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STATISTICS FOR ORDINARY ARTIN-SCHREIER COVERS

AND OTHER p-RANK STRATA

ALINA BUCUR, CHANTAL DAVID, BROOKE FEIGON, AND MATILDE LALÍN

Abstract. We study the distribution of the number of points and of the zeroes
of the zeta function in different p-rank strata of Artin-Schreier covers over Fq

when q is fixed and the genus goes to infinity. The p-rank strata considered
include the ordinary family, the whole family, and the family of covers with
p-rank equal to p − 1. While the zeta zeroes always approach the standard
Gaussian distribution, the number of points over Fq has a distribution that
varies with the specific family.

Contents

1. Introduction 2371
2. Basic Artin-Schreier theory 2376
3. The ordinary case 2379
4. The full space 2387
5. Prescribed factorization type 2390
6. Beurling–Selberg functions 2394
7. Set-up for the distribution of the zeroes 2396
8. Moments 2397
9. The distribution of zeroes 2410
Acknowledgments 2412
References 2412

1. Introduction

Besides their central place in number theory, algebraic curves over finite fields
also play a pivotal role in applications via such fields as cryptography and error-
correcting codes. In both theory and applications, a key property of an algebraic
curve over a finite field is its zeta function, which determines and is determined
by the number of points on the curve over the finite extensions of the base field.
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These zeta functions exhibit a strong analogy with other zeta functions occurring
in number theory, such as the Riemann zeta function, with the added benefit that
the analogue of the Riemann hypothesis is known by results of Weil.

In addition to studying curves individually, it is also profitable to study curves
in families and ask aggregate questions over families. Historically, this generally
involved varying the finite field, as in the work of Deligne. More recently, a series
of results have emerged in which the finite field is fixed and other geometric pa-
rameters are allowed to vary. Examples include the work Kurlberg and Rudnick
[KR09] that studies the distribution of the number of points on hyperelliptic curves
as the genus grows. Similar statistics for the number of points have been com-
puted for cyclic �-covers of the projective line [BDFL10b,BDFL11,Xio10a], plane
curves [BDFL10a], complete intersections in projective spaces [BK12], general trig-
onal curves [Woo12], superelliptic curves [CWZ15], curves on Hirzebruch surfaces
[EW15], and a subfamily of Artin-Schreier covers [Ent12].

A finer statistic for these curves is the distribution of the zeroes of the zeta
function. (Note that the distribution of the points can be easily deduced from the
distribution of the zeroes.) The problem of the distribution of the zeroes in the
global and mesoscopic regimes was considered by Faifman and Rudnick [FR10] for
hyperelliptic curves, while [Xio10b], [Xio15], and [BDFLS12] treated the cases of
cyclic �-covers, abelian covers of algebraic curves, and Artin-Schreier covers respec-
tively. On the other hand, Entin [Ent12] used the distributions of the number of
points of a subfamily of Artin-Schreier covers to obtain some partial results towards
the pair correlation problem for the zeroes.

Artin-Schreier curves represent a special family because they cannot be uniformly
obtained by base-changing a scheme defined over Z. This is intimately related to
the fact that their zeta function has an expression in terms of additive characters
of Fp, and not in terms of multiplicative characters, as is the case for the family of
hyperelliptic curves and cyclic �-covers. On the other hand, the factor corresponding
to a fixed additive character has a nice description as an exponential sum (2.1),
which allows one to do a fair number of concrete computations. For instance, they
can sometimes be used to show that the Weil bound on the number of points is
sharp (especially in the supersingular case [Gar05,GV92]).

The p-rank induces a stratification on the moduli space of Artin-Schreier covers
of genus g. We would like to remark that this stratification is not specific to Artin-
Schreier covers. Perhaps the best known example is the case of elliptic curves. The
moduli space of elliptic curves has only two p-strata – p-rank 1 (ordinary) and p-rank
0 (supersingular) – and these two classes of elliptic curves behave fundamentally
differently in many aspects. The ordinary stratum is Zariski dense in the moduli
space, but there are only finitely many supersingular F̄q-points in the moduli space
of elliptic curves.

In the case of the Artin-Schreier covers, the picture is more complicated, as
there are many intermediate strata besides the minimal p-rank and the maximal
p-rank strata. But it is still the case that the p-rank 0 stratum, when non-empty,
is the smallest stratum in the moduli space ASg of Artin-Schreier covers of genus
g. However, the p-rank 0 stratum appears if and only if 2g/(p− 1) �≡ −1 (mod p).
Moreover, the supersingular locus is usually strictly contained in this stratum, and
it is not easy to locate the supersingular covers among those with p-rank 0. (See
[Zhu].) On the other hand, the maximal p-rank stratum is irreducible in ASg, and
in some sense, it is still the biggest stratum. As it is noted in [PZ12, Example
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ORDINARY ARTIN-SCHREIER COVERS AND OTHER p-RANK STRATA 2373

2.9], in the case of p ≥ 3 that we are interested in, the ordinary locus is non-empty
whenever 2g/(p − 1) is even. Otherwise, we can still talk about the stratum of
maximal p-rank, but that maximal rank will be strictly smaller than the genus
(namely, equal to g− p−1

2 ), and there is no ordinary locus.
Fix a finite field Fq of odd characteristic p. An Artin-Schreier cover is an Artin-

Schreier curve for which we fix an automorphism of order p and an isomorphism
between the quotient and P1. Concretely, an Fq-point of the moduli space of Artin-
Schreier covers of genus g consists of, up to Fq-isomorphism, a curve of genus g

with affine model

Cf : yp − y = f(x),

where f(x) ∈ Fq(x) is a rational function, together with the automorphism y �→
y + 1.

The genus of Cf is given by

g(Cf ) =
p− 1

2

⎛⎝−2 +

r+1∑
j=1

(dj + 1)

⎞⎠ =
p− 1

2

⎛⎝r − 1 +

r+1∑
j=1

dj

⎞⎠ ,

where r + 1 is the number of poles of f(x) and dj are their orders. (See [PZ12,
Lemma 2.6].) The p-rank is the integer s such that the cardinality of Jac(Cf )[p](F̄q)
is ps; by the Deuring-Shafarevich formula, we have s = r(p−1). We will write ASg,s

for the stratum with p-rank equal to s of the moduli space ASg. For example, s = 0
corresponds to one pole, which can always be moved to infinity. This is the case
where f(x) is a polynomial that was considered in [Ent12, BDFLS12]. However,
this case only corresponds to a piece, namely ASg,0, of the whole moduli space
ASg of Artin-Schreier covers of genus g. The next case is s = p− 1, which includes
the case when f(x) is a Laurent polynomial, but this is not the only way one may
get this p-rank, as we explain in Section 5. For details on the moduli space of
Artin-Schreier covers and the p-rank stratification, we refer the reader to [PZ12].

1.1. Statement of results. The main object of this paper is the study of the
distribution of the number of points and zeta zeroes for the ordinary locus ASg,g

which only appears when 2g/(p − 1) is even. In addition, we treat the cases of
ASg,p−1 of covers with p-rank equal to p − 1 and the whole family ASg. More
precisely, we have the following results.

Theorem 1.1. (1) Assume that 2g/(p − 1) is even. The average number of Fqk -
points on an ordinary Artin-Schreier cover in ASg,g(Fq) is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qk + 1 +O
(
q(−1/2+ε)(1+g/(p−1))+2k

)
, p � k,

qk + 1 + p−1
1+q−1−q−2 +

∑
u| kp

p− 1

1 + q−u − q−2u

∑
e|u

μ(e)qu/e

+O
(
q(−1/2+ε)(1+g/(p−1))+2k

)
, p | k.
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(2) The average number of Fqk -points on an Artin-Schreier cover in ASg(Fq)
whose ramification divisor is supported at r + 1 points and has degree d is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qk + 1 +O
(
q(ε−1)d+2k

)
, p � k,

qk + 1 + (p− 1)qk/p + p−1
1+q−1

−(p− 1)
∑
u| kp

1

1 + qu

∑
e|u

μ(e)qu/e +O
(
q(ε−1)d+2k

)
, p | k.

(3) The average number of Fqk -points on an Artin-Schreier cover in
ASg,p−1(Fq) is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qk + 1, p � k,

qk + 1 + (p− 1)(qk/p − 1), p | k, k even,

qk + 1 + (p− 1)qk/p, p | k, k odd.

Remark 1.2. The results in the previous theorem are only meaningful in part (1)
for g sufficiently large with respect to k and in part (2) for d sufficiently large with
respect to k.

By Weil’s conjectures, the zeta function of Cf ,

ZCf
(u) = exp

( ∞∑
k=1

Nk(Cf )
uk

k

)
,

where Nk(Cf ) is the number of points on Cf defined over Fqk , can be written as

ZCf
(u) =

PCf
(u)

(1− u)(1− qu)
,

where PCf
(u) is a polynomial of degree 2g = (p− 1)(Δ− 1) with Δ = r+

∑r+1
j=1 dj .

Using Lemma 2.1 and the additive characters of Fp to write a formula for Nk(Cf ),
it follows easily that

(1.1) PCf
(u) =

∏
ψ

L(u, f, ψ),

where the product is taken over the non-trivial additive characters ψ of Fp, and
L(u, f, ψ) are certain L-functions (given later by (2.1)). Understanding the distri-
bution of the zeroes of ZCf

(u) amounts to understanding the distribution of the
zeroes of each of the L(u, f, ψ) as f runs in the relevant family of rational functions
and the genus goes to infinity.

If we write

L(u, f, ψ) =

Δ−1∏
j=1

(1− αj(f, ψ)u),

we have that αj(f, ψ) =
√
qe2πiθj(f,ψ) and θj(f, ψ) ∈ [−1/2, 1/2). We study the

statistics of the set of angles {θj(f, ψ)} as f varies in the family. For an interval
I ⊂ [−1/2, 1/2), let

NI(f, ψ) := #{1 ≤ j ≤ Δ− 1 : θj(f, ψ) ∈ I}
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ORDINARY ARTIN-SCHREIER COVERS AND OTHER p-RANK STRATA 2375

and

NI(Cf ) :=

p−1∑
j=1

NI(f, ψ
j).

We show that the number of zeroes with angle in a prescribed non-trivial subinterval

I is asymptotic to 2g|I|, has variance asymptotic to 2(p−1)
π2 log(g|I|), and properly

normalized has a Gaussian distribution.

Theorem 1.3. Fix a finite field Fq of characteristic p. Let AS denote the family
of Artin-Schreier covers, ordinary Artin-Schreier covers, or the p-rank p− 1 Artin-
Schreier covers. Then for any real numbers a < b and 0 < |I| < 1 either fixed or
|I| → 0 while g|I| → ∞,

lim
g→∞

ProbAS(Fq)

⎛⎝a <
NI(Cf )− 2g|I|√
2(p−1)

π2 log (g|I|)
< b

⎞⎠ =
1√
2π

∫ b

a

e−x2/2dx.

This result is analogous to what was obtained in [BDFLS12] for p-rank 0 Artin-
Schreier covers and is compatible with the philosophy of Katz and Sarnak [KS99].
In fact, Katz [Kat87] shows that the monodromy of the L-functions defined in (2.1)
is given by SL (2g/(p− 1)) when the dimension of the moduli space is big enough.
Since the dimension grows with the genus, this occurs when g is big enough. In
particular, [DS94] implies that the limiting distribution as g → ∞ is Gaussian.

Remark 1.4. A similar result can be proved for NI(f, ψ) with asymptotic mean
and variance (Δ− 1)|I| and 1

π2 log g|I| respectively with the additional restriction

that the interval I is symmetric. In fact, under this condition, the NI(f, ψ
j) for

j = 1, . . . , (p− 1)/2 approach independently jointly normal distributions.

