍqÍqÍÅÍÅÍÅÍqÍÅÍÎÍqÏ� �

Γ

���
κ

� ξB2 � y �[* A2 � y �a� eξy 
 xs 
 V2 � y ��� �V2 � s � Qψn � ξ �
x * ξ ��f* d1C 
 1

Q
βj � n � j � ψ � ËΓ �n � j � � �

Γ

���
κ

B2 � y � eξy 
 xs 
 V2 � y �%� �V2 � s � Qψn � ξ �Ã³ÄÐÄqÄÅÄqÄÆÄqÄqÄÅÄÅÄÅÄqÄÆÄqÄÅÄqÄÆÄqÄqÄÅÄÅÄÅÄqÄÐÄqÄÐÄÆÄqÄÆÄqÄÅÄqÄÆÄqÄqÄÅÄÅÄÅÄqÄÆÄqÄÅÄqÄÆÄqÄqÄÅÄÑÄqÉD 0 for n Ê q2 � 1

(1-7)

In the step marked with � we have performed an integration by parts: in this integration we do not

get any boundary contributions because the quasipolynomials

Q
ψn by definition are divisible by B1

(which vanishes at all endpoints and in particular at the hard-edge ones). This concludes the proof.

Q.E.D.

A.2 Proof of Thm. 4.2

During this and following proofs we use the notation

~Φn � y � : �Y� φn 
 1, . . . , φn � d2 
 1 � , (1-8)

for the row-vector of quasipolynomials in y. Moreover, at the risk of marginal confusion, we omit all

differentials of the integration variables since which variables are integrated and on which contour

should be always uniquely determined by the context (the formulas become significantly longer

otherwise). For � a � we have (recall that RA � ξ � is linear in ξ)� a ��� n 
 1C
j D 0

eV1 � z � �S�
κ

e 
 V1 � ξ �%� ξyφj � y �
z * ξ ψj � x �ª� z * x ���
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� eV1 � z � �S�
κ

e 
 V1 � ξ ��� ξy~Φn � y � RA � ξ � RΨn � x � z * x� z * ξ �ª� ξ * x � �� eV1 � z � �S�
κ

e 
 V1 � ξ ��� ξy~Φn � y � RA � ξ � RΨn � x �&\ 1

z * ξ * 1

x * ξ ] �� eV1 � z � �S�
κ

e 
 V1 � ξ ��� ξy
~Φn � y �
z * ξ RA � ξ � RΨn � x �#* eV1 � z � �{�

κ

e 
 V1 � ξ ��� ξy~Φn � y � RA � ξ � RΨn � x �
x * ξ ��� eV1 � z � �S�

κ

e 
 V1 � ξ ��� ξy
~Φn � y �
z * ξ RA � z � RΨn � x �#* eV1 � z � ���

κ

e 
 V1 � ξ �%� ξy~Φn � y �6RA � x � RΨn � x �
x * ξ �� Φ � 0 �n � z � RA � z �ÒRΨn � x � � eV1 � z � n 
 1C

j D 0

���
κ

e 
 V1 � ξ �%� ξy Rφj � y � Rψj � x �&�� Φ � 0 �n � z � RA � z � RΨn � x � � eV1 � z � 
 V1 � x � , (1-9)

where in the identity marked � we have used the linearity of RA which implies the following identityRA � ξ �
z * ξ * RA � ξ �

x * ξ � RA � z �
z * ξ * RA � x �

x * ξ . (1-10)

The second form of � a � is proved along the same lines using the principal CDI for the kernel RK11 (in

Thm. 4.1). For � b � we have� b �&� z * x
2iπ

n 
 1C
r D 0

�
Γj

ezyφr � y � � �
Γk

���
κ

B2e
...ψj � ρ �
x * ρ �� 1

2iπ

�
Γj

ezy~Φn � y � � �
Γk

���
κ

B2e
... RA � z �ª� z * x �� z * ρ �ª� x * ρ � RΨn � ρ ���� 1

2iπ

�
Γj

ezy~Φn � y � � �
Γk

���
κ

B2e
... RA � z �&\ 1

x * ρ * 1

z * ρ ] RΨn � ρ �&�� Φ � j �n � z � RA � z � RΨ � k �n � x �[* 1

2iπ

n 
 1C
r D 0

�
Γj

ezyφr � y � � �
Γk

�S�
κ

B2 � x; η, s � eηρ 
 xs � �V2 � s � 
 V2 � η � ψr � ρ �&��� Φ � j �n � z �¿RA � z �GRΨn � x ��* 1

2iπ

�
Γj

� �
Γk

B2 � x; y, s � eyz 
 xs � �V2 � s � 
 V2 � y � , (1-11)

where the identity marked � is valid for n 7 d2 (so that the kernel reproduces the polynomial

B2 � x; η, s � of degree d2 * 1).

