
Elliptic curves. Fall 2018

Partial Solutions to Assignment 3. Due Wednesday October 24.

Directions:

Undergraduate students answer 2 problems at their choice.

M.SC. students answer 3 problems at their choice.

Ph.D. students answer 4 problems at their choice.

1. Prove the following form of the Riemann-Roch theorem for P1:

Let D ∈ Div(C), deg(D) ≥ 0. Then, `(D) = deg(D) + 1.

Solutions: We first recall that ifD ∼ D′, then L(D) ' L(D′) and so `(D) = `(D′).

Let D be any divisor of degree n ≥ 0 on P1. Then, D′ = D − n([0, 1]) has degree

0, and since on P1 every divisor of degree 0 is principal, we have that D ∼ n([0, 1]),

and it suffices to prove the result for Dn = n([0, 1]), n ≥ 0. We claim that{
1,
Y

X
, . . . ,

Y n

Xn

}
is a basis for L(Dn). First, we have that 1 and Y k

Xk ∈ L(Dn) for all 1 ≤ k ≤ n since

div

(
Y k

Xk

)
= k(O)− k([0, 1]).

Now recall that any function f ∈ K(P1) is a quotient of 2 homogenous polynomials

of the same degree. Then, any function f ∈ L(Dn) can be written as

f =
akX

k + ak−1X
k−1Y + · · ·+ a0Y

k

Xk
,

since f ∈ L(Dn) only has poles at [0, 1]. But then

f = ak + ak−1
Y

X
+ · · ·+ a0

Y K

Xk
,

and this proves that

L(Dn) = K ⊕K Y

X
⊕ · · · ⊕K Y n

Xn
,

and so `(Dn) = n+ 1 as claimed.

2. Use the Riemann-Hurwitz formula to find the genus of the following smooth plane

curves, defined over a field K of characteristic zero.

(a) Show that the genus of the Fermat curves xn + yn = 1 is (n− 1)(n− 2)/2.
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(b) Show that the genus of the hyperelliptic curves y2 = f(x), where f(x) is a

polynomial in K[x] of degree d with distinct roots is b(d− 1)/2c.
Solutions: (a) Let F : xn + yn = 1. We consider the morphism

φ : F → P1

(x, y) 7→ x

From the Riemann-Hurwitz formula (since the genus of P1 is 1), we have that

2g(F )− 2 = −2 deg φ+
∑
P∈F

(eφ(P )− 1), (1)

and we have to find the degree and ramification points of φ. We have that

deg φ = [K(F ) : K(P1)] = [K(x, y) : K(x)] = n

since y = n
√

1− xn.

We now compute the ramification. For any Q ∈ P1, we have that

n = deg φ =
∑

φ(P )=Q

eφ(P ). (2)

For any affine point Q = x0, we have that φ(P ) = Q if P = (x0, y0) ∈ F (K), which

means that y0 satisfies yn0 = 1 − xn0 . If xn0 6= 1, there are exactly n solutions, as K

contains the nth roots of 1, and from (2), we get that eφ(P ) = 1 for all such points

P . If If xn0 = 1, then there is only one point P = (x0, 0) such that φ(P ) = Q, and

from (2), we get that eφ(P ) = n. Since there are n values of x0 such that xn0 = 1,

this gives that for the affine points P ∈ F , we have that∑
P∈F

(eφ(P )− 1) = n(n− 1).

We now find the points at infinity on F . Homegenizing and setting Z = 0, we have

Xn + Y n = 0 ⇐⇒ Xn = −Y n ⇐⇒ Y = n
√
−1X,

which gives the n points [1, ζ, 0] at infinity, where ζ is any of the nth roots of −1.

Then, φ−1([1, 0]) contains n points, and there is no ramification at infinity. This gives

replacing in (1) that

2g(F )− 2 = −2(n) + n(n− 1)⇒ g(F ) =
(n− 1)(n− 2)

2
.



3

(b) We consider the morphism

φ : C → P1

(x, y) 7→ x

From the Riemann-Hurwitz formula (since the genus of P1 is 1), we have that

2g(E)− 2 = −2 deg φ+
∑
P∈E

(eφ(P )− 1),

and we have to find the degree and ramification points of φ. We have that

deg φ = [K(C) : K(P1)] = [K(x, y) : K(x)] = 2

since y =
√
f(x).

We now compute the ramification. For xi ∈ P1, we have that txi = x − xi and

we have to compute vP (x − xi) as a function in K(E), where P = (xi, yi). As done

before for elliptic curves, this gives for the affine points

vP (x− xi) =

1 P = (xi, yi), f(xi) 6= 0

2 P = (xi, yi), f(xi) = 0

Then, there are d affine ramification points, namely the points Pi = (xi, 0) where

f(xi) = 0, and we have eφ(Pi) = 2.