1.2. About the results and their proofs. While our work is inspired by the
earlier work of Kurlberg and Rudnick [KR09] and Faifman and Rudnick [FR10]
and resembles their work in the broad outlines, our techniques differ from theirs in
several respects. Firstly, the zeta functions associated to the family of hyperelliptic
curves studied by Rudnick et al. are expressed in terms of a real-valued multiplica-
tive character of Fp, whereas the zeta functions for the families of Artin-Schreier
covers that we consider are expressed in terms of a complex-valued additive charac-
ter of Fp. This distinction necessitates using techniques developed in Entin [Ent12]
and in [BDFLS12]. However, both of these papers only work with p-rank 0 Artin-
Schreier covers. As remarked before, this stratum, when non-empty, is the smallest
stratum in the moduli space, and therefore other bigger strata may better represent
the behavior in the space of Artin-Schreier covers. In order to have results for all
covers (and particularly the ordinary case) we need to combine the previous tech-
niques with a careful use of the Tauberian Theorem in order to count the number
of covers taking prescribed values. For example, counting the number of p-rank 0
Artin-Schreier covers of a given genus reduces to the counting of polynomials of
fixed degree in Fq[X], while counting the number of ordinary Artin-Schreier cov-
ers amounts to the counting of pairs of homogeneous polynomials of fixed degree
with various conditions (co-prime, square-free, and such), and requires some sieving
(Proposition 3.6 and Corollary 3.7).

Secondly, our counting problem is in some sense more natural from a geometric
perspective in that we are averaging over strata of the moduli space and therefore
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the results of [PZ12] play a role in our results. In the work of Rudnick et al. the
statistics are computed for the family of hyperelliptic curves by running over all
square-free polynomials of a fixed degree. This is not the same as running over
the moduli space of hyperelliptic curves of a fixed genus, as not all points on the
moduli space appear with the same multiplicity in this family.

We also mention that it is very interesting to contrast Theorem 1.1 to Theorem
1.3. In the first theorem the result is different for different families of Artin-Schreier
covers, while the latter theorem has the same result for any of the families under
consideration. Indeed, sets that describe different strata have distinct structures,
and this phenomenon appears in the statistics for the number of points, but it does
not appear in the statistics for the location of the zeroes of the zeta function.

1.3. Outline of the article. This article proceeds as follows. In the next section
we review basic facts about Artin-Schreier theory and explicitly describe and set
up notation for the various families we consider throughout the paper. In Sections
3 and 4 we use the Tauberian theorem to compute the expected number of Fqk -
points on an Artin-Schreier cover defined over Fq for the ordinary locus and full
space respectively, while the same problem for the prescribed factorization type is
considered in Section 5. The results of these three sections combined are a gener-
alization of Theorem 1.1 stated above. Along the way to proving this theorem we
count the number of curves that take prescribed values. We will need these results
in Section 8. In Section 6 we review some facts on Beurling-Selberg polynomials
and approximate the characteristic function of I with a sum of these polynomials.
In Section 7 we use the explicit formula as well as the results of the previous sec-
tion to approximate NI(Cf )− 2g|I| by a sum of characters of traces of a rational
function evaluated at elements of Fqk . In Section 8 we combine results of the pre-
vious section to calculate the moments of the sum of characters from the previous
section. Finally in Section 9 we complete the proof of Theorem 1.3 by proving that
under suitable normalization NI(Cf )− 2g|I| converges in mean square and hence
in distribution to our approximating function.

2. Basic Artin-Schreier theory

Fix an odd prime p and let Fq be a finite field of characteristic p with q elements.
We consider, up to Fq-isomorphism, pairs of curves with affine model

Cf : yp − y = f(x)

with f(x) a rational function together with the automorphism y �→ y + 1.
For each integer n ≥ 1, denote by trn : Fqn → Fp the absolute trace map (not

the trace to Fq).

Lemma 2.1. For each α ∈ P1(Fqn), the number of points on the curve Cf : yp−y =
f(x) in the fiber above α which are defined over Fqn is given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if f(α) = ∞,

p if f(α) ∈ Fqn with trn f(α) = 0,

0 if f(α) ∈ Fqn with trn f(α) �= 0.

Proof. This is a simple application of Hilbert’s Theorem 90. �

Licensed to Concordia Univ. Prepared on Mon Sep 19 15:04:47 EDT 2016 for download from IP 132.205.236.66.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ORDINARY ARTIN-SCHREIER COVERS AND OTHER p-RANK STRATA 2377

Let ψk, k = 0, . . . , p− 1, be the additive characters of Fp given by

ψk(a) = e2πika/p, k = 0, . . . , p− 1.

For each rational function f ∈ Fq(X) and non-trivial character ψ, we also define

Sn(f, ψ) =
∑

x∈P1(Fqn )

f(x) �=∞

ψ(trn(f(x))).

Then, using the fact that for any a ∈ Fp,

p−1∑
k=0

ψk(a) =

{
p, a = 0,

0, a �= 0,

it is easy to check that

PCf
(u) =

∏
ψ �=ψ0

L(u, f, ψ)

where

(2.1) L(u, f, ψ) = exp

( ∞∑
n=1

Sn(f, ψ)
un

n

)
.

Recall that

L(u, f, ψ) =

Δ−1∏
j=1

(1−√
qe2πiθj(f,ψ)u),

where θj(f, ψ) ∈ [−1/2, 1/2). For an interval I ⊂ [−1/2, 1/2), let

NI(f, ψ) := #{1 ≤ j ≤ Δ− 1 : θj(f, ψ) ∈ I}
and

NI(Cf ) :=

p−1∑
j=1

NI(f, ψ
j).

Let S = Fq[X,Z] be the homogeneous coordinate ring of P1 and denote by Sd the
Fq-subspace of S of homogeneous polynomials of degree d. Notice that Sd contains
the 0 polynomial and its size is exactly qd+1.

Since each Artin-Schreier cover comes equipped with a prescribed map to P1, we
can think of Cf as the cover given by

Cg,h : yp − y =
g(X,Z)

h(X,Z)
,

where the fraction on the right hand side is obtained by homogenizing f(x) in the
usual way.

Given f ∈ Sd, we will denote by f∗(X) ∈ Fq[X] the non-homogeneous polyno-
mial resulting from f(X,Z) by setting Z = 1. We observe that f∗ is polynomial of
degree at most d. Similarly, let f∗(Z) ∈ Fq[Z] be the non-homogeneous polynomial
resulting from f(X,Z) by setting X = 1.

Given α = [αX : αZ ] ∈ P1(Fqk) and h ∈ Sd the value of h(α) can be zero or non-
zero; but if it is non-zero, it is not well defined. When we want to discuss an actual
non-zero value we will be talking about h∗(α) := h(αX/αZ , 1), which is defined for
α �= [1 : 0] = ∞ and h∗(α) := h(1, αZ/αX), which is defined for α �= [0 : 1] = 0.

We recall that the rational function g
h can be evaluated in [αX : αZ ] as long as

g, h ∈ Sd and (g(αX , αZ), h(αX , αZ)) �= (0, 0).
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Let p1, . . . , pr+1 be the set of poles of f(x) and let dj be the order of the pole
pj . By Artin-Schreier theory, we can assume that p � dj . Recall that the genus of
Cf is given by

(2.2) g(Cf ) =
p− 1

2

⎛⎝−2 +
r+1∑
j=1

(dj + 1)

⎞⎠ =
p− 1

2

⎛⎝r − 1 +
r+1∑
j=1

dj

⎞⎠ .

We now proceed to explicitly describe the families to be considered. The ordinary
case occurs when the p-rank is maximal, in other words, when r is maximal. For
a given genus g, this happens when di = 1 in formula (2.2) and 2g = (p − 1)2r.
(Notice once again that this imposes a restriction on the possible values for the
genus, as 2g/(p− 1) must be even.) Thus, f(x) is a rational function with exactly
r+1 simple poles. This corresponds to the fact that g(X,Z) and h(X,Z) are both
homogeneous polynomials of degree r + 1 with no common factors and h(X,Z) is
square-free.

We let

Ford
d = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, h square-free, (g, h) = 1} ,

with the understanding that d = r + 1.
As (g, h) range over Ford

d , the cover Cg,h ranges over each Fq-point of ASg,g

exactly q − 1 times. Thus, our problem becomes the study of statistics for Cg,h as
(g, h) varies over Ford

d and d tends to infinity.
We will work with the full family of covers in ASg as well. In this case we do

not have the restriction of simple poles, but we still require g(X,Z) and h(X,Z)
not to have common factors:

F full
d = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, (g, h) = 1} .

We will then study the statistics as d goes to infinity, which is the same as g going
to infinity provided that the number of poles r + 1 remains bounded.

Finally, we will consider another family given as follows. We say that h has

factorization type v = (r
d1,1

1 , . . . , r
d1,�1
1 , . . . , r

dm,1
m , . . . , r

dm,�m
m ) if

h = P
d1,1

1,1 · · ·P d1,�1

1,�1
· · ·P dm,1

m,1 · · ·P dm,�m

m,�m
,

where the Pi,j are distinct irreducible polynomials of degree ri and ri �= rj if i �= j.

Thus the degree of h is given by d =
∑m

i=1 ri
∑�i

j=1 di,j .
Let

Fv
d = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, (g, h) = 1,

h has factorization type v}.

In this case, formula (2.2) implies 2g = (p− 1) (d− 2 +
∑m

i=1 �iri). Here
∑m

i=1 �iri
represents the number of poles and the p-rank is given by (p − 1) (

∑m
i=1 �iri − 1).

We will assume the parameters m, ri’s and �i’s to be fixed. This implies that the
covers considered are all in the same p-rank. However, in general, the set of the
covers considered does not constitute the whole p-rank stratum. We will study the
statistics as d goes to infinity, which is the same as g going to infinity with a bound
on the number of poles.

This family includes some important particular cases. Suppose that v = (1d).
This corresponds to the case of only one pole of multiplicity d. This pole can always
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ORDINARY ARTIN-SCHREIER COVERS AND OTHER p-RANK STRATA 2379

be moved to infinity (i.e., h(X,Z) = Zd). After dehomogenizing with Z = 1, this
gives the family of p-rank 0 covers ASg,0 indexed by polynomials of degree d:

F rank 0
d = {g(x) : deg(g) = d}.

The statistics for this family were studied in [Ent12,BDFLS12].
Another interesting case is v = (1d1 , 1d2). In this case we have two poles defined

over Fq that can always be moved to zero and infinity (i.e., h(X,Z) = Xd1Zd2).
After dehomogenizing with Z = 1, this gives a piece of the family of p-rank p − 1
covers ASg,p−1 indexed by Laurent polynomials with bidegree (d2, d1):

F rank p−1
d1+d2

= {g(x)/xd1 : deg(g) = d2}.

The other possibility within p-rank p − 1 covers is having two poles defined over
Fq2 \ Fq, corresponding to v = (2d). In terms of polynomials, we get, in this case,

F rank p−1
2d = {g(x)/h(x)d : deg(h) = 2, h irreducible, (g, h) = 1}.

We will show that the statistics for this family are very similar to the statistics for
ASg,0.

We will need to compute the number of elements in a family that take certain
values at certain points. The following notation will be useful.

Definition 2.2. Let α1, . . . , αn, β1, . . . , βn ∈ P1(Fqk). Let Fd be any of the families
under consideration. We define

Fd(α1, . . . , αn, β1, . . . , βn) = {(g, h) ∈ Fd : (βi,Xh− βi,Zg)(αi) = 0, 1 ≤ i ≤ n} .

We remark that when β �= ∞ we identify β = [βX : βZ ] with
βX

βZ
∈ Fqk , thus

(βXh− βZg)(α) = 0 ⇐⇒ g(α)

h(α)
= β.

A particularly useful case is Fd(α, β). We remark that the cardinality of this set
does not depend on the value of β, provided that β �= ∞, as we prove below.

Lemma 2.3. Fix α ∈ P1(Fqk) of degree u over Fq. Let β ∈ Fqu . Let Fd be any of
the families under consideration. Then

|Fd(α, β)| = |Fd(α, 0)|.

Proof. Recall that

Fd(α, β) = {(g, h) ∈ Fd : (βXh− βZg)(α) = 0}.

