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(a) Show that for any positive integer K
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(b) Let ¢,e > 0 and A be any positive integer. Show that there exists

xg, 1 > 0 such that

exp <c\/log x) < z° for all x > xg
(log IL‘)A < exp (c\/log x) for all z >
(a) Let A(n) denote the Liouville’s function given by A(n) = (—1)%™),

where Q(n) is the total number of primes of n, counting multiplic-
ities. Show that for Re(s) > 1,
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(b) Let 7(n) be the number of divisors of n. Show that for Re(s) > 1,

(a) Show that

converges for Re(s) > 1 by showing that A(z) = >
O(zlogz).
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(b) Show that if |A(z)| < Cx/log®z for all > 2, then > °° a(n)/n

converges.
(c) If a(n) > 0 for all n, and A(x) > Cx/logz for all x > 2, then
Y a(n)/n diverges.

4. (a) Assume that 7(z) ~ z/logz. Show that it implies that
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[However, those assertions are weaker than the Prime Number

Theorem and can be derived by elementary methods.]

(b) Assume the Twin Prime Conjecture under the form
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Show that this implies that the sum Z —, where p runs over the
p

P
set of primes p such that p 4 2 is prime, converges. [But this can

be proven without any hypothesis using the Brun’s sieve.]

5. An integer n is power-full if p | n = p? | n. Let F be the set of

power-full numbers.
(a) Show that for o > 1/2,
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(b) Show that any power-full number can be written as a®b®, and this

representation is unique if b is square-free.



(c) Show that
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