The proof of the second form of � b � is only marginally different in that we have to use the second

form of the principal CDI for the kernel RK11 (in Thm. 4.1). Q.E.D.

A.3 Proof of Thm. 4.3

Let n * 1 _ m _ n � d2 * 1: in the following chain of equalities all the steps are “elementary”

and hence the computation is straightforward. For reader’s convenience we have tried to make
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annotations on the formula in order to highlight less obvious steps.>
xφ
� 0 �
m
� V �1 � x � φ � 0 �m � eV1 � x � �{�

κ

eξy �u* > ξ � e 
 V1 � ξ � φm � y �
x * ξ ��f* eV1 � x � 
 V1 � ξ �

x * ξ φ � κ �
m
� ξ � 1111 ξ =S¹ xκÃ³ÄÓÄÅÄÅÄÅÄqÄÆÄqÄÅÄqÄÆÄqÄqÄÆÄqÄÔÄqÄÔÄÆÄqÄÆÄqÄqÄÅÄÅÄÅÄqÄÆÄqÄÅÄqÄÐÄqÉD : � B � � eV1 � x � ���

κ

� V �1 � x �#* V �1 � ξ �a� e 
 V1 � ξ ��� ξyφm � y �
x * ξÃ³Ä ÄÆÄqÄÅÄÅÄÅÄqÄÅÄÅÄÅÄqÄÆÄqÄqÄÅÄÅÄÅÄqÄÅÄÅÄÅÄqÄÆÄqÄqÄÅÄÅÄ ÄqÄ ÄÆÄÅÄÅÄqÄÆÄqÄqÄÅÄÅÄÅÄqÄÅÄÅÄÅÄqÄÆÄqÄqÄÅÄÅÄÅÄqÄÅÄÅÄÅÄqÄ ÄqÉD : � C � � eV1 � x � ���

κ

y e 
 V1 � ξ ��� ξyφm � y �
x * ξ �

�­�u* B � C � � n � d2C
j D 0

φ � 0 �
j
� x � �ª�

κ

ψj � ρ � ηφm � η � eρη �
�­�u* B � C � � n 
 1C

j D 0

φ � 0 �
j
� x � �ª�

κ

ψj � ρ � ηφm � η � eρη � n � d2C
j D n

φ � 0 �
j
� x � D :PjmÌ³ÍÎÍÆÍqÍÅÍÅÍÅÍqÍÆÍqÍÅÍqÍÕÍÅÍÎÍqÍÆÍqÍqÍÅÍÅÍÅÍqÍÆÍqÍÎÍÅÏ���

κ

ψj � ρ � ηφm � η � eρη ��­�u* B � C � � n � d2C
j D n

φ � 0 �
j
� x � Pjm � n 
 1C

j D 0

φ � 0 �
j
� x � x ψj � ρ � φ � κ �m

� ρ �uy
ρ =S¹ xκ

�* n 
 1C
j D 0

φ � 0 �
j
� x � �ª�

κ

φm � η � eρη 
 V1 � ρ � � > ρ * V �1 � ρ �a� πj � ρ �&��­�u* B � C � � n � d2C
j D n

φ � 0 �
j
� x � Pjm � ln

Φ
� 0 �
n � x � RRA � x � RΨn � ρ � � eV1 � x � 
 V1 � ρ �

x * ρ φ � κ �
m
� ρ � or

ρ =S¹ xκ

�� n 
 1C
j D 0

φ � 0 �
j
� x � �ª�

κ

φm � η � eρη 
 V1 � ρ � V �1 � ρ � πj � ρ �&��­� C � � n � d2C
j D n

φ � 0 �
j
� x � Pjm � º Φ � 0 �n � x � RA � x �GRΨn � ρ �

x * ρ φ � κ �
m
� ρ � »

