
MATH699E(833C) Analytic Number Theory

Winter 2020

Solutions to Assignment 1

1. (a) Show that for any positive integer K

Li(x) = x
K−1∑
k=1

(k − 1)!

logk x
+OK

(
x

logK x

)
.

Solution: We first show that

Li(x) = x
K−1∑
k=1

(k − 1)!

logk x
+ (K − 1)!

∫ x

2

dt

logK t
+OK(1). (1)

It is trivially true for K = 1, and for K = 2, integrating by part with

u = 1/ log t and dv = dt, we have that

Li(x) =

∫ x

2

dt

log t
=

x

log x
− 2

log 2
+

∫ x

2

dt

log2 t
.

Then, by induction, and integrating by part with u = 1/ logK t and

dv = dt, we have that

Li(x) = x
K−1∑
k=1

(k − 1)!

logk x
+ (K − 1)!

∫ x

2

dt

logK t
+OK(1)

= x
K−1∑
k=1

(k − 1)!

logk x
+

(K − 1)!x

logK x
+

∫ x

2

K!dt

logK+1 t
+OK(1)

= x

K∑
k=1

(k − 1)!

logk x
+

∫ x

2

K!dt

logK+1 t
+OK(1)

which shows (1). Finally, we have for any 0 < θ < 1,∫ x

2

(K − 1)!dt

logK t
=

∫ xθ

2

(K − 1)!dt

logK t
+

∫ x

xθ

(K − 1)!dt

logK x

≤ (K − 1)!xθ +
(K − 1)!x

θK logK x
�K

x

logK x
.



(b)

2. (a) Let λ(n) denote the Liouville’s function given by λ(n) = (−1)Ω(n),

where Ω(n) is the total number of primes of n, counting multiplic-

ities. Show that for Re(s) > 1,

ζ(2s)

ζ(s)
=
∞∑
n=1

λ(n)

ns
.

(b) Let τ(n) be the number of divisors of n. Show that for Re(s) > 1,

ζ3(s)

ζ(2s)
=
∞∑
n=1

τ(n2)

ns
.

Solutions: (a) For <(s) > 1,

ζ(2s)

ζ(s)
=

∏
p(1− p−2s)−1∏
p(1− p−s)−1

=

∏
p(1− p−s)−1(1 + p−s)−1∏

p(1− p−s)−1

=
∏
p

(
1− (−p−2s)

)−1
=
∏
p

(
1− p−s + p−2s − p−3s . . .

)
=:
∑
n

a(n)

ns
.

Let n = pe11 . . . pess . Then it is clear from above that

a(n) = (−1)e1 . . . (−1)es = (−1)
∑s
i=1 ei = (−1)Ω(n) = λ(n).

(b) We first remark that since τ(n) is multiplicative, so is τ(n2). Then,

for <(s) > 1, ∑
n

τ(n)

ns
=
∏
p

∞∑
k=0

τ(p2k)

pks
=
∏
p

∞∑
k=0

2k + 1

pks
.

Note that

1

(1− x)2
=

(
∞∑
n=0

xn

)(
∞∑
m=0

xm

)
=
∞∑
k=0

(k + 1)xk,
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and then

1

(1− x)2
+

x

(1− x)2
=

∞∑
k=0

k + 1xk +
∞∑
k=0

k + 1xk+1

=
∞∑
k=0

k + 1xk +
∞∑
k=1

kxk =
∞∑
k=0

(2k + 1)xk.

Then,

∞∑
k=0

(2k + 1)xk =
1 + x

(1− x)2
=

1− x2

(1− x)3
,

and using x = p−s, we have∏
p

∞∑
k=0

2k + 1

pks
=
∏
p

1− p−2s

(1− p−s)3
=
ζ3(s)

ζ(2s)
.

3. (a) Show that

f(s) =
∞∑
n=1

τ(n)

ns

converges for Re(s) > 1 by showing that A(x) =
∑

n≤x τ(n) =

O(x log x).

(b) Show that if |A(x)| ≤ Cx/ log2 x for all x ≥ 2, then
∑∞

n=1 a(n)/n

converges.

(c) If a(n) ≥ 0 for all n, and A(x) ≥ Cx/ log x for all x ≥ 2, then∑∞
n=1 a(n)/n diverges.

Solutions: We showed in class that∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/2) = O
(
x1+ε

)
for any ε > 0, which implies that the Dirichelt series converges for

<(s) > 1 taking the Mellin transform as we saw in class.
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(b) This can be proven by partial summation.

(c) This can be proven by partial summation.

4. (a) Assume that π(x) ∼ x/ log x. Show that it implies that∑
p≤x

log p

p
∼ log x

∑
p≤x

1

p
∼ log log x.

[However, those assertions are weaker than the Prime Number

Theorem and can be derived by elementary methods.]

(b)

Solutions: (a) We first show that f(x) ∼ g(x) implies that
∫ x

2
f(t) dt ∼∫ x

2
g(t) dt for positive integrable functions f, g such that for any 0 <

θ < 1, ∫ xθ

2

g(t) dt = o

(∫ x

2

g(t) dt

)
,

which is the case for most reasonable functions, and certainly for g(x) =

x/ log x.

