MATH203. Winter 2019

Solutions to the midterm

1. (a) We have

$$
\begin{aligned}
2 \log _{2}(x)=2+\log _{2}(x+3) & \Longleftrightarrow \log _{2}\left(x^{2}\right)=2+\log _{2}(x+3) \\
& \Longleftrightarrow 2^{\log _{2}\left(x^{2}\right)}=2^{2+\log _{2}(x+3)} \\
& \Longleftrightarrow x^{2}=2^{2} 2^{\log _{2}(x+3)}=4(x+3) \\
& \Longleftrightarrow x^{2}-4 x-12=(x-6)(x+2)=0
\end{aligned}
$$

Then, the only solution to the original equation is $x=6$ as x must be positive to write $2 \log _{2}(x)=\log \left(x^{2}\right)$ as we did.
(b) We have that

$$
(f \circ g)(x)=\log _{2}\left(3-\left(4 x^{2}-1\right)\right)=\log _{2}\left(4-4 x^{2}\right)=\log _{2}\left(4\left(1-x^{2}\right)\right),
$$

which is only defined only when

$$
1-x^{2}>0 \Longleftrightarrow x^{2}<1 \Longleftrightarrow x \in(-1,1)
$$

The range of $f \circ g$ is $\left(-\infty, \log _{2}(4)\right]=(-\infty, 2]$.
(c) The function $f(x)=3^{x^{4}-1}$ is not 1-to-1, since $f(x)=f(-x)$ for all values of x. Then, it is not invertible.
The function $g(x)=3^{5 x-1}$ is 1 -to- 1 , and we can find the inverse. We have

$$
y=3^{5 x-1} \Longleftrightarrow \log _{3} y=5 x-1 \Longleftrightarrow x=\frac{\log _{3} y+1}{5}
$$

Changing variables, the inverse is $g^{-1}(x)=\frac{\log _{3} x+1}{5}$.
2. (a) For the horizontal asymptotes, we compute the limits at infinity.

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} \frac{|x| \sqrt{9 x^{4}+6 x^{2}+2}}{(2 x+3)(x+1)^{2}} & =\lim _{x \rightarrow \pm \infty} \frac{|x|^{3} \sqrt{9+6 x^{-2}+2 x^{-4}}}{x^{3}\left(2+3 x^{-1}\right)\left(1+x^{-1}\right)^{2}} \\
& = \begin{cases}\frac{3}{2} & x \rightarrow \infty \\
-\frac{3}{2} & x \rightarrow-\infty,\end{cases}
\end{aligned}
$$

and the lines $x=3 / 2$ and $x=-3 / 2$ are horizontal asymptotes.
(b) For the vertical asymptote, we are looking for points where the function does not exist (tends to infinity). We have

$$
\begin{aligned}
& \lim _{x \rightarrow-1} \frac{|x| \sqrt{9 x^{4}+6 x^{2}+2}}{(2 x+3)(x+1)^{2}}=\infty \\
& \lim _{x \rightarrow-3 / 2} \frac{|x| \sqrt{9 x^{4}+6 x^{2}+2}}{(2 x+3)(x+1)^{2}}=\infty
\end{aligned}
$$

and the lines $y=-1$ and $y=-3 / 2$ are vertical asymptotes.
3. (a) We compute

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-2 x}-x\right) & =\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-2 x}-x\right) \frac{\left(\sqrt{x^{2}-2 x}+x\right)}{\left(\sqrt{x^{2}-2 x}+x\right)} \\
& =\lim _{x \rightarrow \infty} \frac{\left(x^{2}-2 x-x^{2}\right)}{\left(\sqrt{x^{2}-2 x}+x\right)}=\lim _{x \rightarrow \infty} \frac{-2 x}{(|x| \sqrt{1-2 / x}+x)} \\
& =\lim _{x \rightarrow \infty} \frac{-2}{(\sqrt{1-2 / x}+1)}=\frac{-2}{2}=-1 .
\end{aligned}
$$