ρ =S¹ xκ

�� �S�
κ

φm � η � eρηV �1 � ρ � Φ � 0 �n � x � RA � x � RΨn � ρ � � eV1 � x � 
 V1 � ρ �
x * ρ �� n � d2C

j D n

φ � 0 �
j
� x � Pjm � º Φ � 0 �n � x � RA � x � RΨn � ρ �

x * ρ φ � κ �
m
� ρ � »

ρ =�¹ xκ

�� �S�
κ

φm � η � eρηV �1 � ρ � Φ � 0 �n � x � RA � x � RΨn � ρ �
x * ρ � V �1 � x � eV1 � x � �{�

κ

e 
 V1 � ξ �%� ξyφm � y �
x * ξ �� n � d2C

j D n

φ � 0 �
j
� x � Pjm � º Φ � 0 �n � x � RΨn � ρ �

x * ρ φ � κ �
m
� ρ � »

ρ =S¹ xκ

� �S�
κ

φm � η � eρη V �1 � ρ �[* V �1 � x �
x * ρ Φ � 0 �n � x � RA � x � RΨn � ρ �� V �1 � x � ���

κ

φm � η � eρη Φ
� 0 �
n � x �6RA � x �GRΨn � ρ � � eV1 � x � 
 V1 � ρ �

x * ρ �� n � d2C
j D n

φ � 0 �
j
� x � Pjm � º Φ � 0 �n � x � RA � x �GRΨn � ρ �

x * ρ φ � κ �
m
� ρ � »

ρ =�¹ xκ

* Φ � 0 �n � x � RA � x � ���
κ

RΨn � ρ � φm � η � eρη V �1 � ρ �#* V �1 � x �
ρ * x
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� V �1 � x � n 
 1C
j D 0

φ � 0 �
j
� x � �ª�

κ

φm � η � eρηψj � ρ �&�� n � d2C
j D n

φ � 0 �
j
� x � Pjm � º Φ � 0 �n � x � RA � x � RΨn � ρ �

x * ρ φ � κ �
m
� ρ � »

ρ =�¹ xκ

* Φ � 0 �n � x � RA � x � ���
κ

RΨn � ρ � φm � η � eρη V �1 � ρ �#* V �1 � x �
ρ * x� V �1 � x � φ � 0 �n 
 1

� x � δm,n 
 1 (1-12)

We note that in this last expression we have
>
xφ
� 0 �
m
� x � expressed purely in terms of φ

� 0 �
` � x � for

` � n * 1, . . . n � d2, the value ` � n � d2 entering only in the first expression. Given that φ � 0 �
n
� x �

satisfies the same multiplicative recurrence relations as the Fourier–Laplace transforms for n 7 1, we

can re-express φ
� 0 �
n � d2

in terms of the elements of the window Φ
� 0 �
n � x � , obtaining the result.

The computation for the Fourier-Laplace transforms gives also the same differential equation,

indeed>
xφ
� r �
m
� x ��� �

Γy,r

exyφm � y ��� n � d2C
j D 0

φ � r �
j
� x � ���

κ

eηρηφm � η � ψj � ρ �&�� n � d2C
j D n

φ � r �
j
� x � Pjm � n 
 1C

j D 0

φ � r �
j
� x � �ª�

κ

eηρ 
 V1 � ρ � φm � η �ª�u* > ρ � V �1 � ρ �a� πj � ρ � �� n 
 1C
j D 0

φ � r �
j
� x � x ψj � ρ � φ � κ �m

� ρ �uy
ρ =S¹ xκ

�� n � d2C
j D n

φ � r �
j
� x � Pjm � Φ � r �n � x � RA � x � ���

κ

eηρφm � η � V �1 � ρ �
x * ρ RΨn � ρ � �� Φ � r �n � x � RA � x ��º RΨn � ρ � φ � κ �m

� ρ �
x * ρ »

ρ =�¹ xκ

�� n � d2C
j D n

φ � r �
j
� x � Pjm � Φ � r �n � x �6RA � x � ���

κ

RΨn � ρ � eηρφm � η � V �1 � ρ �#* V �1 � x �
x * ρ �� V �1 � x � Φ � r �n � x � RA � x � �ª�

κ

RΨn � ρ �
x * ρ eηρφm � η � � Φ � r �n � x � RA � x � º RΨn � ρ � φ � κ �m

� ρ �
x * ρ »

ρ =�¹ xκ

�� n � d2C
j D n

φ � r �
j
� x � Pjm � Φ � r �n � x � RA � x � ���

κ

RΨn � ρ � eηρφm � η � V �1 � ρ �#* V �1 � x �
x * ρ �� V �1 � x � n 
 1C

j D 0

φ � r �
j
� x � ���

κ

ψj � ρ � eηρφm � η � � Φ � r �n � x � RA � x ��º RΨn � ρ � φ � κ �m
� ρ �

x * ρ »
ρ =S¹ xκ

�� n � d2C
j D n

φ � r �
j
� x � Pjm � Φ � r �n � x �6RA � x � ���

κ

RΨn � ρ � eηρφm � η � V �1 � ρ �#* V �1 � x �
x * ρ �
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� V �1 � x � δm,n 
 1φ
� r �
m
� x � � Φ � r �n � x � RA � x � º RΨn � ρ � φ � κ �m

� ρ �
x * ρ »

ρ =�¹ xκ

. (1-13)

The coefficients of these expressions in terms of φ
n 
 1

, . . . φ
n � d2 
 1

are precisely the same as for the

previous computation, hence completing the proof. Q.E.D.

A.4 Proof of Thm. 4.4

Let n * d2 _ m _ n and let us compute>
x Rψm � x �&� e 
 V1 � x � � > x * V �1 � x �a� Rπm � x �&�?* V �1 � x � Rψm � x � � n 
 1C

j D 0

Rψj � x � �ª�
κ
Rπ �m � ξ � eξy 
 V1 � ξ � Rφj � y �����* V �1 � x � Rψm � x � � n 
 1C

j D 0

Rψj � x � x Rψm � ξ � Rφ � κ �j
� ξ �4y

ξ =S¹ xκ

* n 
 1C
j D 0

Rψj � x � ���
κ

Rψm � ξ � eξyy Rφj � y �&���* V �1 � x �ÖRψm � x � � º Rψm � ξ � Φ � κ �n � ξ �
ξ * x »

ξ =�¹ xκ

RA � x � RΨj � x ��* n 
 1C
j D 0

Rψj � x � �ª�
κ

Rψm � ξ � eξy � y * V �1 � ρ �a�2Rφj � y �&���* V �1 � x �ÖRψm � x � � º Rψm � ξ � Φ � κ �n � ξ �
ξ * x »

ξ =�¹ xκ

RA � x � RΨj � x � � n 
 1C
j D 0

Rψj � x � �ª�
κ

Rψm � ξ � eξyV �1 � ρ �2Rφj � y � �* n 
 1C
j D m 
 1 Rψj � x � �ª�

κ

Rψm � ξ � eξyy Rφj � y �����* V �1 � x � δmn Rψn � x � � º Rψm � ξ � Φ � κ �n � ξ �
ξ * x »

ξ =S¹ xκ

RA � x � RΨj � x � �� n 
 1C
j D 0

Rψj � x � ���
κ

Rψm � ξ � eξy � V �1 � ρ �[* V �1 � x �a� Rφj � y �[* n 
 1C
j D m 
 1

Rψj � x � RPmj ���* V �1 � x � δmn Rψn � x � � º Rψm � ξ � Φ � κ �n � ξ �
ξ * x »

ξ =S¹ xκ

RA � x �ÒRΨj � x � �� �S�
κ

Rψm � ξ � eξy V �1 � ρ �#* V �1 � x �
ρ * x ~Φn � y �6RA � x �GRΨj � x ��* n 
 1C

j D m 
 1

Rψj � x �!RPmj . (1-14)

The last term contains Rψn 
 d2 
 1 (for m � n * d2) which is ”outside” of the window of the quasipoly-

nomials. Using the recurrence relations and re-expressing it in terms of elements in the window

(using the ladder matrices) we obtain the formula.