Now let g′ = βXh− βZg. Since βZ �= 0 we have that (g, h) = 1 is equivalent to
(g′, h) = 1. Then (g, h) ∈ Fd(α, β) if and only if (g′, h) ∈ Fd(α, 0). �

3. The ordinary case

In this section, we consider the family

Ford
d = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, h square-free, (g, h) = 1} .
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3.1. Heuristics. We want to calculate, for given α = [αX : αZ ], β = [βX : βZ ] ∈
P1(Fqu) such that degα = u, the probability that

(3.1) (βXh− βZg)(αX , αZ) = 0

as (g, h) ∈ Ford
d .

Locally at α this means that we want to look at pairs (g∗, h∗) such that (m∗
α)

2 � h∗

(wherem∗
α ∈ Fq[X] denotes the minimal polynomial of α over Fq) and (g∗(α), h∗(α))

�≡ (0, 0) (mod (m∗
α)

2).
Therefore

(g∗, h∗) ≡ (γ1 + δ1mα, γ2 + δ2mα) (mod (m∗
α)

2),

with γi, δi ∈ Fq[X], and if they are non-zero, deg γi, deg δi < u. In addition, the
conditions at α imply that (γ1, γ2) �= (0, 0) and (γ2, δ2) �= (0, 0).

For each γ2 �= 0, there are qu choices for each of the other parameters, thus
q3u(qu − 1) total possibilities. If γ2 = 0, then there are qu − 1 choices for each of
γ1 and δ2, and qu choices for δ1, for a total of qu(qu − 1)2 possibilities.

For (g∗ (mod(m∗
α)

2), h∗ (mod(m∗
α)

2)), this yields a total of qu(qu−1)(q2u+qu−1)
possibilities.

Now if β = [1 : 0] = ∞, condition (3.1) reduces to h∗(α) = 0 ⇐⇒ γ2 = 0.
This leaves qu− 1 choices for γ1 and δ2 respectively and qu choices for δ1. Thus the
probability that g/h ∈ Ford

d takes the value ∞ at a given point α is

qu(qu − 1)2

qu(qu − 1)(q2u + qu − 1)
=

q−u(1− q−u)

1 + q−u − q−2u
.

In all other cases, including β = 0, we must have h∗(α) �= 0. So there are
qu − 1 choices for γ2. Once we know γ2, equation (3.1) fixes γ1(α) (and therefore
γ1, since its degree is less than u), and we have qu choices for each of δ1, δ2. Thus
the probability that g/h ∈ Ford

d takes the value β �= ∞ at a given point α is

q2u(qu − 1)

qu(qu − 1)(q2u + qu − 1)
=

q−u

1 + q−u − q−2u
.

Then, the heuristic confirms the result of Proposition 3.10 and the expected
number of points of Theorem 1.1 for the family Ford

d .

3.2. The number of covers with local conditions. In this subsection, we are
going to compute the proportion of polynomials with certain fixed values. We will
obtain the size of the family and the expected number of points as corollaries.

Unless otherwise indicated, we fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un

over Fq and βi ∈ Fqui for 1 ≤ i ≤ n (i.e., none of the βi’s is ∞). Also, β1, . . . , β�

are not zero, and β�+1 = · · · = βn = 0. Finally, none of the αi are Galois conjugate
to each other; i.e., all the minimal polynomials mαi

are distinct.
We start by making the following observation.

Remark 3.1. If α = [α : 1] ∈ Fqk has degree u over Fq, then the map Sd →
Fqu , h �→ h∗(α) is a linear map of Fq-vector spaces. The map is surjective as long
as d ≥ u, and in this case its kernel has dimension d+ 1− u. If d < u the elements
1, α, α2, . . . , αd are linearly independent over Fq. Therefore the image has dimension
d+ 1 and thus the kernel has dimension 0. In other words the map is injective and
the preimage of any element is either empty or a point.
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If α = [1 : 0] = ∞, then it has degree 1 over Fq, and a condition fixing a value
for h(α) can be rewritten in terms of h∗(1) such that it does become linear and the
reasoning above applies.

Lemma 3.2. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that
none of the αi are conjugate to each other, and βi ∈ Fqui for 1 ≤ i ≤ n such that
β1, . . . , β� are not zero, and β�+1 = · · · = βn = 0. Fix g ∈ Sd such that g(αi) = 0
for �+ 1 ≤ i ≤ n, and g(αi) �= 0 for 1 ≤ i ≤ �. Then we have

|{h ∈ Sd : (βi,Xh− βi,Zg)(αi) = 0, 1 ≤ i ≤ n}| =

⎧⎪⎨⎪⎩
qd+1−

∑�
i=1 ui , d ≥

∑�
i=1 ui,

0 or 1, otherwise.

Proof. For βi �= 0, the condition imposed over h is h(αi) =
g(αi)
βi

, while there is no

condition imposed if βi = 0. By the Chinese Remainder Theorem, imposing all the
conditions together for α1, . . . , α� is the same as imposing a condition for h modulo
the product mα1

· · ·mα�
. The result then follows from Remark 3.1. �

Let D ∈ Sd. In all the following, the notation (D) means the ideal generated by
the polynomial D.

Lemma 3.3. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that
none of the αi are conjugate to each other, βi ∈ Fqui for 1 ≤ i ≤ n such that
β1, . . . , β� are not zero, and β�+1 = · · · = βn = 0. Fix g ∈ Sd such that g(αi) = 0
for �+ 1 ≤ i ≤ n, and g(αi) �= 0 for 1 ≤ i ≤ �. Then we have for any ε > 0,∣∣∣∣{h ∈ Sd : (h, g) = 1,

g(αi)

h(αi)
= βi, 1 ≤ i ≤ n

}∣∣∣∣
= qd+1−

∑�
i=1 ui

∏
(P )|(g)

(1− |P |−1) +O
(
qεd

)
.

If g(αi) �= 0 for some �+1 ≤ i ≤ n or g(αi) = 0 for some 1 ≤ i ≤ �, then the above
set is empty.

Proof. If g(αi) �= 0 for some �+ 1 ≤ i ≤ n or g(αi) = 0 for some 1 ≤ i ≤ �, then it
is clear that the above set is empty. We then suppose g(αi) = 0 for �+ 1 ≤ i ≤ n,
and g(αi) �= 0 for 1 ≤ i ≤ �.

By inclusion-exclusion and Lemma 3.2 we have∣∣∣∣{h ∈ Sd : (h, g) = 1,
g(αi)

h(αi)
= βi

}∣∣∣∣ = ∑
(D)|(g)

μ(D)
∑
h∈Sd

D|h,
g(αi)
h(αi)

=βi,1≤i≤�

1

=
∑

(D)|(g)
deg D≤d−

∑�
i=1

ui

μ(D)qd+1−degD−
∑�

i=1 ui +
∑

(D)|(g)
d−

∑�
i=1

u�<deg D≤d

O(1)

= qd+1−
∑�

i=1 ui

∑
(D)|(g)

μ(D)q− degD +
∑

(D)|(g)
d−

∑�
i=1

u�<deg D≤d

O(1)

= qd+1−
∑�

i=1 ui

∏
(P )|(g)

(1− |P |−1) +O
(
qεd

)
where μ is the Möbius function. �
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Definition 3.4. Let g ∈ Sd. Set

Ag
d = {h ∈ Sd : h square free and (h, g) = 1}.

Let α1, . . . , αn, β1, . . . , βn ∈ P1(Fqk). We define

Ag
d(α1, . . . , αn, β1, . . . , βn) = {h ∈ Ag

d : (βi,Xh− βi,Zg)(αi) = 0, 1 ≤ i ≤ n} .

Lemma 3.5. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that
none of the αi are conjugate to each other. Let βi ∈ Fqui for 1 ≤ i ≤ n such that
β1, . . . , β� are not zero, and β�+1 = · · · = βn = 0. Fix g ∈ Sd such that g(αi) = 0
for �+ 1 ≤ i ≤ n and g(αi) �= 0 for 1 ≤ i ≤ �. Then

|Ag
d(α1, . . . , αn, β1, . . . , βn)|

=
qd+1−

∑�
i=1 ui

ζq(2)
∏�

i=1(1− q−2ui)

∏
(P )|(g)

(1 + |P |−1)−1 +O
(
q(1/2+ε)d

)
.

If g(αi) �= 0 for some � + 1 ≤ i ≤ n, or g(αi) = 0 for some 1 ≤ i ≤ �, then the
above set is empty.

Proof. It is clear that Ag
d(α1, . . . , αn, β1, . . . , βn) is empty if the condition on the

values g(αi) of the lemma are not satisfied, and we then suppose that g(αi) = 0 for
�+ 1 ≤ i ≤ n, and g(αi) �= 0 for 1 ≤ i ≤ �.

By inclusion-exclusion,

|Ag
d(α1, . . . , αn, β1, . . . , βn)|

=
∑′

(D):(D,g)=1
deg(D)≤d/2

μ(D)

∣∣∣∣{h1 ∈ Sd−2 deg(D) : (h1, g) = 1,
g(αi)

h1(αi)
= D2(αi)βi

}∣∣∣∣
= qd+1−

∑�
i=1 ui

∏
(P )|(g)

(1− |P |−1)
∑′

(D):(D,g)=1
deg(D)≤d/2

μ(D)|D|−2 +
∑′

(D):(D,g)=1
deg D≤d/2

O
(
qεd

)

by Lemma 3.3, where we have written
∑′

(D)
for the sum over (monic) polynomials

D such that D(αi) �= 0 for 1 ≤ i ≤ �.
But∑′

(D):(D,g)=1

μ(D)|D|−2s =
∏

(P ):P �g
P (αi) �=0,1≤i≤�

(1− |P |−2s) =
∏

(P ):P �gmα1
...mα�

(1− |P |−2s),

where we made use of the fact that (g,mαi
) = 1 since g(αi) �= 0. This can be

rewritten as
1

ζq(2s)

∏
(P )|(gmα1

...mα�
)

(1− |P |−2s)−1

=
1

ζq(2s)
∏�

i=1(1− q−2sui)

∏
(P )|(g)

(1− |P |−2s)−1.

Therefore∑′

(D):(D,g)=1
deg(D)≤d/2

μ(D)|D|−2 =
1

ζq(2)
∏�

i=1(1− q−2ui)

∏
(P )|(g)

(1− |P |−2)−1 +O
(
q−d/2

)
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and

|Ag
d(α1, . . . , αn, β1, . . . , βn)|

=
qd+1−

∑�
i=1 ui

ζq(2)
∏�

i=1(1− q−2ui)

∏
(P )|(g)

(1 + |P |−1)−1 +O
(
q(1/2+ε)d

)
.

�

Proposition 3.6. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that
none of the αi are conjugate to each other. Let βi ∈ Fqui for 1 ≤ i ≤ n. Then

|Ford
d (α1, . . . , αn, β1, . . . , βn)| =

H(1)q2d+2−
∑n

i=1 ui

ζq(2)2
∏n

i=1(1 + q−ui − q−2ui)
+O

(
q(3/2+ε)d

)
,

where

H(1) =
∏
(P )

(
1 +

1

(|P |+ 1)(|P |2 − 1)

)
.

Proof. Denote by mαi
the homogenized minimal polynomial of αi over Fq. We have

|Ford
d (α1, . . . , αn, β1, . . . , βn)| =

∑
g∈Sd

|Ag
d(α1, . . . , αn, β1, . . . , βn)|.

Assume without loss of generality that β1, . . . , β� are not zero, and β�+1 = · · · =
βn = 0. By Lemma 3.5, the above sum equals

|Ford
d (α1, . . . , αn, β1, . . . , βn)|

=
∑
g∈Sd

g(αi) �=0,1≤i≤�

g(αi)=0,�+1≤i≤n

⎛⎝ qd+1−
∑�

i=1 ui

ζq(2)
∏�

i=1(1− q−2ui)

∏
(P )|(g)

(1 + |P |−1)−1 +O
(
q(1/2+ε)d

)⎞⎠

=
qd+1−

∑n
i=1 ui

ζq(2)
∏�

i=1(1− q−2ui)

∑
g∈Sd

g(αi) �=0,1≤i≤�

g(αi)=0,�+1≤i≤n

∏
(P )|(g)

(1 + |P |−1)−1 +O
(
q(3/2+ε)d

)
.

