Elliptic curves. Fall 2018

Assignment 4. Due Wednesday November 14.

Directions:

Undergraduate students answer 2 problems at their choice.

M.SC. students answer 3 problems at their choice.

Ph.D. students answer 4 problems at their choice.

1. Show directly that

$$\operatorname{rank}_{\mathbb{Z}}\operatorname{Hom}(E_1, E_2) \leq \operatorname{rank}_{\mathbb{Z}_{\ell}}\operatorname{Hom}(E_1, E_2) \otimes \mathbb{Z}_{\ell}.$$

- **2.** (Silverman III.3.15) Let E_1/K and E_2/K be elliptic curves, and let $\phi: E_1 \to E_2$ be an isogeny of degree m defined over K where m is prime to $\operatorname{char}(K)$ if $\operatorname{char}(K) > 0$.
 - (a) Mimic the construction of the Weil pairing to construct a pairing

$$e_{\phi} : \ker(\phi) \times \ker(\hat{\phi}) \to \mu_m.$$

- (b) Prove that e_{ϕ} is bilinear, nondegenerate and Galois invariant.
- (c) Prove that e_{ϕ} is compatible in the sense that if $\psi: E_2 \to E_3$ is another isogeny, then

$$e_{\psi \circ \phi}(P,Q) = e_{\psi}(\phi P,Q)$$

for all $P \in \ker(\psi \circ \phi)$ and $Q \in \ker(\widehat{\psi})$.

- **3.** (Silverman III.3.32) Let $\phi \in \operatorname{End}(E)$ be an endomorphism, and let $d = \deg \phi$ and $a = 1 + \deg \phi \deg(1 \phi)$.
 - (a) Prove that $\phi^2 [a] \circ \phi + [d] = [0]$ in End(E).
 - (b) Let $\alpha, \beta \in \mathbb{C}$ be the roots of the polynomial $t^2 at + d$. Prove that

$$|\alpha| = |\beta| = \sqrt{d}.$$

(c) Prove that $deg(1-\phi^n)=1+d^n-\alpha^n-\beta^n$ for all $n\geq 1$, and deduce that

$$|\deg(1-\phi^n)-1-d^n| \le 2d^{n/2}.$$

(d) Prove that

$$\exp\left(\sum_{n=1}^{\infty} \frac{\deg(1-\phi^n)}{n} X^n\right) = \frac{1 - aX + dX^2}{(1-X)(1-dX)},$$

and that the series converges for $|X| < |d|^{-1}$.

Hint: Use (III.8.6). For (b), use the fact that $deg([m] + [n] \circ \phi) \ge 0$ for all $m, n \in \mathbb{Z}$.

- 4. (Silverman III.3.18)
- 5. (Silverman III.3.19)
- 6. (Silverman III.3.20)