(b) We have

$$
\lim _{x \rightarrow 0} \frac{\sqrt{2 x^{2}+5 x^{4}}}{x}=\lim _{x \rightarrow 0} \frac{|x| \sqrt{2+5 x^{2}}}{x}
$$

and then

$$
\lim _{x \rightarrow 0^{+}} \frac{\sqrt{2 x^{2}+5 x^{4}}}{x}=\sqrt{2}, \quad \lim _{x \rightarrow 0^{-}} \frac{\sqrt{2 x^{2}+5 x^{4}}}{x}=-\sqrt{2},
$$

so the limit does not exist.
4. (a) With the definition of the derivative,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{2}{x+h-3}-\frac{2}{x-3}}{h}=\lim _{h \rightarrow 0} \frac{2(x-3)-2(x+h-3)}{(x-3)(x+h-3) h} \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{(x-3)(x+h-3) h}=\frac{-2}{(x-3)^{2}}
\end{aligned}
$$

(b) We have that $f^{\prime}(1)=-1 / 2$, and the equation of the tangent line is $y=-\frac{1}{2} x+b$ with $-1=-\frac{1}{2} \cdot 1+b \Rightarrow b=-\frac{1}{2}$, and the equation of the tangent line is

$$
y=-\frac{1}{2} x-\frac{1}{2}
$$

5. We have $f(x)=e^{b x}\left(e^{b x}+e^{3-b x}\right)=e^{2 b x}+e^{3}$. Then,

$$
f^{\prime}(x)=2 b e^{2 b x}, \quad f^{\prime \prime}(x)=(2 b)^{2} e^{2 b x}, \quad f^{\prime \prime \prime}(x)=(2 b)^{3} e^{2 b x},
$$

and $f^{\prime \prime \prime}(0)=(2 b)^{3} e^{0}=8 b^{3}$.
6. (a) We can write
$f(x)=\frac{2 x^{3}+x-10}{x \sqrt{x}}=x^{-3 / 2}\left(2 x^{3}+x-10\right)=2 x^{3 / 2}+x^{-1 / 2}-10 x^{-3 / 2}$,
and then

$$
f^{\prime}(x)=3 x^{1 / 2}-\frac{1}{2} x^{-3 / 2}+15 x^{-5 / 2}
$$

(b) We compute

$$
f^{\prime}(x)=e^{x}+e x^{e-1}-e .
$$

(c) We use the quotient rule to compute

$$
f^{\prime}(x)=\frac{3 \sec ^{2}(3 x)\left(1+x^{2}\right)-2 x \tan (3 x)}{\left(1+x^{2}\right)^{2}}
$$

(d) We use the chain rule to compute

$$
\begin{aligned}
f^{\prime}(x) & =2 \cos \left(\sin (3 x)+x^{3} e^{x}\right) \cdot \frac{d}{d x}\left(\cos \left(\sin (3 x)+x^{3} e^{x}\right)\right) \\
& =-2 \cos \left(\sin (3 x)+x^{3} e^{x}\right) \sin \left(\sin (3 x)+x^{3} e^{x}\right) \cdot \frac{d}{d x}\left(\sin (3 x)+x^{3} e^{x}\right) \\
& =-2 \cos \left(\sin (3 x)+x^{3} e^{x}\right) \sin \left(\sin (3 x)+x^{3} e^{x}\right)\left(3 \cos (3 x)+3 x^{2} e^{x}+x^{3} e^{x}\right)
\end{aligned}
$$

BONUS First, since $f(x)$ is differentiable, it has to be continuous. It is clearly continuous at all $x \neq 1$ and at $x=1$, we need to have $1+a=a+b$, and then $b=1$. For the differentiability, the function is clearly differentiable at all $x \neq 1$ and for $x=1$, we need to have $1=2 a$ equating the derivatives at $x=1$. Then, $a=1 / 2$.