Set

b(g) =
∏

(P )|(g)
(1 + |P |−1)−1

and

G(s) =
∑
(g) �=0

b(g)

|g|s .

Since b(g) is a multiplicative function, it follows that G(s) has an Euler product
of the form

G(s) =
∏
(P )

( ∞∑
k=0

b(P k)|P |−ks

)

=
∏
(P )

(
1 +

b(P )|P |−s

1− |P |−s

)

=
∏
(P )

(
1 +

|P |−s

(1− |P |−s)(1 + |P |−1)

)
.
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Thus

G(s) =
ζq(s)

ζq(2s)
H(s),

where

H(s) =
∏
(P )

(
1− |P |−s(1− |P |1−s − |P |−s)

(|P |+ 1)(1− |P |−2s)

)
,

which converges for Re(s) > 1/2. In addition, G(s) has a simple pole at s = 1 with
residue

H(1)

ζq(2) log q
=

1

ζq(2) log q

∏
(P )

(
1 +

1

(|P |+ 1)(|P |2 − 1)

)
.

Define the additional Dirichlet series

G1(s) =
∑

(mαi
)�(g),1≤i≤�

(mαi
)|(g),�+1≤i≤n

b(g)

|g|s =
∏

(P ) �=(mαi
),1≤i≤n

(
1 +

|P |−s

(1− |P |−s)(1 + |P |−1)

)

×
∏

(P )=(mαi
),�+1≤i≤n

( ∞∑
k=1

b(P k)|P |−ks

)

= G(s)
n∏

i=1

(
1 +

q−uis

(1− q−uis)(1 + q−ui)

)−1 n∏
i=�+1

q−uis

(1− q−uis)(1 + q−ui)

= G(s)

�∏
i=1

(1− q−uis)(1 + q−ui)

1 + q−ui − q−ui(s+1)

n∏
i=�+1

q−uis

1 + q−ui − q−ui(s+1)
.

Thus, G1(s) has a simple pole at s = 1 with residue

ρ =
H(1)

ζq(2) log q

�∏
i=1

1− q−2ui

1 + q−ui − q−2ui

n∏
i=�+1

q−ui

1 + q−ui − q−2ui
,

and

G1(s)−
ρ

s− 1

is holomorphic for Re(s) > 1/2. Then, using Theorem 17.1 of [Ros02], which is the
function field version of the Wiener–Ikehara Tauberian Theorem, we get that

∑
(g),g∈Sd

(mαi
)�(g),1≤i≤�

(mαi
)|(g),�+1≤i≤n

b(g) =
H(1)qd+1

ζq(2)

�∏
i=1

1− q−2ui

1 + q−ui − q−2ui

n∏
i=�+1

q−ui

1 + q−ui − q−2ui

+O
(
q(1/2+ε)d

)
.
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Using the line above in the formula for |Ford
d (α1, . . . , αn, β1, . . . , βn)|, we get

|Ford
d (α1, . . . , αn, β1, . . . , βn)|

=
qd+1−

∑�
i=1 ui

ζq(2)
∏�

i=1(1− q−2ui)

H(1)qd+1

ζq(2)

�∏
i=1

1− q−2ui

1 + q−ui − q−2ui

n∏
i=�+1

q−ui

1 + q−ui − q−2ui

+O
(
q(3/2+ε)d

)
=

H(1)q2d+2−
∑n

i=1 ui

ζq(2)2
∏n

i=1(1 + q−ui − q−2ui)
+O

(
q(3/2+ε)d

)
.

�

The previous result may be used to obtain the number of covers in the whole
ordinary family by specializing to n = 0.

Corollary 3.7.

|Ford
d | = H(1)q2d+2

ζq(2)2
+O

(
q(3/2+ε)d

)
.

By combining Proposition 3.6 and Corollary 3.7, we obtain the following result.

Proposition 3.8. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq such that
none of the αi are conjugate to each other. Let βi ∈ Fqui for 1 ≤ i ≤ n. Then

|Ford
d (α1, . . . , αn, β1, . . . , βn)|

|Ford
d |

=
q−

∑n
i=1 ui∏n

i=1(1 + q−ui − q−2ui)
+O

(
q(−1/2+ε)d

)
= q−

∑n
i=1 ui

(
1 +O

(
n∑

i=1

q−ui

))
+O

(
q(−1/2+ε)d

)
.

We finish this section by computing the expected number of points in an ordinary
Artin-Schreier cover. For this, we need to compute the case n = 1, i.e., |Ford

d (α, β)|.

Corollary 3.9. Fix α ∈ P1(Fqk) of degree u over Fq. Let β ∈ P1(Fqu). Then

|Ford
d (α, β)| =

⎧⎪⎪⎨⎪⎪⎩
H(1)q2d+2−u(1−q−u)
ζq(2)2(1+q−u−q−2u) +O

(
q(3/2+ε)d+u

)
, β = ∞,

H(1)q2d+2−u

ζq(2)2(1+q−u−q−2u) +O
(
q(3/2+ε)d

)
, β ∈ Fqu .

Proof. The case of β ∈ Fqu is a simple consequence of Proposition 3.6. For β =
[1 : 0], we have, by Lemma 2.3, that

|Ford
d (α,∞)| = |Ford

d | −
∑

β∈Fqu

|Ford
d (α, β)|

= |Ford
d | − qu|Ford

d (α, 0)|

=
H(1)q2d+2−u(1− q−u)

ζq(2)2(1 + q−u − q−2u)
+O

(
q(3/2+ε)d+u

)
.

�

By combining Proposition 3.8 and Corollaries 3.7 and 3.9, we obtain the following
result.
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Proposition 3.10. Fix α ∈ P1(Fqk) with degree u over Fq. Let β ∈ P1(Fqu). Then

|Ford
d (α, β)|
|Ford

d |
=

⎧⎪⎨⎪⎩
q−u(1−q−u)
1+q−u−q−2u +O

(
q(−1/2+ε)d+u

)
, β = ∞,

q−u

1+q−u−q−2u +O
(
q(−1/2+ε)d

)
, β ∈ Fqu .

Lemma 3.11. Fix α ∈ P1(Fqk) of degree u over Fq. The expected number of
Fqk -points in the fiber above α is⎧⎪⎨⎪⎩

1 +O
(
q(−1/2+ε)d+u

)
, if p � k

u ,

1 + p−1
1+q−u−q−2u +O

(
q(−1/2+ε)d+u

)
, if p | k

u .

Proof. By Lemma 2.1 and Proposition 3.10, the expected number of Fqk -points in
the fiber above α is

q−u(1− q−u)

1 + q−u − q−2u
+O

(
q(−1/2+ε)d+u

)
+

∑
β∈Fqu ,trk(β)=0

p

(
q−u

1 + q−u − q−2u
+O

(
q(−1/2+ε)d

))
.

If p � k
u , then trk(β) = 0 iff tru(β) = 0 and there are qu

p points in Fqu with that
property.

If p | k
u , then trk(β) =

k
u tru(β) = 0 for all β ∈ Fqu , and therefore the expected

number of points in the fiber is

q−u(1− q−u)

1 + q−u − q−2u
+O

(
q(−1/2+ε)d+u

)
+

p

1 + q−u − q−2u
+O

(
q(−1/2+ε)d+u

)
.

�

For our main result, we recall that an ordinary Artin-Schreier cover has r + 1
simple poles. This corresponds to taking d = r+1. We are ready to prove the first
part of Theorem 1.1.

Theorem 3.12. The expected number of Fqk -points on an ordinary Artin-Schreier
cover defined over Fq is⎧⎪⎨⎪⎩

qk + 1 +O
(
q(−1/2+ε)(r+1)+2k

)
, p � k,

qk + 1 + p−1
1+q−1−q−2 +

∑
u| kp

p−1
1+q−u−q−2u π(u)u+O

(
q(−1/2+ε)(r+1)+2k

)
, p | k,

where π(u) is the number of monic irreducible polynomials in Fq[X] of degree u.

Proof. If p � k, the result follows by adding the result of Lemma 3.11 over all
α ∈ P1(Fqk). If p | k we still get the term qk + 1 and an additional term given by∑

u| kp

∑
α,degα=u

p− 1

1 + q−u − q−2u
=

p− 1

1 + q−1 − q−2
+

∑
u| kp

p− 1

1 + q−u − q−2u
π(u)u,

where the first term on the right hand side accounts for the case α = ∞. �
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Remark 3.13. When k = p, we obtain

qp + 1 +
(p− 1)(q + 1)

1 + q−1 − q−2
+ O

(
q(−1/2+ε)(r+1)+2p

)
.

4. The full space

In this case, we consider the family

F full
d = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, (g, h) = 1} .

Proposition 4.1. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un such that none
of the αi are conjugate to each other. Let βi ∈ Fqui for 1 ≤ i ≤ n. Then we have

|F full
d (α1, . . . , αn, β1, . . . , βn)| =

q2d+2−
∑n

i=1 ui

ζq(2)
∏n

i=1 (1 + q−ui)
+O

(
q(1+ε)d

)
.

Proof. Assume without loss of generality that β1, . . . , β� are not zero and β�+1 =
· · · = βn = 0. We have, by Lemma 3.3, that

|F full
d (α1, . . . , αn, β1, . . . , βn)|

=
∑
g∈Sd

∣∣∣∣{h ∈ Sd : (h, g) = 1,
g(αi)

h(αi)
= βi, 1 ≤ i ≤ n

}∣∣∣∣
=

∑
g∈Sd

qd+1−
∑�

i=1 ui

∏
(P )|(g)

(1− |P |−1) +O
(
q(1+ε)d

)
.

We set

b(g) =
∏

(P )|(g)
(1− |P |−1)

and

G(s) =
∑
(g) �=0

b(g)

|g|s .

Since b(g) is a multiplicative function, it follows that G(s) has an Euler product of
the form

G(s) =
∏
(P )

( ∞∑
k=0

b(P k)|P |−ks

)
=

∏
(P )

(
1 +

b(P )|P |−s

1− |P |−s

)

=
∏
(P )

(
1 +

(1− |P |−1)|P |−s

1− |P |−s

)
=

∏
(P )

(
1− |P |−1−s

1− |P |−s

)
.

Therefore

G(s) =
ζq(s)

ζq(1 + s)

is analytic for Re(s) > 0, except for a simple pole at s = 1 with residue 1
ζq(2) log q .
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Now define the Dirichlet series

G1(s) =
∑

(mαi
)�(g),1≤i≤�

(mαi
)|(g),�+1≤i≤n

b(g)

|g|s =
∏

(P ) �=(mαi
),1≤i≤n

(
1− |P |−1−s

1− |P |−s

)

×
∏

(P )=(mαi
),�+1≤i≤n

( ∞∑
k=1

b(P k)|P |−ks

)

= G(s)
n∏

i=1

(
1− q−ui(1+s)

1− q−uis

)−1 n∏
i=�+1

(
q−uis(1− q−ui)

1− q−uis

)

= G(s)

�∏
i=1

1− q−uis

1− q−ui(1+s)

n∏
i=�+1

q−uis(1− q−ui)

1− q−ui(1+s)
.

Thus G1(s) is analytic for Re(s) > 0, except for a simple pole at s = 1 with
residue

1

ζq(2) log q

�∏
i=1

1

1 + q−ui

n∏
i=�+1

q−ui

1 + q−ui
.

Then, again using Theorem 17.1 of [Ros02], we get that

|F full
d (α1, . . . , αn, β1, . . . , βn)|

= qd+1−
∑�

i=1 ui

∑
(g),g∈Sd

(mαi
)�(g),1≤i≤�

(mαi
)|(g),�+1≤i≤n

b(g) +O
(
q(1+ε)d

)

=
q2d+2−

∑�
i=1 ui

ζq(2)

�∏
i=1

(
1

1 + q−ui

) n∏
i=�+1

(
q−ui

1 + q−ui

)
+O

(
q(1+ε)d

)
.

�

We may now proceed to compute the number of covers in the whole family by
setting n = 0 in the previous result.