For completeness one should also consider the other columns of the fundamental system RΨn and

show that they satisfy the same differential relation as the quasipolynomials. Let n * d2 _ m _ n,

then>
x Rψ � r �m � 1

2iπ

>
x

� �
Γy,r

�S�
κ

B2 � x; y, s � eξy 
 xs � �V2 � s � 
 V2 � y � Rψm � ξ �
x * ξ �
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� 1

2iπ

�²�
Γy,r

�{�
κ

eξy 
 xs � �V2 � s � 
 V2 � y � Rψm � ξ �ª� > x * s � B2 � x; y, s �
x * ξ �� 1

2iπ

� �
Γy,r

�{�
κ

eξy 
 xs � �V2 � s � 
 V2 � y � Rψm � ξ � � B2 � y ��* B2 � s �� y * s �ª� x * ξ � * sB2 � x; y, s �� x * ξ � * B2 � x; y, s � > ξ 1

x * ξ � ��f* D : � B �Ì³Í×ÍqÍÆÍqÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍÆÍqÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍÆÍqÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍ×ÍÅÍÕÍqÍÆÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍqÍÆÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍqÍÆÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍqÍÓÍqÏ
1

2iπ

� �
Γy,r

���
κ

>
ξ h B2 � x; y, s � eξy 
 xs � �V2 � s � 
 V2 � y � Rψm � ξ �

x * ξ i��� � �
Γy,r

�S�
κ

Rψm � ξ �
x * ξ eξy 
 xs � �V2 � s � 
 V2 � y � � B2 � y �#* B2 � s �

y * s � � y * s � B2 � x; y, s � � �� � �
Γy,r

�S�
κ

B2 � x; y, s � eξy 
 xs � �V2 � s � 
 V2 � y � � > ξ * V �1 � ξ �a� Rpm � ξ �
x * ξ �

�?*­� B � � � �
Γy,r

e

�
V2 � s � 
 xs

D X �h0δm0 because

�
V2 D V2 
 ln B2Ì³ÍÑÍqÍÅÍÅÍÅÍqÍÆÍqÍqÍÅÍÅÍÅÍqÍÅÍÅÍÑÍÅÍÑÍÅÍÅÍqÍqÍÆÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍÑÍqÏ�S�

κ

Rψm � ξ � e 
 V2 � y �%� ξyB2 � y � �
* D : � C �Ì³ÍÅÍqÍÆÍqÍÅÍqÍÆÍqÍqÍÆÍqÍÅÍqÍÆÍqÍÅÍqÍÆÍqÍqÍÆÍqÍÅÍqÍÆÍqÍÅÍqÍÆÍqÍqÍÆÍqÍÅÍÅÍÅÍqÍÆÍqÍÅÍqÍÆÍqÍqÍÆÍqÍÅÍqÍÆÍqÍÅÍqÍÆÍqÍqÍÆÍqÍÅÍqÍÆÍqÍÅÍqÍÆÍqÍqÍÆÍqÍÅÍqÍÆÍqÏ

1

2iπ

���
Γy,r

���
κ

B2 � x; y, s � eξy 
 xs � �V2 � s � 
 V2 � y � V �1 � ξ � Rψm � ξ �
x * ξ �� � �

Γy,r

�S�
κ

B2 � x; y, s � eξy 
 xs � �V2 � s � 
 V2 � y � Rp �m � ξ �
x * ξ ��f*�� B ��*�� C � � D : � D �Ì³Í�ÍqÍÆÍqÍÅÍqÍÆÍqÍÅÍÅÍÅÍqÍ�ÍqÍ�ÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍÆÍqÍqÍ�ÍÅÏ� Rh0δm0

���
Γy,r

e

�
V2 � s � 
 xs � n 
 1C

j D 0

Rψ � r �j � x � ���
κ
Rpm � � ξ �2Rφj � y � e 
 V1 � ξ �%� ξy ��f*�� B ��*�� C � � � D � � n 
 1C

j D 0

Rψ � r �j � x � x Rψm � ξ � Rφ � κ �j
� ξ � y

ξ =S¹ xκ
�� n 
 1C

j D 0

Rψ � r �j � x � �ª�
κ

� V �1 � ξ �#* V �1 � x �a� Rψm � ξ � Rφj � y � eξy �� V �1 � x �ª� 1 * δm,n � ψ � r �m � x �#* n 
 1C
j D 0

Rψ � r �j � x � �ª�
κ

Rψm � ξ � y Rφj � y � eξy �
[aux CDI]� *�� B ��*�� C � � Rψm � ξ � RΦ � κ �n � ξ �

ξ * x 1111 ξ =S¹ xκ

RA � x �ÒRΨn � x � �D�� B �Ì³ÍÑÍÅÍÅÍÅÍqÍqÍÆÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍqÍÆÍqÍÅÍÅÍÅÍqÍÅÍÅÍÅÍqÍqÍÆÍqÍÅÍÅÍÅÍqÍÅÍÅÍÑÍÅÍÑÍÅÍÅÍqÍÆÍqÍqÍÆÍqÍÅÍqÍÆÍqÍÅÍqÍÆÍqÍqÍÆÍqÍÅÍqÍÆÍqÍÅÍqÍÆÍqÍqÍÆÍqÍÅÍqÍÆÍqÍÅÍØÍqÏ* 1

2iπ

� �
Γy,r

���
κ

>
ξ h Rψm � ξ �

ξ * x B2 � x; y, s � eyξ 
 xs � �V2 � s � 
 V2 � y � i��� ���
κ

V �1 � ξ �#* V �1 � x �
ξ * x eξy Rψm � ξ � ~Φn � y �6RA � x �GRΨ � r �n � x � �
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* 1

2iπ

� �
Γy,r

���
κ

�uÙ gives � C �ÐÚÛ
V �1 � ξ �Ü* V �1 � x �a� Rψm � ξ �

ξ * x eξy 
 xs � �V2 � s � 
 V2 � y � �� V �1 � x �ª� 1 * δm,n � ψ � r �m � x �#* n 
 1C
j D m 
 1

RPmj Rψ � r �j � x �&�� Rψm � ξ � RΦ � κ �n � ξ �
ξ * x 1111 ξ =S¹ xκ

RA � x �GRΨn � x � � ���
κ

V �1 � ξ �#* V �1 � x �
ξ * x eξy Rψm � ξ � ~Φn � y � RA � x �GRΨ � r �n � x �* δmnV �1 � x � ψ � r �m � x �#* n 
 1C

j D 0

Rψ � r �j � x � �ª�
κ

Rψm � ξ � y Rφj � y � eξy (1-15)

This is the same expression as for the quasipolynomials: since the auxiliary wave functions Rψ � r �j � x �
satisfy the same multiplicative recurrence relation (for n large enough) as the quasipolynomials, re-

expressing Rψ � r �n � 1 � x � in terms of the elements of the window yields the same differential equation.

Q.E.D.

A.5 Proof of Thm. 5.1

For brevity we denote RAn � x � simply by RA � x � during this proof. Since the rows (columns) of Φn ( RΨn)

are of two types, we need to carry out four types of computations� a ��� Φ
� 0 �
n � x � RA � x �GRΨ � 0 �n � x � , � b �&� Φ � 0 �n � x � RA � x �ÒRΨ � j �n � x � , j � 1 . . . d2� c ��� Φ

� j �
n � x �¿RA � x �ÒRΨ � 0 �n � x � , j � 1 . . . d2 � d �&� Φ � ` �n � x �6RA � x �GRΨ � m �n � x � , `,m � 1 . . . d2(1-16)

It follows trivially from (5-3) that � c �0� 0 (set x � x � in the LHS). For � a � we have� a �Ý� eV1 � x � ���
κ

Φn � ξ �
x * ζ e 
 V1 � ζ �%� ξζ RA � x �GRΨn � x �&� (1-17)� eV1 � x � �S�
κ

dζ e 
 V1 � ζ �%� ξζ
n 
 1C
j D 0

Rφj � ξ � Rψj � x �&� eV1 � x � ���
κ

dζ e 
 V1 � ζ ��� ξζ Rφ0 � ξ � Rψ0 � x �&� 1

where we have used that Rφj � ζ � , j 7 1 are orthogonal to p � ξ � w 1. Note also that we had to use the

CDI in the form (5-2). Then we have to compute for 1 _ `,m _ d2 (we suppress explicit reference

to the variables of integration because there is no possibility of ambiguity)� d �Ý� 1

2iπ
Φ � ` �n � x � �ª�

κ

�
s = �Γm

B2 � x; η, s � RA � x �ÒRΨn � ξ �
x * ξ eξη 
 xs 
 V2 � η ��� �V2 � s � � (1-18)� 1

