Elliptic curves. Fall 2018

Assignment 3. Due Wednesday October 24.

Directions:

Undergraduate students answer 2 problems at their choice. M.SC. students answer 3 problems at their choice. Ph.D. students answer 4 problems at their choice.

- 1. Prove the following form of the Riemann-Roch theorem for \mathbb{P}^1 : Let $D \in \text{Div}(C)$, $\deg(D) \ge 0$. Then, $\ell(D) = \deg(D) + 1$.
- **2.** Use the Riemann-Hurwitz formula to find the genus of the following smooth plane curves, defined over a field K of characteristic zero.
 - (a) Show that the genus of the Fermat curves $x^n + y^n = 1$ is (n-1)(n-2)/2.
 - (b) Show that the genus of the hyperelliptic curves $y^2 = f(x)$, where f(x) is a polynomial in K[x] of degree d with distinct roots is $\lfloor (d-1)/2 \rfloor$.
- **3.** (Silverman III.3.5) Let E/K be given by a singular Weierstrass equation.
 - (a) Suppose that E has a node, and let the tangent lines at the node be

$$y = \alpha_1 x + \beta_1$$
, and $y = \alpha_2 x + \beta_2$.

If $\alpha_1 \in K$, show that $\alpha_2 \in K$ and $E_{ns}(K) \simeq K^*$. If $\alpha_1 \notin K$, prove that $L = K(\alpha_1, \alpha_2)$ is a quadratic extension of K. Note that we know by the above that $E_{ns}(K) \subseteq E_{ns}(L) \simeq L^*$. Prove that

$$E_{\rm ns}(K) = \{t \in L^* : N_{L/K}(t) = 1\}.$$

- (b) Suppose that E has a cusp. Prove that $E_{ns}(K) \simeq K^+$.
- (c) Let p > 3 be a prime, and let $K = \mathbb{F}_p$. Show that

 $\#E_{\rm ns}(\mathbb{F}_p) = \begin{cases} p & \text{if } E \text{ has a cusp;} \\ p-1 & \text{if } E \text{ has a node and the tangent lines are defined over } \mathbb{F}_p; \\ p+1 & \text{if } E \text{ has a node and the tangent lines are not defined over } \mathbb{F}_p. \end{cases}$

4. Let E/\mathbb{C} be an elliptic curve. Then there is a lattice Λ_E such that $E(\mathbb{C})$ is isomorphic to the abelian group \mathbb{C}/Λ_E (see Silverman VI.5.1.1). Assuming this result, prove that

$$\operatorname{deg}[m] = m^2$$
 and $E[m] \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$.

5. (Silverman III.3.9) Let K be a field with $char(K) \neq 2, 3$, and let E/K be an elliptic curve given by an homogeneous Weierstrass equation

$$F(X_0, X_1, X_2) = X_1^2 X_2 - X_0^3 - A X_0 X_2^2 - B X_2^3 = 0,$$

- i.e. $x = X_0/X_2$ and $y = X_1/X_2$ are the Weierstrass coordinates. Let $P \in E$.
- (a) Show that $[3]P = \mathcal{O}$ if and only if the tangent line to E at P intersect E only at P.
- (b) Show that $[3]P = \mathcal{O}$ if and only if the Hessian matrix

$$\left(\frac{\partial^2 F}{\partial X_i \partial X_j}(P)\right)_{0 \le i,j \le 2}$$

has determinant 0.

- (c) Show that E[3] consists of 9 points.
- 6. (Silverman III.3.6)
- 7. (Silverman III.3.7) You can do only part of it, as there is (a)-(g), and this is very long.