Corollary 4.2.

|F full
d | = q2d+2

ζq(2)
+O

(
q(1+ε)d

)
.

By combining Proposition 4.1 and Corollary 4.2, we obtain the following result.

Proposition 4.3. Fix α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un such that none
of the αi are conjugate to each other. Let βi ∈ Fqui for 1 ≤ i ≤ n. Then we have

|F full
d (α1, . . . , αn, β1, . . . , βn)|

|F full
d |

=
q−

∑n
i=1 ui∏n

i=1 (1 + q−ui)
+O

(
q(ε−1)d

)
= q−

∑n
i=1 ui

(
1 +O

(
n∑

i=1

q−ui

))
+O

(
q(ε−1)d

)
.

We finish the section by computing the expected number of points in the full
Artin-Schreier family.
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Corollary 4.4. Fix α ∈ P1(Fqk) of degree u over Fq. Let β ∈ P1(Fqu). Then

|F full
d (α, β)| = q2d+2−u

ζq(2)(1 + q−u)
+

⎧⎪⎨⎪⎩
O

(
q(ε+1)d+u

)
, β = ∞,

O
(
q(ε+1)d

)
, β ∈ Fqu .

Proof. The case of β ∈ Fqu easily follows from Proposition 4.1. For β = [1 : 0], we
have, by Lemma 2.3, that

|F full
d (α,∞)| = |F full

d | −
∑

β∈Fqu

|F full
d (α, β)|

= |F full
d | − qu|F full

d (α, 0)|

=
q2d+2−u

ζq(2)(1 + q−u)
+O

(
q(ε+1)d+u

)
.

�
We then obtain the following result.

Proposition 4.5. Fix α ∈ P1(Fqk) of degree u over Fq. Let β ∈ P1(Fqu). Then

|F full
d (α, β)|
|F full

d |
=

q−u

1 + q−u
+

⎧⎪⎨⎪⎩
O

(
q(ε−1)d+u

)
, β = ∞,

O
(
q(ε−1)d

)
, β ∈ Fqu .

Lemma 4.6. Fix α ∈ P1(Fqk) of degree u over Fq. The expected number of Fqk -
points in the fiber above α is⎧⎪⎨⎪⎩

1 +O
(
q(ε−1)d+u

)
, if p � k

u ,

1 + p−1
1+q−u +O

(
q(ε−1)d+u

)
, if p | k

u .

Proof. By Lemma 2.1 and Proposition 4.5, we have

q−u

1 + q−u
+O

(
q(ε−1)d+u

)
+

∑
β∈Fqu ,trk(β)=0

p

(
q−u

1 + q−u
+O

(
q(ε−1)d

))
.

If p � k
u , then trk(β) = 0 iff tru(β) = 0, and there are qu

p points in Fqu with that
property.

If p | k
u , then trk(β) =

k
u tru(β) = 0 for all β ∈ Fqu , and therefore the expected

number of points in the fiber is

q−u

1 + q−u
+O

(
q(ε−1)d+u

)
+

p

1 + q−u
+O

(
q(ε−1)d+u

)
.

�
We are ready to prove Theorem 1.1 (2).

Theorem 4.7. The expected number of Fqk -points on an Artin-Schreier cover in
ASg defined over Fq is⎧⎪⎨⎪⎩
qk + 1 +O

(
q(ε−1)d+2k

)
, p � k,

qk + 1 + (p− 1)qk/p + p−1
1+q−1 − (p− 1)

∑
u| kp

1
1+qu π(u)u+O

(
q(ε−1)d+2k

)
, p | k.
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Proof. The result for p � k follows from Lemma 4.6. If p | k, we still get the term
qk + 1 and an additional term given by∑

u| kp

∑
α,degα=u

p− 1

1 + q−u
=

p− 1

1 + q−1
+ (p− 1)

∑
u| kp

qu

1 + qu
π(u)u

=
p− 1

1 + q−1
+ (p− 1)qk/p − (p− 1)

∑
u| kp

1

1 + qu
π(u)u.

�

Remark 4.8. When k = p, we obtain

qp + 1 + (p− 1)q +O
(
q(ε−1)d+2p

)
.

5. Prescribed factorization type

Recall that

Fv
d = {(g(X,Z), h(X,Z)) : g(X,Z), h(X,Z) ∈ Sd, (g, h) = 1,

h has factorization type v},

where v = (r
d1,1

1 , . . . , r
d1,�1
1 , . . . , r

dm,1
m , . . . , r

dm,�m
m ) and

h = P
d1,1

1,1 · · ·P d1,�1

1,�1
· · ·P dm,1

m,1 · · ·P dm,�m

m,�m
,

where the Pi,j are distinct irreducible polynomials of degree ri and ri �= rj if i �= j.

The degree of h is then given by d =
∑m

i=1 ri
∑�i

j=1 di,j .
We will first compute the expected number of points for this family. We need

the following result.

Lemma 5.1. Fix a polynomial h ∈ Sd. Then, if h �= 0,

|{g ∈ Sd : (g, h) = 1}| = qd+1
∏

(P )|(h)
(1− |P |−1).

We remark that this lemma follows directly from the proof of Lemma 3.3.

Proposition 5.2. Fix α ∈ P1(Fqk) of degrees u over Fq. Let β ∈ P1(Fqu). Then,
if u ≤ d,

|Fv
d (α, β)|
|Fv

d |
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q−u, deg(α) = u �= ri∀i, β �= ∞,

0, deg(α) = u �= ri∀i, β = ∞,

q
−ri0 (π(ri0)−�i0 )

π(ri0 )
, deg(α) = ri0 , β �= ∞,

�i0
π(ri0 )

, deg(α) = ri0 , β = ∞.

If u > d the above quotient is O(q−d).
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Proof. We first consider the size of the whole family. By Lemma 5.1 we have

|Fv
d | =

∑
degPi,j=ri, all different

|{g ∈ Sd : (g, h) = 1}|

= qd+1
m∏
i=1

(1− q−ri)�i
∑

degPi,j=ri, all different

1.(5.1)

If deg(α) = u �= ri, and β ∈ Fqu , then by Lemma 2.3 it suffices to find |Fv
d (α, β)|

for β = 0. If this is the case, then we need g(α) = 0 or mα | g.

|Fv
d (α, β)| =

∑
degPi,j=ri, all different

|{g ∈ Sd : (g, h) = 1,mα | g}|

= qd+1−u
m∏
i=1

(1− q−ri)�i
∑

degPi,j=ri, all different

1.

If deg(α) = u �= ri and β = ∞, we get a contradiction and thus

|Fv
d (α,∞)| = 0.

Now assume that deg(α) = u = ri0 , for some i0, and that β ∈ Fqu . By Lemma
2.3 we can again assume that β = 0. In this case we need to impose the condition
that h(α) �= 0. Therefore,

|Fv
d (α, β)| = qd+1−ri0

m∏
i=1

(1− q−ri)�i
∑

degPi,j=ri,Pi0,j �=mα, all different

1.

Finally, if deg(α) = ri0 for some i0 and β = ∞, we need that h(α) = 0 and g(α) �= 0.

|Fv
d (α,∞)| = qd+1

m∏
i=1

(1− q−ri)�i
∑

degPi,j=ri,∃Pi0,j=mα, all different

1.

The result now follows from the identity

|{degPi,j = ri, all different}| =
m∏
i=1

(
π(ri)

�i

)
.

�

We are now ready to prove the main result of this section.

Theorem 5.3. The expected number of Fqk -points on an Artin-Schreier cover with
poles given by the factorization type v defined over Fq is⎧⎪⎪⎨⎪⎪⎩

qk + 1, p � k,

qk + 1 + (p− 1)qk/p + (p− 1)
(
1−

∑
ri|k �iri

)
, p | k.

Proof. We can assume that p � ri. This is because the Fq-isomorphisms (x, y) �→
(x, y+ axk) allow us to eliminate all the terms in h such that x appears to a power
multiple of p.
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By Lemma 2.1, the final count becomes∑
α∈P1(F

qk
)

|Fv
d (α,∞)|
|Fv

d |
+

∑
α∈P1(F

qk
)

∑
β∈F

qdeg(α) ,trk(β)=0

p
|Fv

d (α, β)|
|Fv

d |

=
∑
ri|k

�i
π(ri)

∑
α∈P1(F

qk
),deg(α)=ri

1 +
∑

α∈P1(F
qk

)

∑
β∈F

qdeg(α) ,trk(β)=0

pq− deg(α)

−
∑
ri|k

�i
π(ri)

∑
α∈P1(F

qk
),deg(α)=ri

∑
β∈Fqri ,trk(β)=0

pq−ri .

If p � k, then trk(β) = 0 if and only if tru(β) = 0 and there are qu

p elements in

Fqu with that property. Thus we obtain qk + 1. If p | k, then since p � ri, if ri | k,
then p | k

ri
and trk(β) = 0 for β ∈ Fqri . The final count then becomes∑

α∈P1(F
qk

)

∑
β∈F

qdeg(α) ,trk(β)=0

pq− deg(α)

+
∑
ri|k

�i
π(ri)

∑
α∈P1(Fqri ),degα=ri

⎛⎝1−
∑

β∈Fqri ,trk(β)=0

pq−ri

⎞⎠
= qk + 1 + (p− 1)(qk/p + 1)−

∑
ri|k

�i
π(ri)

∑
α∈P1(Fqri ),deg α=ri

(p− 1)

= qk + 1 + (p− 1)qk/p + (p− 1)

⎛⎝1−
∑
ri|k

�iri

⎞⎠ .

�

Now suppose that we take the p-rank 0 family. We recall that this corresponds
to v = (1d). A simple application of Theorem 5.3 yields the following.

Theorem 5.4. The expected number of Fqk -points on a p-rank 0 Artin-Schreier
cover in ASg,0 defined over Fq is⎧⎪⎨⎪⎩

qk + 1, p � k,

qk + 1 + (p− 1)qk/p, p | k.

This recovers the result from [Ent12].
Finally we consider the family of curves with p-rank equal to p− 1. This means

that we consider the case when f(x) is a rational function with exactly two poles.
If the poles happen to be at Fq-rational points, we are in the case corresponding
to v = (1d1 , 1d2). Note that in this case we could use an automorphism of P1(Fq)
to move the two poles to zero and infinity, and therefore this case corresponds to
the case when f(X) is a Laurent polynomial. Otherwise, the two poles have to be
Fq Galois conjugate points in Fq2 , and we find ourselves in the case of prescribed

factorization v = (2d). The final answer for the whole p-rank equal to p−1 stratum
is given by taking the average between these two cases. Again, by applying Theorem
5.3 we get the third part of Theorem 1.1.
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Theorem 5.5. The expected number of Fqk -points on a p-rank p−1 Artin-Schreier
cover in ASg,p−1 defined over Fq is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qk + 1, p � k,

qk + 1 + (p− 1)(qk/p − 1), p | k, k even,

qk + 1 + (p− 1)qk/p, p | k, k odd.

Proof. The different formulas occur when p | k. For k even we get that both 1 | k
and 2 | k, and therefore we always get qk + 1+ (p− 1)(qk/p − 1) for p | k. When k
is odd, the case p | k will yield

qk + 1 + (p− 1)(qk/p − 1)

for (1d1 , 1d2) and

qk + 1 + (p− 1)(qk/p + 1)

for (2d).
Each case happens half of the time. To see this, notice that (2d) corresponds

to counting degree 2 irreducible monic polynomials over Fq, while (1d1 , 1d2) corre-
sponds to counting degree 2 reducible monic polynomials with two different roots
over Fq. The number of degree 2 monic polynomials that are not squares is q2 − q,
and exactly half of them are reducible. We take the average and obtain the final
result. �

We now proceed to the case where we fix several values, which will be needed
for the computation of the moments.

