Elliptic curves. Fall 2018

Partial Solutions to Assignment 2. Due Wednesday October 3.

Directions:

Undergraduate students answer 2 problems at their choice.

M.SC. students answer 3 problems at their choice.

Ph.D. students answer 4 problems at their choice.

- 1. Show that Propostion 1.2 and Theorem 2.3 (of Chapter II in Silverman) are true for $C = \mathbb{P}^1$ and $C_1 = C_2 = \mathbb{P}^1$ respectively.
 - (a) Proposition 1.2: Show that $f \in \overline{K}(\mathbb{P}^1)$, $f \neq 0$ has only finitely many zeroes and poles. Furthermore, if f has no poles, then f is a constant.
 - (b) Proposition 2.3: Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ be a morphism. Then ϕ is either constant or surjective.
- **2.** Show that Theorem 2.3 (of Chapter II in Silverman) is true when C_1, C_2 are plane curves given by a single equation.

Hint: Use the resultant of homogeneous polynomials with respect to different variables.

3. Let C: F(X, Y, Z) = 0 be a plane curve given by a single equation. Show that a point P is smooth if and only if M_P is a principal ideal.

Solutions: After a linear change of variable, we can assume that the smooth point is (0,0). Let f(x,y)=0 be an affine model where P=(0,0) is the smooth point and f(0,0)=0. We want to show that the ideal $M_P=(x,y)$ in $\overline{K}[C]_P$ is principal. Since P is smooth, either

$$\frac{\partial f}{\partial x}(0,0) \neq 0$$
, or $\frac{\partial f}{\partial y}(0,0) \neq 0$.

Wlog, say $\frac{\partial f}{\partial y}(0,0) = \delta \neq 0$, and writing the Taylor expansion at P = (0,0), we have

$$f(x,y) = \frac{\partial f}{\partial x}(0,0)x + \delta y + \text{higher order terms} = \sum_{i=1}^{n} b_i x^i + y(\delta + g(x,y)),$$

where $g(x,y) \in \overline{K}[x,y]$, and g(0,0) = 0. Then,

$$y(\delta + g(x,y)) = -\sum_{i=1}^{n} b_i x^i,$$

and $\delta + g(x, y)$ is a unit in $\overline{K}[C]_P$. This gives $y \in xM_P$, and $M_P = (x)$.

Conversly, assume that $M_P = (x, y)$ is generated by a single element, say z. Then, we have the equations

$$ux + vy = z$$
, $x = zs$, $y = zr$,

for $u, v, s, r \in \overline{K}[C]_P$, and then us + vr = 1. Then, either r or s is a unit in $\overline{K}[C]_P$, wlog say that s is a unit. Since rx - sy = 0 in $\overline{K}[C]_P$ we can find polynomials r(x, y), s(x, y) and g(x, y) in $\overline{K}[x, y]$, where s(x, y) has non zero constant term, such that

$$f(x,y)g(x,y) = r(x,y)x - s(x,y)y$$

By comparing the coefficient of y on both sides, we conclude that

$$\frac{\partial f}{\partial u}(0,0) \neq 0.$$

Another proof using Proposition I.1.7:

Suppose that $M_P = (t)$ is a principal ideal in $\overline{K}[C]_P$. Then, the map

$$\phi: \overline{K}[C]_P \to M_P/M_P^2$$
$$f \mapsto ft$$

is a surjective homorprphism of \overline{K} -verctor space with kernel M_P . From Hilbert Null-StellenSatz, we have that

$$\overline{K}[C]_P/M_P \simeq \overline{K} \simeq M_P/M_P^2,$$

and the result follows from Proposition I.1.7.

4. Let K be a field of characteristic different than 2. Let E/K be the curve with affine equation

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

where $a_1, a_2, a_3, a_4, a_6 \in K$.

- (a) Show that E is isomorphic to a curve $y^2 = x^3 + px + q$, which is non-singular if and only if $4p^3 + 27q^2 \neq 0$. We suppose from now on that E is non-singular.
- (b) Show that the rational map ϕ defined on E by $\phi(x,y)=(x,-y-a_1x-a_3)$ is an isomorphism.

(c) Let $f \in K(E)$ and $\phi^* f = f \circ \phi$. Let $P \in E(K)$, $Q = \phi(P)$ and t_Q be a uniformizer at Q. Show that $\phi^* t_Q$ is a uniformizer at P and $v_Q(f) = v_P(\phi^* f)$.

Solutions: (a) Seen in class.