To compute the ramification at infinity, we use a previous assignment which showed

that C has 2 points at infinity when d is even, and one when d is odd, i.e.

#φ−1([1, 0]) =

2 2 | deg(d)

1 2 - deg(d),

and there is ramification at infinity only when d is odd.

This gives

2g(C)− 2 =

−2(2) + d 2 | d
−2(2) + d+ 1 2 - d

and

g(C) =

⌊
d− 1

2

⌋
.

3. (Silverman III.3.5) Let E/K be given by a singular Weierstrass equation.



4

(a) Suppose that E has a node, and let the tangent lines at the node be

y = α1x+ β1, and y = α2x+ β2.

If α1 ∈ K, show that α2 ∈ K and Ens(K) ' K∗. If α1 6∈ K, prove that

L = K(α1, α2) is a quadratic extension of K. Note that we know by the above

that Ens(K) ⊆ Ens(L) ' L∗. Prove that

Ens(K) =
{
t ∈ L∗ : NL/K(t) = 1

}
.

(b) Suppose that E has a cusp. Prove that Ens(K) ' K+.

(c) Let p > 3 be a prime, and let K = Fp. Show that #Ens(Fp) is
p if E has a cusp;

p− 1 if E has a node and the tangent lines are defined over Fp;
p+ 1 if E has a node and the tangent lines are not defined over Fp.

Solution from David Marcil: Firstly, note that we know that E(K) must have

at most one singular point. Then, by performing a change of coordinate (defined

over K), we can assume that this point is at the origin. This is clearly a group

automorphism. Indeed, we see that the point at infinity is fixed and one readily sees

that the group law is respected by looking at its geometrical definition. Moreover,

the slopes of the tangent lines in the original curve at our singular points are defined

over K if and only if the slopes of the tangent lines of our new curve at the origin are

defined over K, and the type of the singularity (node or cusp) is also preserved, hence

we can solve the question entirely by assuming the singular point is at the origin.

That being said, since (0, 0) is a singularity, we know that E is given by a singular

Weierstrass equation of the form y2 + a1xy = x3 + a2x
2, hence the tangents are given

by y2 + a1xy − a2x2 = (y − α1x)(y − α2x).

a) By looking at this last equation we know α1 + α2 = −a1 ∈ K, so if α1 is in K,

we know that α2 is as well. It follows that one can perform the change of coordinate

(defined over K) y 7→ y + α1x . After this step, we can then follow the exact same

step as in the original proof of Silverman (see Theorem 2.5 of Chapter 3) to conclude

that Ens(K) ∼= K×. Moreover, the fact that y2 + a1xy − a2x2 = (y − α1x)(y − α2x)

implies that (s − α1)(s − α2) = s2 + a1s − a2 (simply let s = y/x), so α1, α2 both

solve the same quadratic polynomial, i.e. L = K(α1, α2) is a quadratic extension of

K. Then, the slopes of the tangent at the origin are defined over L, so our previous

work gives us that Ens(K) ⊂ Ens(L) ∼= L×.
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If P = (x, y) ∈ Ens(K), then by construction of the isomorphism Ens(L) ∼= L×, we

know P corresponds to ` =
y − α1x

y − α2x
. Since L/K is quadratic, it is Galois. Let σ the

non-trivial automorphism in Gal(L/K), then

σ(`) =
y − σ(α1)x

y − σ(α2)x
=
y − α2x

y − α1x
= `−1.

Therefore, NL/K(`) = ` · σ(`) = 1.

Conversely, suppose ` ∈ L× such NL/K(`) = 1. We know ` corresponds to some

P = (x, y) ∈ Ens(L), hence ` =
y − α1x

y − α2x
. Since NL/K(`) = 1, we must have σ(`) =

`−1 =
y − α2x

y − α1x
. On the other hand, we know σ(`) =

σ(y)− α2σ(x)

σ(y)− α1σ(x)
. By combining

both facts, we find

(σ(y)− α1σ(x))(y − α2x) = (σ(y)− α2σ(x))(y − α1x)

=⇒ α1σ(x)y + α2σ(y)x = α2σ(x)y + α1σ(y)x

=⇒ (α2 − α1)σ(x)y = (α2 − α1)σ(y)x

=⇒ σ

(
x

y

)
=
x

y
(as α1 6= α2)

It follows that x/y ∈ K. Moreover, we can use the fact that P ∈ E(L), i.e.