Proposition 5.6. Let α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq be such
that none of the αi are conjugate to each other. Let βi ∈ Fqui for 1 ≤ i ≤ n. Then

|Fv
d (α1, . . . , αn, β1, . . . , βn)|

|Fv
d |

=
m∏
i=1

(1−τ (ri, �i;u1, . . . , un))q
−(u1+···+un)+O(q(ε−1)d),

where 0 ≤ τ (ri, �i;u1, . . . , un) ≤ 1 is a constant that depends on the number of uj’s
that are equal to ri and is equal to zero if uj �= ri for all j.

Proof. Without loss of generality we can assume that β1, . . . , β� are not zero and
that β�+1 = · · · = βn = 0. We have that

|Fv
d (α1, . . . , αn, β1, . . . , βn)|

(5.2)

=
∑

deg Pi,j=ri, all different

Pi,j �=mα

∣∣∣∣∣
{
g1 ∈ Sd−

∑n
j=�+1 uj

: (g1, h) = 1,

g1(αi)
∏n

j=�+1mαj
(αi)

h(αi)
= βi, 1 ≤ i ≤ �

}∣∣∣∣∣ .
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Notice that β−1
i ∈ F∗

qui for 1 ≤ i ≤ �. By Lemma 3.3,∣∣∣∣∣
{
g1 ∈ Sd−

∑n
j=�+1 uj

: (g1, h) = 1,
h(αi)

g1(αi)
∏n

j=�+1mαj
(αi)

= β−1
i , 1 ≤ i ≤ �

}∣∣∣∣∣
= qd+1−

∑n
i=1 ui

∏
(P )|(h)

(1− |P |−1) +O
(
qεd

)
= qd+1−

∑n
i=1 ui

m∏
j=1

(1− q−rj )�j +O
(
qεd

)
.

On the other hand, |{degPi,j = ri, all different, Pi,j �= mα}| is a product of
binomials of the form (

π(ri)− si
�i

)
,

where si corresponds to the number of uj ’s that equal the particular ri.
This gives that

|{degPi,j = ri, all different, Pi,j �= mα}|
|{degPi,j = ri, all different}|

is a product of terms of the form

(1− τ (ri, �i;u1, . . . , un))

=

(
π(ri)−si

�i

)(
π(ri)
�i

) =
(π(ri)− �i)(π(ri)− �i − 1) · · · (π(ri)− �i − si + 1)

π(ri)(π(ri)− 1) · · · (π(ri)− si + 1)
.

By dividing equation (5.2) by equation (5.1), we get

|Fv
d (α1, . . . , αn, β1, . . . , βn)|

|Fv
d |

= q−
∑n

i=1 ui

m∏
i=1

(1− τ (ri, �i;u1, . . . , un)) +O(q(ε−1)d),

where the constant satisfies the desired properties. �

6. Beurling–Selberg functions

In this section we start the development of the tools needed to prove Theorem
1.3. By the functional equation, the conjugate of a root of ZCf

(u) is also a root,
so we can restrict to considering symmetric intervals. Let 0 < β < 1 and set
I = [−β/2, β/2] ⊂ [−1/2, 1/2). Our goal is to estimate the quantity

NI(f, ψ) := #

{
1 ≤ j ≤ 2g

p− 1
: θj(f, ψ) ∈ I

}
=

2g/(p−1)∑
j=1

χI(θj(f, ψ)),

where χI denotes the characteristic function of I. We are going to approximate χI
with Beurling–Selberg polynomials I±K .

In what follows, we use the standard notation e(x) := e2πix. Let K be a positive
integer, and let h(θ) =

∑
|k|≤K ake(kθ) be a trigonometric polynomial. Then, the

coefficients ak are given by the Fourier transform

ak = ĥ(k) =

∫ 1/2

−1/2

h(θ)e(−kθ)dθ.
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Here is a list of a series of useful properties of the Beurling–Selberg polynomials
(see [Mon94, Ch. 1.2] that will be used in this paper.

(a) The I±K are trigonometric polynomials of degree ≤ K, i.e.,

I±K(x) =
∑

|k|≤K

Î±K(k)e(kx).

(b) The Beurling–Selberg polynomials yield upper and lower bounds for the
characteristic function:

I−K ≤ χI ≤ I+K .

(c) The integral of Beurling–Selberg polynomials approximates the length of
the interval:∫ 1/2

−1/2

I±K(x)dx =

∫ 1/2

−1/2

χI(x)dx± 1

K + 1
= |I| ± 1

K + 1
.

(d) The I±K are even (because the interval I is symmetric about the origin).

Therefore the Fourier coefficients are also even, i.e., Î±K(−k) = Î±K(k) for
|k| ≤ K.

(e) The non-zero Fourier coefficients of the Beurling–Selberg polynomials ap-
proximate those of the characteristic function:

|Î±K(k)− χ̂I(k)| ≤
1

K + 1
=⇒ Î±K(k) =

sin(πk|I|)
πk

+O

(
1

K + 1

)
, k ≥ 1.

Therefore we obtain the following bound:

|Î±K(k)| ≤ 1

K + 1
+min

{
|I|, π

|k|

}
, 0 < |k| ≤ K.

We now list some results that will be useful in future sections.

Proposition 6.1 ([FR10, Proposition 4.1]). For K ≥ 1 such that K|I| > 1, we
have ∑

k≥1

Î±K(2k) = O(1),

∑
k≥1

Î±K(k)2k =
1

2π2
log(K|I|) +O(1),

∑
k≥1

Î+K(k)Î−K(k)k =
1

2π2
log(K|I|) +O(1).

We remark that for a given K the above sums are actually finite, since the
Beurling–Selberg polynomials I±K have degree at most K. We will also need the
following estimates.

Proposition 6.2 ([BDFLS12, Proposition 5.2]). For α1, . . . , αr, γ1, . . . , γr > 0 and
β1, . . . , βr ∈ R, we have∑

k1,...,kr≥1

Î±K(k1)
α1

. . . Î±K(kr)
αr

kβ1

1 . . . kβr
r q−γ1k1−···−γrkr = O(1).
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For α1, α2, γ > 0 and β ∈ R,∑
k≥1

Î±K(k)
α1

Î±K(2k)
α2

kβq−γk = O(1).

7. Set-up for the distribution of the zeroes

We state here an explicit formula that will be used to relate L(u, f, ψ) to the
Beurling–Selberg polynomials. Recall that 2g = (p− 1)(Δ− 1).

Lemma 7.1 ([BDFLS12, Lemma 3.1]). Let h(θ) =
∑

|k|≤K ĥ(k)e(kθ) be a trigono-

metric polynomial. Let θj(f, ψ) be the eigenangles of the L-function L(u, f, ψ).
Then we have

(7.1)
Δ−1∑
j=1

h(θj(f, ψ)) = (Δ− 1)ĥ(0)−
K∑

k=1

ĥ(k)Sk(f, ψ) + ĥ(−k)Sk(f, ψ)

qk/2
,

where

Sk(f, ψ) =
∑

x∈P1(F
qk

)

f(x) �=∞

ψ(trk(f(x))).

We use the Beurling–Selberg approximation of the characteristic function of the
interval I to rewrite NI(f, ψ) and NI(Cf ) where f varies over one of the families
Fd. By property (b) of the Beurling–Selberg polynomials, we have

Δ−1∑
j=1

I−K(θj(f, ψ)) ≤ NI(f, ψ) ≤
Δ−1∑
j=1

I+K(θj(f, ψ)),

and using the explicit formula of Lemma 7.1 and property (c), we have

Δ−1∑
j=1

I±K(θj(f, ψ)) = (Δ− 1)|I| − S±(K, f, ψ)± Δ− 1

K + 1
,

where

S±(K, f, ψ) :=
K∑

k=1

Î±K(k)Sk(f, ψ) + Î±K(−k)Sk(f, ψ̄)

qk/2
.(7.2)

This gives

(7.3) −S−(K, f, ψ)− Δ− 1

K + 1
≤ NI(f, ψ)− (Δ− 1)|I| ≤ −S+(K, f, ψ) +

Δ− 1

K + 1
,

and
(7.4)

−
p−1∑
h=1

S−(K, f, ψh)− 2g

K + 1
≤ NI(Cf )− 2g|I| ≤ −

p−1∑
h=1

S+(K, f, ψh) +
2g

K + 1
.

In the next section we are going to compute the moments

1

|Fd|
∑
f∈Fd

S±(K, f, ψh)n and
1

|Fd|
∑
f∈Fd

S±(K,Cf )
n,
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where

S±(K,Cf )
n =

p−1∑
h1,...,hn=1

S±(K, f, ψh1) . . . S±(K, f, ψhn).(7.5)

We will show that they approach the Gaussian moments when properly normal-
ized. We will then use this result to show that

NI(Cf )− 2g|I|√
2(p−1)

π2 log(g|I|)

converges to a normal distribution as g → ∞ since it converges in mean square to

S±(K,Cf )√
2(p−1)

π2 log(g|I|)
.

8. Moments

Our goal is to compute the moments of S±(K,Cf ) when f varies in any of the
families of curves Ford

d , F full
d , and Fv

d .

Definition 8.1. Let

EFd
(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1 + q−u − q−2u)−1, Fd = Ford
d ,

(1 + q−u)−1, Fd = F full
d ,

π(ri)− �i
π(ri)

, Fd = Fv
d and u = ri for some i,

1, Fd = Fv
d and u �= ri for any i.

More generally, we have

EFd
(u1, . . . , un) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∏

i=1

EFd
(ui), Fd = Ford

d ,F full
d ,

m∏
i=1

(1− τ (ri, �i;u1, . . . , un)), Fd = Fv
d ,

where τ (ri, �i;u1, . . . , un) is as defined in Proposition 5.6.

Remark 8.2. Let Fd be any one of the families considered. Then

EFd
(u) = 1 +O

(
uq−u

)
.

The estimate can be improved to EFd
(u) = 1 +O (q−u) for Ford

d and F full
d . In the

case of Fv
d , we are assuming that the �i are fixed constants and using the estimate

π(m) = qm

m +O
(

qm/2

m

)
(see [Ros02, Theorem 2.2]).

In addition, we have that

EFd
(u1, . . . , un) � 1.

From now on we will use the notation α1 ∼ α2 to indicate that α1 and α2 are
Galois conjugate, and α1 �∼ α2 for the opposite statement.

Then, for all the families under consideration we have the following result.
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Lemma 8.3. Let α ∈ P1(Fqk) of degree u over Fq. Let β ∈ Fqu . Let Fd be any of
the families under consideration. Then

|Fd(α, β)|
|Fd|

=
|Fd(α, 0)|

|Fd|
=

EFd
(u)

qu
+O

(
q−d/2

)
.(8.1)

Let α1, α2 ∈ P1(Fqk) of degrees u1, u2 respectively over Fq. Let β1 ∈ Fqu1 , β2 ∈ Fqu2 .
Let Fd be any of the families under consideration. Then, if α1 �∼ α2,

|Fd(α1, α2, β1, β2)|
|Fd|

=
EFd

(u1, u2)

qu1+u2
+O

(
q−d/2

)
,(8.2)

where EFd
(u1, u2) does not depend on the values of β1, β2.

If α1 ∼ α2 and β1 ∼ β2 by the same automorphism, then

|Fd(α1, α2, β1, β2)|
|Fd|

=
|Fd(α1, β1)|

|Fd|
=

EFd
(u1)

qu1
+O

(
q−d/2

)
.(8.3)

Otherwise, we get zero.
Let α1, . . . , αn ∈ P1(Fqk) of degrees u1, . . . , un over Fq and let βi ∈ Fqui for

1 ≤ i ≤ n.
If none of the αi are conjugate to each other, then

|Fd(α1, . . . , αn, β1, . . . βn)|
|Fd|

=
EFd

(u1, . . . , un)

qu1+···+un
+O(q−d/2),(8.4)

where EFd
(u1, . . . , un) does not depend on the values of β1, . . . , βn.

If some of the αi’s are conjugate to others, then we get zero, unless the corre-
sponding βi’s are conjugate by the same automorphisms, and in that case we get
formula (8.4), where the ui’s correspond to the degrees for each of the different
conjugacy classes of the αi’s.