- (b) We have a rational map between non-singular curves, it is then a morphism. Also, $\phi^{-1} = \phi = (x, -y a_1x a_3)$ is the inverse of ϕ , so ϕ is an isomorphism.
- (c) Since ϕ is an isomorphism, ϕ^* is an field isomorphism of $\overline{K}(E)$. Since $(\phi^*f)(P) = f(\phi(P)) = f(Q)$, we have that ϕ^* is an isomorphism between the local rings $\overline{K}(E)_P$ and $\overline{K}(E)_Q$. Then, ϕ^*t_Q is a uniformizer at P and $v_Q(f) = v_P(\phi^*f)$. We remark that the result is also a particular case of **3.** taking $f = t_Q$ since $e_{\phi}(P) = 1$ for any P because ϕ is an isomorphism.
- **5.** Let E be a curve as in **4.**. Let $f \in K(E)^*$. Show that $\deg(\operatorname{div}(f)) = 0$ by following the steps:
 - (a) Show that the result hold for $f(x) = (x x_i)$, and then for any polynomial $a(x) \in K(E)$.
 - (b) Show that result hold for f(x,y) = a(x) + yb(x). Hint: Use the map ϕ of **4.**(b)
 - (c) Show that the result hold for a general $f \in K(E)$.

Solutions: (a) Let's suppose that $\operatorname{char}(K) \neq 2$, and write $E: y^2 = f(x)$. Let $P = (x_i, y_i)$ be an affine point on E. Then, there are 2 points $P \in E(\overline{K})$ with x-coordinate $x = x_i$, namely $P^{\pm} = (x_i, \pm \sqrt{f(x_i)})$ and they are equal if and only if $f(x_i) = 0$ if and only if x_i is a root of f(x). The uniformizer at $P = (x_i, y_i)$ is

$$t_P = (x - x_i)$$
 if x_i is not a root of $f(x)$
 $t_P = y$ if x_i is not a root of $f(x)$

The uniformizer for x_i a root of f(x) was done in class, and to show that $x - x_i$ is a uniformizer at $P_i = (x_i, y_i)$ when x_i is not a root of $f(x) = x^2 + Ax + B$, we use

$$(y-y_i)(y+y_i) = y^2 - y_i^2 = x^3 + Ax + B - (x_i^3 + AX_i + B) = (x-x_i)(x^2 + xx_i + x_i^2 + A).$$

So,

$$y - y_i = \frac{(x - x_i)(x^2 + xx_i + x_i^2 + A)}{y + y_i},$$

and $(x - x_i)$ is the uniformizer. In the first case, $v_{P^+}(x - x_i) = v_{P^-}(x - x_i) = 1$, and in the second case, $P = P^+ = P^-$ and $v_P(x - x_i) = 2$. In both cases, we have that $v_{\mathcal{O}}(x - x_i) = 2$, Indeed, homogenizing

$$x - x_i = \frac{x - x_i z}{z},$$

and evaluating at $\mathcal{O} = [0, 1, 0]$, we get that

$$\operatorname{ord}_{\mathcal{O}}(x - x_i) = \operatorname{ord}_{\mathcal{O}}(x - zx_i) - \operatorname{ord}_{\mathcal{O}}(z),$$

and using the equation for the dehomogenization with y = 1, we get

$$z = (x - e_1 z)(x - e_2 z)(x - e_3 z),$$

and $\operatorname{ord}_{\mathcal{O}}(z) = 3$. We also have that $\operatorname{ord}_{\mathcal{O}}(x - zx_i) = 1$, which gives $\operatorname{ord}_{\mathcal{O}}\left(\frac{x - zx_i}{z}\right) = -2$. Finally, we showed that

$$\operatorname{div}(x - x_i) = (P^+) + (P^-) - 2(\mathcal{O}),$$

where $P^+ = P^-$ if and only if $f(x_i) = 0$. Then, $\deg \operatorname{div}(x - x_i) = 0$.

For any polynomial a(x), we can write $a(x) = \prod_{i=1}^{d} (x - x_i)^{n_i}$, which gives that

$$\operatorname{div} a(x) = \sum_{i=1}^{d} n_i \operatorname{div}(x - x_i) = \sum_{i=1}^{d} n_i(P_i^+) + n_i(P_i^-) - 2n_i(\mathcal{O}), \tag{1}$$

which is a divisor of degree 0.