Since f(x) ∼ g(x), we have that f(x) = g(x)+e(x)g(x) where e(x)→ 0

as x→∞. Then, for any 0 < θ < 1,∫ x

2

f(t) dt−
∫ x

2

g(t) dt =

∫ x

2

e(t)g(t) dt

=

∫ xθ

2

e(t)g(t) dt+

∫ x

xθ
e(t)g(t) dt

�
∫ xθ

2

g(t) dt+

(
sup

xθ≤t≤x
|e(t)|

)∫ x

xθ
g(t) dt

= o

(∫ x

2

g(t) dt

)
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since supxθ≤t≤x |e(t)| → 0 as x → ∞. We use this result in the proofs

of (a) and (b).

For the first sum, let

an =

{
1 if n is prime

0 otherwise

f(n) =
log n

n

Then, ∑
p≤x

log p

p
= π(x)

log x

x
−
∫ x

1

π(t)

(
1

t2
− log t

t2

)
dt

∼
∫ x

2

1

t
− 1

t log t
dt+O(1)

= log x− log log x+O(1) ∼ log x.

Similarly, using an as above and f(n) = 1/n, we have∑
p≤x

1

p
= π(x)

1

x
−
∫ x

1

π(t)
−1

t2
dt

∼
∫ x

2

1

t log t
dt ∼ log log x.

(b) Similarly, we have using a(n) = 1 if n = p and n + 2 = q (where p

and q are primes),∑
p≤x,p+2 prime

1

p
∼ S

(
x

log2 x

1

x
+

∫ x

1

t

log2 t

1

t2
dt

)
= O(1).

5. An integer n is power-full if p | n ⇒ p2 | n. Let F be the set of

power-full numbers.

(a) Show that for σ > 1/2,∑
n∈F

n−s =
ζ(2s)ζ(3s)

ζ(6s)
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(b) Show that any power-full number can be written as a2b3, and this

representation is unique if b is square-free.

(c) Show that ∑
a2b3≤x

1 = ζ(3/2)x1/2 +O(x1/3)

∑
n≤x
n∈F

1 =
ζ(3/2)

ζ(3)
x1/2 +O(x1/3)

Solutions: (a) Let

F(x) =
∑
n≤x
n∈F

1.

Then, using (c), we have that F(x) ∼ ζ(3/2)
ζ(3)

x1/2 and

f(s) =
∑
n∈F

n−s

is analytic for Re(s) > 1/2 and we have the Euler product∑
n∈F

n−s =
∏
p

(
1 +

1

p2s
+

1

p3s
+ . . .

)

=
∏
p

((
1− 1

ps

)−1

− 1

ps

)

=
∏
p

p2s − ps + 1

ps(ps − 1)
.

We also compute for Re(s) > 1/2

ζ(2s)ζ(3s)

ζ(6s)
=

∏
p

(
p2s

p2s − 1

)(
p3s

p3s − 1

)(
p6s − 1

p6s

)
=

∏
p

(
p6s − 1

ps(p2s − 1)(p3s − 1)

)
=

∏
p

p2s − ps + 1

ps(ps − 1)
,
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where the last equality follows from the identities

x6 − 1

(x2 − 1)(x3 − 1)
=
x3 + 1

x2 − 1
=
x2 − x+ 1

x− 1
.

(b) Let n be a power-full number, i.e.

n = pe11 p
e2
2 . . . pekk p

ek+1

k+1 . . . p
e`
`

with e1, . . . , ek odd (and then≥ 3) and ek+1, . . . , e` even. Then n = a2b3

where a = p
(e1−3)/2
1 . . . p

(ek−3)/2
k p

ek+1/2
k+1 . . . p

e`/2
` and b = p1 . . . pk. This

representation is unique, as the primes dividing b will have odd order

in n = a2b3 since b is square-free, and every prime which appears with

odd order in n = a2b3 must divide b.

(c) We have that∑
a2b3≤x

1 =
∑
b3≤x

∑
a2≤x/b3

1 =
∑
b3≤x

[( x
b3

)1/2
]

=
∑
b3≤x

(( x
b3

)1/2

+O(1)

)
= x1/2

∑
b3≤x

1

b3/2
+O

∑
b3≤x

1


= x1/2

∞∑
b=1

1

b3/2
− x1/2

∑
b3>x

1

b3/2
+O(x1/3)

= ζ(3/2)x1/2 +O

(
x1/2

∫ ∞
x1/3

dt

t3/2

)
+O(x1/3)

= ζ(3/2)x1/2 +O
(
x1/2x−1/6

)
+O(x1/3)

= ζ(3/2)x1/2 +O(x1/3)

Similarly,∑
n≤x
n∈F

1 =
∑
a2b3≤x

µ2(b)
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=
∑
b3≤x

µ2(b)
∑

a2≤x/b3
1 =

∑
b3≤x

µ2(b)

[( x
b3

)1/2
]

=
∑
b3≤x

µ2(b)
( x
b3

)1/2

+O(1) = x1/2
∑
b3≤x

µ2(b)

b3/2
+O

∑
b3≤x

1


= x1/2

∞∑
b=1

µ2(b)

b3/2
− x1/2

∑
b3>x

µ2(b)

b3/2
+O(x1/3)

=
ζ(3/2)

ζ(3)
x1/2 +O

(
x1/2

∫ ∞
x1/3

dt

t3/2

)
+O(x1/3)

=
ζ(3/2)

ζ(3)
x1/2 +O(x1/3)

since

∞∑
b=1

µ2(b)

b3/2
=

∏
p

(
1 +

1

p3/2

)
ζ(3/2)

ζ(3)
=

∏
p

1− 1
p3

1− 1
p3/2

=
∏
p

(
1 +

1

p3/2

)
.
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