y2 + a1xy = x3 + a2x
2 to divide by x2 (which we can do since the only point with

x = 0 is (0, 0) which is the singular point, i.e. not in Ens(L)) and obtain x =(
y
x

)2
+ a1

(
y
x

)
− a2 ∈ K. Therefore, x ∈ K, y = (y/x) · x ∈ K, so P ∈ Ens(K). This

shows that Ens(K) = {` ∈ L× : NL/K(`) = 1}.

b) If there is only one tangent, then it is given by y2+a1xy−a2x2 = (y−α1x)2, which

yields 2α1 = −a1 ∈ K, so α1 ∈ K. Therefore, we can again apply the transformation

of coordinate (defined over K) y 7→ y+α1x and perform the same proof as Silverman

to conclude that Ens(K) ∼= K+.

c) If K = Fp (then L = Fp2), then K+ contains p elements and K× contains p − 1

elements. Moreover, NL/K : F×p2 → F×p is a group homomorphism with kernel {` ∈
L× : NL/K(`) = 1}. It is surjective since, given k ∈ Fp, we know we can find l ∈ Fp2
with norm k by solving x2 − k. But Fp2 is the unique quadratic extension of Fp,
hence such an l must exist. It follows that {` ∈ L× : NL/K(`) = 1} contains exactly

(p2− 1)/(p− 1) = p+ 1 elements. Therefore, using part (a) and (b), we can conclude
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that the number of point in Ens(K) is exactly given by the formula stated in the

question.

4. Let E/C be an elliptic curve. Then there is a lattice ΛE such that E(C) is isomorphic

to the abelian group C/ΛE (see Silverman VI.5.1.1). Assuming this result, prove that

deg[m] = m2 and E[m] ' Z/mZ× Z/mZ.

5. (Silverman III.3.9) Let K be a field with char(K) 6= 2, 3, and let E/K be an elliptic

curve given by an homogeneous Weierstrass equation

F (X0, X1, X2) = X2
1X2 −X3

0 − AX0X
2
2 −BX3

2 = 0,

i.e. x = X0/X2 and y = X1/X2 are the Weierstrass coordinates. Let P ∈ E.

(a) Show that [3]P = O if and only if the tangent line to E at P intersect E only

at P .

(b) Show that [3]P = O if and only if the Hessian matrix(
∂2F

∂Xi∂Xj

(P )

)
0≤i,j≤2

has determinant 0.

(c) Show that E[3] consists of 9 points.

Solutions:

(a) By definition of the group structure.

(b) The determinant of the Hessian matrix is

24AX2
0X2 + 72BX0X

2
2 + 24X0X

2
1 − 8A2X3

2 .

Then, it vanishes at the point at infinity, which is a 3-torsion point. For the

affine points, using X2 = 1, and renaming X0 = x and X1 = y such that the

affine part of curve is y2 = x3 +Ax+B, the determinant of the Hessian at (x, y)

is

8(3Ax2 + 9Bx+ 3xy2 − A2) = 8
(
3x4 + 6Ax2 − 12Bx− A2

)
. (3)

We now use the formula for P + P . Let P = (x, y) and P + P = (w, z). In the

notation of Silverman, we have that

λ =
3x2 + A

2y
, w = λ2 − 2x.
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P is a non-trivial 3-torsion point iff P +P = −P , which happen iff w = x (since

the 2 points with w = x are P and −P , but P + P 6= P since P 6= O). Solving

x = λ2 − x ⇐⇒ 3x = λ2 gives

3x =
9x4 + 6Ax2 + A2

4x3 + 4Ax+ 4B
⇐⇒ 3x4 + 6Ax2 + 12Bx− A2 = 0. (4)

Comparing (3) and (4), this proves the result.

(c) By 2-torsion points are the intersection of the 2 cubics

X2
1X2 −X3

0 − AX0X
2
2 −BX3

2 = 0

24AX2
0X2 + 72BX0X

2
2 + 24X0X

2
1 − 8A2X3

2 = 0,

so by Bezout’s theorem, there are 9 of them, counting multiplicity. If we set

x2 = 0, there is only one solution, namelyO = [0, 1, 0], of multiplicity 1. We must

then show that there are 8 distinct affine solutions (x, y). For each x satisfying

p(x) = 3x4 +6Ax2−12Bx−A2 = 0, there are 2 solutions (x,±
√
x3 + AX +B),

so we must show that p(x) has distinct roots. We compute Res(p, p′) which is a

multiple of 4A3 + 27B2, so it is not zero.

6. (Silverman III.3.6)

7. (Silverman III.3.7) You can do only part of it, as there is (a)-(g), and this is very

long.