(b) We now consider a function a(x) + yb(x), and the map

$$\phi: E \to E$$

$$(x,y) \mapsto (x,-y)$$

Then, we have that

$$v_P(a(x) + yb(x)) = v_{\phi(P)}(a(x) - yb(x))$$

for all $P \in E(\overline{K})$, where $P, \phi(P)$ where denoted by P^{\pm} in (a). Hence, it follows from (1) that

$$\operatorname{div}(a(x) + yb(x)) = \sum_{P} n_{P}(P) \iff \operatorname{div}(a(x) - yb(x)) = \sum_{P} n_{P}(\phi(P)),$$

and $\deg \operatorname{div}(a(x) + yb(x)) = \deg \operatorname{div}(a(x) - yb(x))$. Now,

$$(a(x) + yb(x))(a(x) - yb(x)) = a^{2}(x) - y^{2}b^{2}(x) = a^{2}(x) - f(x)b^{2}(x)$$

is independent of y, and by (a)

$$0 = \operatorname{deg}\operatorname{div}(a(x) + yb(x))(a(x) - yb(x))$$
$$= \operatorname{deg}\operatorname{div}(a(x) + yb(x)) + \operatorname{deg}\operatorname{div}(a(x) - yb(x)) = 2\operatorname{deg}\operatorname{div}(a(x) + yb(x)),$$

and $\deg \operatorname{div}(a(x) + yb(x)) = 0$.

(c) Now, any function in the function field $\overline{K}(E) = \overline{K}[x,y]/(y^2 - f(x))$ can be written as g(x,y)/h(x,y), where $g(x,y),h(x,y) \in \overline{K}[x,y]$. Suppose that $\deg g = 2n$ is even (the proof for odd is identical). Then,

$$g(x,y) = \sum_{i=0}^{2n} b_i(x)y^i = \sum_{i=0}^{n} b_{2i}y^{2i} + \sum_{i=0}^{n-1} b_{2i+1}(x)y^{2i+1}$$
$$= \sum_{i=1}^{n} b_{2i}(x)f(x)^i + y\sum_{i=1}^{n-1} b_{2i+1}(x)f(x)^i = a(x) + yb(x),$$

and similarly for h(x,y). We have proven that any function in the function field $\overline{K}(E) = \overline{K}[x,y]/(y^2 - f(x))$ writes as

$$\frac{a_1(x) + yb_1(x)}{a_2(x) + yb_2(x)},$$

and the results follows from (b).

6. (Silverman II.2.2) Let $\phi: C_1 \to C_2$ be a non-constant map of smooth curves, $f \in \overline{K}(C_2)^*$, $P \in C_1$. Show that

$$\operatorname{ord}_P(\phi^*f) = e_{\phi}(P) \operatorname{ord}_{\phi(P)}(f).$$

Solutions: Let $t_{\phi(P)} \in \overline{K}(C_2)$ be a unformizer at $\phi(P)$, and let $f \in \overline{K}(C_2)_{\phi(P)}$. Since $\overline{K}(C_2)_{\phi(P)}$ is a DVR, we can write $f = t_{\phi(p)}^k u$, where $v_{\phi(p)}(u) = 0$. Then, $\phi^*g = (\phi^*t_{\phi(P)})^k \phi^*u$, and by definition, $\operatorname{ord}_P(\phi^*u) = \operatorname{ord}_{\phi(P)}u = 0$. Then,

$$\operatorname{ord}_{P}(\phi^{*}f) = \operatorname{ord}_{P}((\phi^{*}t_{\phi(p)})^{k}\phi^{*}u) = k \operatorname{ord}_{P}(\phi^{*}t_{\phi(p)}) = \operatorname{ord}_{\phi(P)}(f) e_{\phi}(P).$$

7. (Silverman II.2.14)

Solution from Reginald Lybbert:

Question 7: For this exercise we assume that char $K \neq 2$. Let $f(x) \in K[x]$ be a polymonial of degree $d \geq 1$ with nonzero discriminant, let C_0/K be the affine curve given by the equation:

$$C_0: y^2 = f(x) = a_0 x^d + a_1 x^{d-1} + \dots + a_{d-1} x + a_d$$

and let g be the unique integer satisfying $d-3 < 2g \le d-1$.

(a) Let C be the closure of the image of C_0 via the map

$$[1, x, x^2, \dots, x^{g+1}, y] : C_0 \to \mathbb{P}^{\eth + \nvDash}$$

Prove that C is smooth and that $C \cap \{X_0 \neq 0\}$ is isomorphic to C_0 .