Proof. This follows from Propositions 3.8, 3.10, 4.3, 4.5, 5.2, and 5.6. �

We recall that for a family F , a function G depending on f , and a vector α =
(α1, . . . , αn), we have the notation

〈G(f)〉F :=
1

|F|
∑
f∈F

G(f),

〈G(f)〉F ,α :=
1

|F|
∑
f∈F

f(αi) �=∞,1≤i≤n

G(f).

The main idea in the computations of moments is that if we sum the value of
a non-trivial additive character ψ evaluated at a linear combination of the traces
trui

(βi) over all βi ∈ Fqui for 1 ≤ i ≤ s, then the sum will be 0 unless each coefficient
is divisible by p.

Lemma 8.4. Let m1, . . . ,ms ∈ Z, and ψ a non-trivial additive character of Fp.
Then

∑
βi∈Fqui , 1≤i≤s

ψ(m1 tru1
(β1)+ · · ·+ms trus

(βs))=

⎧⎪⎨⎪⎩
qu1+···+us , p | mi for 1≤ i ≤ s,

0, otherwise.
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8.1. First moment.

Lemma 8.5. Let h be an integer such that p � h, e ∈ {−1, 1}, and k > 0. Let
α ∈ Fqk of degree u over Fq. Let Fd be any of the families under consideration.
We have

〈ψ(eh trk f(α))〉Fd,α
=

⎧⎪⎨⎪⎩
EFd

(u) +O
(
qu−d/2

)
, p | k

u ,

O
(
qu−d/2

)
, otherwise.

Proof. By reversing the order of summation, we obtain

〈ψ(eh trk f(α))〉Fd,α
=

∑
β∈Fqu

ψ(eh trk(β))
|Fd(α, β)|

|Fd|
.

We now apply Lemma 8.3 in order to obtain

EFd
(u)

qu

∑
β∈Fqu

ψ

(
ehk

u
tru(β)

)
+O

(
qu−d/2

)
.

Lemma 8.4 implies that the main term is zero unless p | k
u . This completes the

proof of the statement. �
For positive integers k, h with p � h and e ∈ {−1, 1}, set

Mk,e,h
1,d :=

〈
q−k/2

∑
α∈F

qk

f(α) �=∞

ψ(eh trk f(α))

〉
Fd

= q−k/2
∑

α∈F
qk

〈ψ(eh trk f(α))〉Fd,α
.

Lemma 8.5 has the following consequence.

Theorem 8.6. Let h be an integer such that p � h and let Fd be any of the families
under consideration. Then

Mk,e,h
1,d = ep,k

(
EFd

(k/p) q−(1/2−1/p)k +O
(
q−(1/2−1/2p)k

))
+O

(
q3k/2−d/2

)
= O

(
q−(1/2−1/p)k + q3k/2−d/2

)
,

where

ep,k =

{
0, p � k,

1, p | k.

Proof. By Lemma 8.5, we have that

Mk,e,h
1,d = q−k/2

∑
u,pu|k

α∈F
qk

,deg(α)=u

EFd
(u) + q−k/2

∑
α∈F

qk

O(qdeg(α)−d/2)

=
ep,k
qk/2

∑
m,pm|k

EFd
(m)π(m)m+O

(
q3k/2−d/2

)
.

Finally, if p | k, the estimates from Remark 8.2 yield∑
m,pm|k

EFd
(m)π(m)m = EFd

(k/p) qk/p +O
(
qk/2p

)
. �
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Notice that changing h allows us to vary the character from ψ to ψh. This will
be useful later.

Theorem 8.7. Let h be an integer such that p � h and let Fd be any of the families
under consideration. Then for any K with max{1, 1/|I|} < K < d/3,〈

S±(K, f, ψh)
〉
Fd

= O(1).

Proof. We have that〈
S±(K, f, ψh)

〉
Fd

=

K∑
k=1

Î±K(k)
〈
Sk(f, ψ

h)
〉
Fd

+ Î±K(−k)
〈
Sk(f, ψ̄

h)
〉
Fd

qk/2

=
K∑

k=1

Î±K(k)Mk,1,h
1,d + Î±K(−k)Mk,−1,h

1,d

=

K∑
k=1

Î±K(k)O
(
q−(1/2−1/p)k + q3k/2−d/2

)
,

and the result follows from Proposition 6.2. �
Theorem 8.8. Let Fd be any of the families under consideration. Then,

〈NI(f, ψ)〉Fd
=

1

|Fd|
∑
f∈Fd

NI(f, ψ) = (Δ− 1)|I|+O (1) ,

〈NI(Cf )〉Fd
=

1

|Fd|
∑
f∈Fd

NI(Cf ) = 2g|I|+O (1) .

Proof. This follows from Theorem 8.7 and equations (7.3) and (7.4) using K = εd
for any 0 < ε < 1/3. �
8.2. Second moment.

Lemma 8.9. Let h1, h2 be integers such that p � h1h2, e1, e2 ∈ {−1, 1} and k1, k2 >
0. Let α1 ∈ Fqk1 , α2 ∈ Fqk2 of degrees u1, u2 respectively over Fq. For any of the
families under consideration, we have

〈ψ(e1h1 trk1
f(α1) + e2h2 trk2

f(α2))〉Fd,(α1,α2)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
EFd

(u1) +O
(
qu1−d/2

)
, α1 ∼ α2, p | e1h1k1 + e2h2k2

u1
,

O
(
1 + qu1+u2−d/2

)
, α1 �∼ α2, p |

(
k1

u1
, k2

u2

)
,

O
(
qu1+u2−d/2

)
, otherwise.

Proof. Reversing the order of summation, we write

〈ψ(e1h1 trk1
f(α1) + e2h2 trk2

f(α2))〉Fd,(α1,α2)

=
∑

β1∈Fqu1 ,β2∈Fqu2

ψ(e1h1 trk1
β1 + e2h2 trk2

β2)
|Fd(α1, α2, β1, β2)|

|Fd|
.(8.5)

Assume that α1 �∼ α2. By Lemma 8.3 we can write (8.5) as

EFd
(u1, u2)

qu1+u2

∑
β1∈Fqu1 ,β2∈Fqu2

ψ

(
e1h1k1
u1

tru1
β1 +

e2h2k2
u2

tru2
β2

)
+O

(
qu1+u2−d/2

)
.
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Then Lemma 8.4 implies that the sum is zero unless p | k1

u1
and p | k2

u2
.

Now assume that α1 ∼ α2. Then f(α1) ∼ f(α2) and tru1
f(α1) = tru1

f(α2).
By Lemma 8.3 we can write (8.5) as

EFd
(u1)

qu1

∑
β1∈Fqu1

ψ

(
e1h1k1 + e2h2k2

u1
tru1

β1

)
+O

(
qu1−d/2

)
.

Then Lemma 8.4 implies that the sum is zero unless p | e1h1k1+e2h2k2

u1
. �

Lemma 8.10. Let h1, h2 be integers such that p � h1h2, e1, e2 ∈ {−1, 1} and
k1, k2 > 0, k1 ≥ k2. Let Fd be any of the families under consideration. Then,∑

m|(k1,k2)
mp�k1,k2

mp|(e1h1k1+e2h2k2)

EFd
(m)π(m)m2

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
EFd

(k1)k1q
k1 +O

(
k1q

k1/2
)
, k1 = k2, p | (e1h1 + e2h2),

0, k1 = k2, p � (e1h1 + e2h2),

O
(
k1q

k1/2
)
, k1 = 2k2,

O
(
k1q

k1/3
)
, k1 �= k2, 2k2.

Proof. For the first case when k1 = k2, the conditions on the summation in-
dices become m | k1, mp � k1, and mp | (e1h1 + e2h2)k1, a contradiction unless
p | (e1h1 + e2h2). In this case, one gets∑

m|k1
mp�k1

EFd
(m)π(m)m2 = EFd

(k1)k1q
k1 +O

(
k1q

k1/2
)
,

where we have used the estimates for π(m) and EFd
(m) discussed in Remark 8.2.

On the other hand, when k1 = 2k2, one gets∑
m|k2
mp�k2

mp|(2e1h1+e2h2)k2

EFd
(m)π(m)m2 = O

(
k1q

k1/2
)
.

Finally, if k1 > k2 but k1 �= 2k2, we have (k1, k2) ≤ k1/3 and∑
m|(k1,k2)
mp�k1,k2

mp|(e1h1k1+e2h2k2)

EFd
(m)π(m)m2 = O

(
k1q

k1/3
)
.

This completes the proof. �

For positive integers k1, k2, h1, h2 with p � h1h2 and e1, e2 ∈ {−1, 1}, let

M
(k1,k2),(e1,e2),(h1,h2)
2,d

:=

〈
q−(k1+k2)/2

∑
α1∈F

qk1
,α2∈F

qk2

f(α1) �=∞,f(α2) �=∞

ψ(e1h1 trk1
f(α1) + e2h2 trk2

f(α2))

〉
Fd

= q−(k1+k2)/2
∑

α1∈F
qk1

α2∈F
qk2

〈ψ(e1h1 trk1
f(α1) + e2h2 trk2

f(α2))〉Fd,(α1,α2)
.

Using Lemma 8.10, we can prove the following analogue of Theorem 8 in [Ent12].
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Theorem 8.11. Let 0 < h1, h2 ≤ (p− 1)/2, e1, e2 ∈ {−1, 1}, k1 ≥ k2 > 0, and let
Fd be any of the families under consideration. Then

M
(k1,k2),(e1,e2),(h1,h2)
2,d

=

{
δk1,k2

(
EFd

(k1)k1 +O
(
k1q

−k1/2 + k1q
(k1−d/2)

))
, e1 = −e2, h1 = h2,

0, otherwise,

+ δk1,2k2
O

(
k1q

−k2/2 + k1q
k2/2−d/2

)
+O

(
k1q

−k2/2−k1/6 + k1q
k1/6−k2/2−d/2

)
+O

(
q(1/p−1/2)(k1+k2) + q3(k1+k2)/2−d/2

)
where

δk1,k2
=

{
1, k1 = k2,

0, k1 �= k2.

Proof. From Lemma 8.9, we have

M
(k1,k2),(e1,e2),(h1,h2)
2,d

=
ep,e1h1k1+e2h2k2

q(k1+k2)/2

∑
m|(k1,k2)
mp�k1,k2

mp|(e1h1k1+e2h2k2)

π(m)m2
(
EFd

(m) +O(qm−d/2)
)

+ O

⎛⎜⎜⎜⎝ ep,k1
ep,k2

q(k1+k2)/2

∑
deg α1=u1,deg α2=u2

p| k1
u1

,p| k2
u2

(
1 + qu1+u2−d/2

)⎞⎟⎟⎟⎠
+ O

⎛⎜⎝ 1

q(k1+k2)/2

∑
deg α1=u1,deg α2=u2

u1|k1,u2|k2

qu1+u2−d/2

⎞⎟⎠ .

It is easy to see that the last two terms are

O
(
q(1/p−1/2)(k1+k2) + q3(k1+k2)/2−d/2

)
.

For the first term, we use Lemma 8.10. As a final observation, the condition
p | e1h1 + e2h2 translates into h1 = h2 and e1 = −e2 because of the restriction on
the possible values for h1, h2. This concludes the proof of the theorem. �

Using Lemma 8.10, we can prove the following result which will also be used in
the general moments.
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Proposition 8.12. Let h1, h2 be integers such that p � h1h2, e1, e2 ∈ {−1, 1} and
k1, k2 > 0. Let Fd be any of the families under consideration. Then,

K∑
k1,k2=1

Î±K(e1k1)Î
±
K(e2k2)q

−(k1+k2)/2
∑

m|(k1,k2)
mp�k1,k2

mp|(e1h1k1+e2h2k2)

EFd
(m)π(m)m2

=

⎧⎪⎪⎨⎪⎪⎩
1

2π2
log (K|I|) +O(1), p | (e1h1 + e2h2),

O(1), otherwise.