2iπ

n 
 1C
j D 0

φ � ` �
j
� x � �ª�

κ

�
s = �Γm

B2 � x; η, s � ψj � ξ � eξη 
 xs 
 V2 � η �%� �V2 � s � � (1-19)
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� 1

2iπ

n 
 1C
j D 0

� �
Γm

ds

�
Γ`

dy φj � y � exy

���
κ

B2 � x; η, s � ψj � ξ � eξη 
 xs 
 V2 � η �%� �V2 � s � �� (1-20)� 1

2iπ

���
Γm

ds

�
Γ`

dyB2 � x; y, s � ex � y 
 s � 
 V2 � y ��� �V2 � s � � (1-21)� B2 � Γy,`, RΓy,m ��� δ`m , (1-22)

where in the step marked with a star we have used that for the polynomial of η P � η � : � B2 � x; η, s �
is reproduced by the kernel

P � y �&� n 
 1C
j D 0

sj � y � ���
κ

dηdξψj � ξ � e 
 V2 � η ��� ξηP � η � (1-23)

provided that n * 1 7 degP � d2 * 1. Note also that in this latter computation we are forced to use

the other form of the CDI (5-3). Finally we need to compute � b � , which involves quintuple integrals� b ��� eV1 � x �
2iπ

�S�
κ

Φn � ρ �
x * ζ e 
 V1 � ζ ��� ρζ

���
κ

�
s = �Γm

B2 � x; η, s � RA � x �ÒRΨn � ξ �
x * ξ eξη 
 xs 
 V2 � η �%� �V2 � s � �� eV1 � x �

2iπ

�S�
κ

Φn � ρ �
x * ζ e 
 V1 � ζ �%� ρζ

���
κ

�
s = �Γm

B2 � x; η, s � RA � ζ �GRΨn � ξ �
x * ξ eξη 
 xs 
 V2 � η �%� �V2 � s � � (1-24)� eV1 � x �

2iπ

�S�
κ

Φn � ρ �³�FRL, pn � e 
 V1 � ζ ��� ρζÃ³ÄÓÄÆÄqÄÅÄÅÄÅÄqÄÅÄÅÄÅÄqÄqÄÆÄqÄÔÄqÇÞÄÓÄÆÄqÄÆÄqÄÅÄqÄÆÄqÄÅÄqÄÆÄqÄqÄÐÄÅÉD 0 if n Ê q1

�S�
κ

�
s = �Γm

B2 � x; η, s � RΨn � ξ �
x * ξ eξη 
 xs 
 V2 � η �%� �V2 � s � �

� eV1 � x �
2iπ

n 
 1C
j D 0

�S�
κ

�S�
κ

�
s = Γ̌m

ds e 
 V1 � ζ �%� ζρ � ξη 
 xs 
 V2 � η �%� �V2 � s � φj � ρ � ψj � ξ � B2 � x; η, s � ζ * ξ� x * ζ �ª� x * ξ � �� eV1 � x �
2iπ

n 
 1C
j D 0

�
dy

�S�
κ

���
κ

�
s = �Γm

ds e 
 V1 � ζ ��� ξη 
 xs 
 V2 � η �%� �V2 � s ��� ζρφj � ρ � ψj � ξ � B2 � x; η, s � \ 1

x * ζ * 1

x * ξ ] �� eV1 � x �
2iπ

n 
 1C
j D 0

�
dy

�S���S�
Γ̌

ds e 
 V1 � ζ �%� ξη 
 xs 
 V2 � η �%� �V2 � s �%� ζρφj � ρ � ψj � ξ � B2 � x; η, s � 1

x * ζ �* eV1 � x �
2iπ

�S���
Γ̌

dsB2 � x; η, s � 1

x * ξ eξη 
 xs 
 V2 � η �%� �V2 � s � 
 V1 � ξ � �� eV1 � x �
2iπ

�
dy

���
Γ̌

ds e 
 V1 � ζ � 
 V2 � ρ �%� ζρ 
 xs � �V2 � s � B2 � x; ρ, s � 1

x * ζ �* eV1 � x �
2iπ

�S���
Γ̌

ds e 
 V1 � ξ � 
 V2 � η ��� ξη 
 xs � �V2 � s � B2 � x; η, s � 1

x * ξ w 0 (1-25)

Once more, we are forced to use the CDI in the form (5-3). This concludes the proof. Q.E.D.
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