We see that the ideal of the image of C_0 via the map mentioned contains the following set of homogeneous polynomials.

$$\mathcal{F} := \{ X_i X_j - X_p X_q : i + j = p + q, 0 \le i, j, p, q \le q + 1 \}$$

along with the polynomial.

$$H: X_{g+2}^2 X_0^{d-2} - (a_0 X_1^d + a_1 X_1^{d-1} X_0 + \ldots + a_{d-1} X_1 X_0^{d-1} + a_d X_0^d)$$

Note that the image of these polynomials is bigger than C_0 since it contains the hyperplane $X_0 = X_1 = 0$. Thus, we must remove this, by substituting some of the equations of \mathcal{F} into H to get (in the case d is even):

$$H: X_{q+2}^2 X_0^{d-2} - a_0 X_{q+1}^2 X_0^{d-2} - a_1 X_g X_{g+1} X_0^{d-2} - \dots - a_{d-1} X_1 X_0^{d-1} - a_d X_0^{d-1} X_0^{d-1} - a_d X_0^{d-1}$$

or in the case d is odd:

$$H: X_{q+2}^2 X_0^{d-2} - a_0 X_{g+1} X_g X_0^{d-2} - a_1 X_q^2 X_0^{d-2} - \dots - a_{d-1} X_1 X_0^{d-1} - a_d X_0^{d-1} X_0$$

Either way, we can now reduce the degree of this polynomial by removing a factor of X_0^{d-2} . This gives us H_{even} if d is even, or H_{odd} if d is odd.

$$H_{even}: X_{g+2}^2 - (a_0 X_{g+1}^2 + a_1 X_{g+1} X_g + \dots + a_{d-1} X_1 X_0 + a_d X_0^2)$$

 $H_{odd}: X_{g+2}^2 - (a_0 X_{g+1} X_g + a_1 X_g^2 + \dots + a_{d-1} X_1 X_0 + a_d X_0^2)$

Let C be the variety corresponding to the ideal generated by \mathcal{F} and \hat{H} , where $\hat{H} = H_{even}$ or H_{odd} , depending on the parity of d.

Now, if we set $X_0 \neq 0$, we see that the only possible solutions to this correspond exactly to C_0 . Let P be a projective point that satisfies all of these equations, with $X_0 \neq 0$. Then, we can scale to get a representative where $X_0 = 1$. Then set $X_1 = x$, and then, by equation $X_i X_0 = X_{i-1} X_1 \in \mathcal{F}$, $X_i = x^i$. Then, this causes H to become exactly the equation for C_0 . Thus, the affine part of C where $X_0 \neq 0$ is exactly the image of C_0 . It remains to show that C is non-singular at the parts where $X_0 = 0$.

Suppose $X_0 = 0$, Suppose that $X_{i-1} = 0$ for some 0 < i < g+1. Then $X_i^2 = X_{i-1}X_{i+1}$ is an equation in \mathcal{F} . So, since $X_{i-1} = 0$, we must have $X_i = 0$. Thus, by induction we see that if $X_0 = 0$, then $X_i = 0$ for all i < g+1.

Now, if d is odd, this reduces the equation H to X_{g+2}^2 . So $X_{g+2}=0$. So, we have only one point at infinity, namely $[0,0,\dots,0,1,0]$. So, let us dehomogenize C using $X_{g+1}=1$. Then, using the equation $X_{g+1}X_{g-i}=X_gX_{g-i+1}$, we see that $X_{g-i}=X_g^{i+1}$, for all $0 \le i \le g$. So, call $X_g/X_{g+1}=v$, and $X_{g+2}/X_{g+1}=u$. This gives us the equation:

$$u^2 = a_0 v + a_1 v^2 + \ldots + a_d v^d + a_d v^{d+1}$$

However, since f(x) had non-zero discriminant, we see that the polynomial $a_0 + a_1x + \dots + a_dx^d$ has no double roots, and since $a_0 \neq 0$, we also have $a_0v + a_1v^2 + \dots + a_dv^{d+1}$ having no double roots. Therefore, the above equation gives a smooth curve. Thus C is smooth, when d is odd.

On the other hand, if d is even, H reduces to $X_{g+2}^2 = a_0 X_{g+1}^2$. Here, we have two points at infinity, namely $[0, 0, \ldots, 0, 1, \pm \sqrt{a_0}]$. Note that $\sqrt{a_0} \neq 0$, since f(x) is exactly degree d. Now, we again homogenize at $X_{g+1} = 1$. Using the same equations as before, we still have $X_{g-i} = X_g^{i+1}$, so setting $v = X_g/X_{g+1}$, and $u = X_{g+2}/X_{g+1}$, we get:

$$u^2 = a_0 + a_1 v + \ldots + a_d v^d$$

Then, since f(x) had non-zero discriminant, we see that it had no double roots. So, if we homogenize f and dehomogize with respect to the other variable, we still have no double roots. But that is exactly what it here. Thus, $a_0 + a_1v + \ldots + a_dv^d$ has no double roots. Therefore, the above equation describes a smooth affine curve. Therefore, C is smooth, when d is even.

