MATHG699E(833C) Analytic Number Theory
Winter 2020

Solutions to Assignment 1

. (a) Show that for any positive integer K
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Solution: We first show that
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It is trivially true for K = 1, and for K = 2, integrating by part with
u=1/logt and dv = dt, we have that
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Then, by induction, and integrating by part with v = 1/log™ ¢ and
dv = dt, we have that
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which shows (1). Finally, we have for any 0 < 6 < 1,
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(b)

(a) Let A(n) denote the Liouville’s function given by A\(n) = (—1)%),
where (n) is the total number of primes of n, counting multiplic-
ities. Show that for Re(s) > 1,

= \n
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(b) Let 7(n) be the number of divisors of n. Show that for Re(s) > 1,
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Solutions: (a) For R(s) >
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Let n = pi'...p%. Then it is clear from above that

a(n) = (1) .. (=1)% = (=1)Zi=1% = (1)) = \(n).

(b) We first remark that since 7(n) is multiplicative, so is 7(n?). Then,
for R(s) > 1
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and then
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and using x = p~*®, we have
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3. (a) Show that

= 7(n
fls) =3 T
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converges for Re(s) > 1 by showing that A(z) = > _ . 7(n) =
O(zlogz).
(b) Show that if |A(z)| < Cx/log®z for all > 2, then > °° a(n)/n
converges.
(c¢) If a(n) > 0 for all n, and A(z) > Cz/logx for all > 2, then
> a(n)/n diverges.
Solutions: We showed in class that

ZT(n) = xlogz + (27 — D)z + O(z'/?) = O (2**°)

n<x

for any € > 0, which implies that the Dirichelt series converges for

R(s) > 1 taking the Mellin transform as we saw in class.



(b) This can be proven by partial summation.

(c) This can be proven by partial summation.

4. (a) Assume that 7(z) ~ z/logz. Show that it implies that
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[However, those assertions are weaker than the Prime Number

Theorem and can be derived by elementary methods.]

(b)

Solutions: (a) We first show that f(z) ~ g(z) implies that [ f(t) dt ~
f; g(t) dt for positive integrable functions f, g such that for any 0 <
<1,

0
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which is the case for most reasonable functions, and certainly for g(z) =
x/logx.

Since f(z) ~ g(z), we have that f(x) = g(z)+e(x)g(x) where e(z) — 0
as x — 0o. Then, for any 0 < 6 < 1,
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since sup,o<;<, |e(t)| — 0 as ¥ — oo. We use this result in the proofs
of (a) and (b).

For the first sum, let

{ 1 if n is prime
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logn
fny = <&

Then,
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Similarly, using a,, as above and f(n) = 1/n, we have
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(b) Similarly, we have using a(n) =1 if n = p and n + 2 = ¢ (where p

and ¢ are primes),
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. An integer n is power-full if p | n = p* | n. Let F be the set of
power-full numbers.

(a) Show that for o > 1/2,
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(b) Show that any power-full number can be written as a?b®, and this

representation is unique if b is square-free.

(¢) Show that
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Solutions: (a) Let
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Then, using (c), we have that F(z) ~ %xlﬂ and
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is analytic for Re(s) > 1/2 and we have the Euler product
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We also compute for Re(s) > 1/2
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where the last equality follows from the identities
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(b) Let n be a power-full number, i.e.
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with ey, ..., e odd (and then > 3) and ey 1, ..., e, even. Then n = a?b?
where a = p&el*B)/Q . .p,(:’“*g)ﬂpi’rf/z . 'ng/z and b = py...p,. This

representation is unique, as the primes dividing b will have odd order
2p3 since b is square-free, and every prime which appears with
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odd order in n = a?b® must divide b.

(c) We have that
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