Analytic Number Theory, Winter 2020

Assignment 3

Due Wednesday April 1

1. (a) Suppose that both f and \hat{f} are in $L^1(\mathbb{R})$ and have bounded variation. Show that

$$\sum_{m \in \mathbb{Z}} f(vm + u) = \frac{1}{v} \sum_{n \in \mathbb{Z}} \hat{f}\left(\frac{n}{v}\right) e\left(\frac{un}{v}\right),$$

and then by Fourier inversion

$$v \sum_{m \in \mathbb{Z}} \hat{f}(vm - u) = \sum_{n \in \mathbb{Z}} f\left(\frac{n}{v}\right) e\left(\frac{un}{v}\right),$$

(b) Use (a) to show that for a primitive character χ modulo q

$$\sum_{m \in \mathbb{Z}} f(m) \chi(m) = \frac{\tau(\chi)}{q} \sum_{n \in \mathbb{Z}} \hat{f}\left(\frac{n}{q}\right) \overline{\chi}(n).$$

2. Let q and a be fixed relatively prime integers. Prove that

$$\sum_{\substack{n \leq x \\ n \equiv a \pmod{q}}} \mu^2(n) \sim \frac{6}{\pi^2} \frac{c(q)}{\phi(q)} x$$

where $c(q) = \prod_{p|q} p/(p+1)$. What does it says about the distribution of square-free numbers that are relatively prime to q? [Remark: You can use the Tauberian Theorem if you want].

3. Let a(n) be the number of non-isomorphic abelian groups of order n. The goal of this exercise is to show that

$$\sum_{n \le x} a(n) = Rx + O\left(x^{3/4}\right)$$

where

$$R = \zeta(2)\zeta(3)\zeta(4)\ldots \approx 2.29485$$

- (a) Show that a(n) is multiplicative, and that $a(p^{\alpha})$ is the number of ways to separate a set of α elements in subsets, or equivalently the number of ways to write $a_1 + a_2 + \ldots + a_k = \alpha$ where the integers a_i are such that $1 \leq a_1 \leq a_2 \leq \ldots \leq a_k$.
- (b) Show that for Re(s) > 0,

$$\sum_{\alpha=0}^{\infty} \frac{a(p^{\alpha})}{p^{\alpha s}} = \prod_{k=1}^{\infty} \left(1 - \frac{1}{p^{ks}}\right)^{-1},$$

and then

$$F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} = \prod_{p} \sum_{\alpha=0}^{\infty} \frac{a(p^{\alpha})}{p^{\alpha}s}$$
$$= \prod_{k=1}^{\infty} \zeta(ks),$$

where the sum and the product are absolutely convergent for Re(s) > 1. Then, F(s) is analytic for Re(s) > 0, except for simple poles at $s = 1, 1/2, 1/3, \ldots$

(c) Let $F_1(s) = \zeta(s)\zeta(2s) = \sum_{n=1}^{\infty} b_n n^{-s}$. Show that

$$B(x) = \sum_{n \le x} b_n = x\zeta(2) + O(x^{3/4}).$$

[Remark: This is an application of contour integration using Perron's formula. Use the convexity bound: $\zeta(\sigma+it) \ll t^{(1-\sigma)/2}$ for $0<\sigma<1$.]

(d) Let $F_2(s) = \prod_{k=3}^{\infty} \zeta(ks) = \sum_{n=1}^{\infty} c_n n^{-s}$. Show that $F_2(s)$ converges absolutely for Re(s) > 1/3, and

$$\sum_{n \le x} \frac{c_n}{n^{\alpha}} = F_2(\alpha) + O\left(x^{1/3 - \alpha}\right)$$

for $\alpha > 1/3$.

- (e) Conclude the desired estimate for $A(x) = \sum_{n \le x} a_n = \sum_{mn \le x} b_m c_n$.
- **4.** (a) Show that for any integer $k \ge 1$ and any c > 0,

$$\frac{1}{2\pi i} \int_{(c)} \frac{x^s}{s^{k+1}} \, ds = \begin{cases} \log^k x/k! & \text{if } x \ge 1; \\ 0 & \text{if } 0 < x \le 1. \end{cases}$$

(b) Let $f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ be a Dirichlet series absolutely convergent in $\text{Re}(s) > c - \epsilon$. Show that

$$\sum_{n \le x} a_n \left(\log \frac{x}{n} \right)^k = \frac{k!}{2\pi i} \int_{(c)} f(s) \frac{x^s}{s^{k+1}} ds.$$

5. Let χ be a real primitive character of conductor q. Show that if $L(s,\chi)$ has 2 real zeros $\beta_0 \leq \beta_1 < 1$ (including the case of a double zero $\beta_0 = \beta_1$), then

$$\beta_0 < 1 - \frac{c}{\log q}$$

for some positive constant c.