(b) Let

$$f^*(v) = v^{2g+2} f(1/v) = \begin{cases} a_0 + a_1 v + \dots + a_{d-1} v^{d-1} + a_d v^d & \text{if } d \text{ is even} \\ a_0 v + a_1 v^2 + \dots + a_{d-1} v^d + a_d v^{d+1} & \text{if } d \text{ is odd} \end{cases}$$

Show that C consists of two pieces:

$$C_0: y^2 = f(x)$$
 and $C_1: u^2 = f^*(v)$

"glued together" via the maps

$$C_0 \to C_1$$
 $C_1 \to C_0$
 $(x,y) \mapsto (1/x, y/x^{g+1})$ $(v,u) \mapsto (1/v, u/v^{g+1})$

Using exactly the dehomogenizations is the last part, we have already shown that C consists of C_0 and C_1 . Note that C_0 contains all but one or two of the points of C, but those points are shown to be in C_1 , thus these are the only two pieces necessary. It remains to compute the gluing data.

We need only consider points on C that are on both the affine part of C_0 , (where $X_0 \neq 0$), and the affine part of C_1 , (where $X_{g+1} \neq 0$). Now, using the coordinates of C_0 , we see that $X_{g+1} = x^{g+1}$. Thus $v = X_g/X_{g+1} = x^g/x^{g+1} = 1/x$, Also, $w = X_{g+2}/X_{g+1}$ so $w = y/x^{g+1}$. Thus, the gluing map $C_0 \to C_1$ is $(x, y) \to (1/x, y/x^{g+1})$.

Now, to look at the other direction, recall that using the coordinates of C_1 , we have $X_0 = v^{g+1}$. Thus $x = X_1/X_0 = v^g/v^{g+1} = 1/v$, and $y = X_{g+2}/X_0 = u/v^{g+1}$. Thus, the gluing map $C_1 \to C_0$ is $(v, u) \to (1/v, u/v^{g+1})$.

8. (Silverman II.2.15))

9. (Silverman II.2.16) Let C/K be a curve that is defined over K and let $P \in C(K)$. Prove that K(C) contains uniformizers for C at P, i.e. prove that there are uniformizers that are defined over K.

Solution from Martin Čech:

Let t_P be a uniformizer at P. Then t_P is defined over some field M which is a finite extension of K. We will assume that the extension M/K is separable, and denote by L the normal closure of M, so that L/K is finite and Galois.

In general, every uniformizer at P is of the form ut_P for a unit $u \in \overline{K}[C]_P$. Let $\sigma_1, \ldots, \sigma_k$ denote all the elements of $\operatorname{Gal}(L/K)$. Then for every $i = 1, \ldots, k$, $\sigma_i(t_P) = u_i \cdot t_P$ for some unit $u_i \in L[C]_P$ — we would like to find a unit $v \in L[C]_P$ such that $\sigma_i(vt_P) = vt_P$, which would imply (by the exercise from previous assignment) that vt_P is a uniformizer defined over K.

Since we know that $\sigma_i(vt_P) = \sigma_i(v)u_it_P$, we need this unit v to satisfy $u_i = \frac{v}{\sigma_i(v)}$ for every i. We can find such a v using Hilbert's Theorem 90.

The map $\phi: \sigma_i \mapsto u_i$ is a 1-cocycle with values in $L[C]_P^\times$, since $\sigma_i \sigma_j(t_P) = \sigma_i(u_j t_P) = \sigma_i(u_j)u_i t_P$, so $\phi(\sigma_i \sigma_j) = u_i \sigma_i(u_j)$. Since $L[C]_P$ is an (infinite dimensional) vector space over L, we can use Hilbert's Theorem 90 and a similar prove as in the last exercise of the last assignment to show that $H^1(\operatorname{Gal}(L/K), L[C]_P^\times) = 1$. This shows that ϕ is a 1-coboundary, so is of the form $\phi(\sigma_i) = u_i = \frac{\sigma_i(w)}{w}$ for some w. Setting $v = w^{-1}$, we have $\frac{v}{\sigma_i(v)} = \frac{\sigma_i(w)}{w} = u_i$ as we wanted.