Proof. Using Lemma 8.10, we see that the sum is

ep,e1h1+e2h2

K∑
k1=1

Î±K(k1)Î
±
K(−k1)

(
EFd

(k1)k1 +O
(
k1q

−k1/2
))

+O

⎛⎝ K∑
k1=1

k1q
−k1/4 +

K∑
k1,k2=1

k1q
−k1/6q−k2/2

⎞⎠
= ep,e1h1+e2h2

K∑
k1=1

Î±K(k1)Î
±
K(−k1)EFd

(k1)k1 +O(1).

Now the estimates from Remark 8.2 and Proposition 6.1 yield

K∑
k1=1

Î±K(k1)Î
±
K(−k1)EFd

(k1)k1 =

K∑
k1=1

Î±K(k1)Î
±
K(−k1)k1 +O

(
K∑

k1=1

k21q
−k1

)

=
1

2π2
log(K|I|) +O(1),

which finishes the proof of the statement. �

Finally, we are able to compute the covariances.

Theorem 8.13. Let 0 < h1, h2 ≤ (p−1)/2, and let Fd be any of the families under
consideration. Then for any K with 1/|I| < K < d/6,〈

S±(K, f, ψh1)S±(K, f, ψh2)
〉
Fd

=
〈
S±(K, f, ψh1)S∓(K, f, ψh2)

〉
Fd

=

⎧⎪⎪⎨⎪⎪⎩
1

π2
log(K|I|) +O (1) , h1 = h2,

O (1) , h1 �= h2.

Proof. By definition,〈
S±(K, f, ψh1)S±(K, f, ψh2)

〉
Fd

=

K∑
k1,k2=1

Î±K(k1)Î
±
K(k2)M

(k1,k2),(1,1),(h1,h2)
2,d

+ Î±K(k1)Î
±
K(−k2)M

(k1,k2),(1,−1),(h1,h2)
2,d

+ Î±K(−k1)Î
±
K(k2)M

(k1,k2),(−1,1),(h1,h2)
2,d

+ Î±K(−k1)Î
±
K(−k2)M

(k1,k2),(−1,−1),(h1,h2)
2,d .
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Using Theorem 8.11 to replace the terms above, we first remark that the contribu-
tion of the last two error terms from Theorem 8.11 to the sum is

�
K∑

k1,k2=1

k1q
−k2/2−k1/6+k1q

k1/6−k2/2−d/2+q(1/p−1/2)(k1+k2)+q3(k1+k2)/2−d/2 � 1

provided that d > 6K.
Similarly, the contribution of the error terms for k1 = k2 and k1 = 2k1 is bounded

by

�
K∑

k=1

kq−k/2 + kqk−d/2 � 1

provided that d > 2K. Finally, the main term comes from summing EFd
(k1)k1

when k1 = k2, and this occurs only when h1 = h2 and {e1, e2} = {1,−1}. Proceed-
ing as in the proof of Proposition 8.12, we then get that

〈
S±(K, f, ψh1)2

〉
Fd

= 2

K∑
k1=1

Î±K(k1)Î
±
K(−k1)k1EFd

(k1) +O(1)

=
1

π2
log(K|I|) +O(1).

The proof for
〈
S±(K, f, ψh1)S∓(K, f, ψh2)

〉
Fd

follows exactly along the same

lines. �

Corollary 8.14. For any K with 1/|I| < K < d/6,〈
S±(K,Cf )

2
〉
Fd

=
〈
S+(K,Cf)S

−(K,Cf )
〉
Fd

=
2(p− 1)

π2
log(K|I|) +O(1).

Proof. First we note that

〈
S±(K,Cf )

2
〉
Fd

=

p−1∑
h1,h2=1

〈
S±(K, f, ψh1)S±(K, f, ψh2)

〉
Fd

.

Notice that by Theorem 8.13, the mixed average contributes 1
π2 log(K|I|)+O(1) for

each term where h1 = h2 or h1 = p − h2. The proof for 〈S+(K,Cf )S
−(K,Cf )〉Fd

is identical. �

8.3. General moments. Let n, k1, . . . , kn be positive integers, let e1, . . . , en take
values ±1 and let h1, . . . , hn be integers such that p � hi, 1 ≤ i ≤ n. Let k =
(k1, . . . , kn), e = (e1, . . . , en), and h = (h1, . . . , hn). Let αi ∈ Fqki , 1 ≤ i ≤ n, and
let α = (α1, . . . , αn). Let Fd be any of the families under consideration. Then, we
define

mk,e,h
n (α) = 〈ψ(e1h1 trk1

f(α1) + · · ·+ enhn trkn
f(αn))〉Fd,α

=
1

|Fd|
∑
f∈Fd

f(αi) �=∞,1≤i≤n

ψ(e1h1 trk1
f(α1) + · · ·+ enhn trkn

f(αn))

and

Mk,e,h
n =

∑
αi∈F

qki
i=1,...,n

q−(k1+···+kn)/2mk,e,h
n (α).
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Lemma 8.15. Let Fd be any of the families under consideration. Let C1, . . . , Cs be
the distinct conjugacy classes of the α1, . . . , αn. Let ui be the degree of the elements
of Ci. For i = 1, . . . , s, let

ηi =
1

ui

∑
αj∈Ci

ejhjkj .

Then

mk,e,h
n (α) =

⎧⎪⎪⎨⎪⎪⎩
EFd

(u1, . . . , us) +O
(
qu1+···+us−d/2

)
, if p | ηi for 1 ≤ i ≤ s,

O
(
qu1+···+us−d/2

)
, otherwise.

Proof. Renumbering, suppose that αi ∈ Ci for 1 ≤ i ≤ s. Since trki
f(αi) =

ki

ui
trui

f(αi) for i = 1, . . . , s, by the definition of ηi, we have that

mk,e,h
n (α) =

1

|Fd|
∑
f∈Fd

f(αi) �=∞,1≤i≤n

ψ (e1h1 trk1
f(α1) + · · ·+ enhn trkn

f(αn))

=
1

|Fd|
∑
f∈Fd

f(αi) �=∞,1≤i≤n

ψ (η1 tru1
f(α1) + · · ·+ ηs trus

f(αs))

=
∑

βi∈Fqui , 1≤i≤s

ψ (η1 tru1
β1+ · · ·+ ηs trus

βs)
|Fd(α1, . . . , αs, β1, . . . , βs)|

|Fd|

=
EFd

(u1, . . . , us)

qu1+···+us

∑
βi∈Fqui , 1≤i≤s

ψ (η1 tru1
β1 + · · ·+ ηs trus

βs)

+O
(
qu1+···+us−d/2

)
by Lemma 8.3. The result now follows from Lemma 8.4. �

Lemma 8.16. The quantity Mk,e,h
n is bounded by a sum of terms

q−(k1+···+kn)/2T (k1, . . . , kn),

where each T (k1, . . . , kn) is a product of elementary terms of the type∑
m|(j1,...,jr)

mp|
∑r

i=1
eihiji

π(m)mr

such that the indices j1, . . . , jr of the elementary terms appearing in each
T (k1, . . . , kn) are in bijection with k1, . . . , kn.

For n=2� even, let Nk,e,h
n be the sum of all possible terms

q−(k1+···+kn)/2T (k1, . . . , kn),

where the T (k1, . . . , kn) are made exclusively of the following nested sums:
(8.6) ∑

m1|(j1,j�+1)

m1p|e1h1j�+1+e�+1h�+1j�+1

π(m1)m
2
1 · · ·

∑
m�|(j�,j2�)

m�p|e�h�j2�+e2�h2�j2�

π(m�)m
2
�EFd

(m1, . . . ,m�).
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If n = 2� + 1 is odd, let Nk,e,h
n be the sum of all possible terms q−(k1+···+kn)/2

T (k1, . . . , kn), where T (k1, . . . , kn) are made exclusively of the following nested
sums: ∑

m1|(j1,j�+1)

m1p|e1h1j�+1+e�+1h�+1j�+1

π(m1)m
2
1 · · ·

∑
m�|(j�,j2�)

m�p|e�h�j2�+e2�h2�j2�

π(m�)m
2
�

×
∑

m�+1|j2�+1
m�+1p|e2�+1h2�+1j2�+1

π(m�+1)m�+1EFd
(m1, . . . ,m�,m�+1).

Let Lk,e,h
n be the sum of all the other terms q−(k1+···+kn)/2T (k1, . . . , kn) as defined

above. Then,

Mk,e,h
n = Nk,e,h

n,d +O
(
Lk,e,h
n

)
+O

(
q3(k1+···+kn)/2−d/2

)
.

Proof. Using Lemma 8.15, we first write

Mk,e,h
n = q−(k1+···+kn)/2

∑
αi∈F

qki
, i=1,...,n

(α1,...,αn)∈A

EFd
(u1, . . . , us) +O

(
q3(k1+···+kn)/2−d/2

)
,

where the set A of admissible (α1, . . . , αn) are those where p | ηi, i = 1, . . . , s. To
count the number of admissible (α1, . . . , αn), we first fix a partition of {1, . . . , n}
in s classes C1, . . . , Cs. Let k(Cw) be the gcd of the ki such that i ∈ Cw and let
δ(Cw) =

∑
i∈Cw

eihiki. Then, for any such partition, the number of (α1, . . . , αn) ∈
Fqk1 × · · · × Fqkn such that αi and αj are conjugate when i, j are in the same class
Cw and which are counted in A is bounded by

s∏
i=1

∑
m|k(Ci)

mp|δ(Ci)

π(m)m|Ci|,(8.7)

where we have used the fact that the number of (α1, . . . , αt) ∈ Fqk1 × · · · × Fqkt

which are conjugate over Fq is given by∑
m|(k1,...,kt)

π(m)mt.

Since EF(u1, . . . , us) � 1 by Remark 8.2, we get the first result of the statement
by summing (8.7) over all partitions of {1, . . . , n} in s classes C1, . . . Cs.

Suppose that n = 2� is even. Then, using inclusion-exclusion, the number of
(α1, . . . , αn) ∈ Fqk1 × · · · × Fqkn such that αi and αj are conjugate, if and only if
i ≡ j(mod�), can be written as⎛⎜⎜⎝ ∑

m1|(k1,k�+1)

m1p|e1h1k1+e�+1h�+1k�+1

π(m1)m
2
1 · · ·

∑
m�|(k�,k2�)

m�p|e�h�k�+e2�h2�ke�

π(m�)m
2
�EFd

(m1, . . . ,m�)

⎞⎟⎟⎠
+ S(k1, . . . , kn),

where S(k1, . . . , kn) is a sum of terms in Lk,e,h
n . (We have to do inclusion-exclusion

to remove the cases where conjugate values of α belong to two different classes Cw.)
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The case of n = 2� + 1 follows similarly, taking into account that one has to

multiply by the factor q−kn/2
∑
m|kn

mp|ekn

π(m)m. �

Theorem 8.17. Let Fd be any of the families under consideration. For any K
with 1/|I| < K < d/n,

〈
S±(K, f, ψ)n

〉
Fd

=

⎧⎪⎨⎪⎩
(2�)!

�!(2π2)�
log�(K|I|)

(
1 +O

(
log−1(K|I|)

))
, n = 2�,

O
(
log�(K|I|)

)
, n = 2�+ 1.

More generally, let 0 < h1, . . . , hn ≤ (p− 1)/2. Then for any K with 1/|I| < K <
d/n, 〈

S±(K, f, ψh1) . . . S±(K, f, ψhn)
〉
Fd

=

⎧⎪⎪⎨⎪⎪⎩
Θ(h1,...,hn)

(2π2)�
log�(K|I|)

(
1 +O

(
log−1(K|I|)

))
, n = 2�,

O
(
log�(K|I|)

)
, n = 2�+ 1.

The constant Θ(h1, . . . , hn) is given by

#{(e1, . . . , en) ∈ {−1, 1}, σ ∈ Sn : e1hσ(1) + e2hσ(2)

≡ · · · ≡ e2�−1hσ(2�−1) + e2�hσ(2�) ≡ 0 (mod p)},
where Sn denotes the permutations of the set of n elements.

Proof. We have that〈
S±(K, f, ψh1) . . . S±(K, f, ψhn)

〉
Fd

=
K∑

k1,...,kn=1
e1,...,en=±1

I±K(e1k1) . . . I
±
K(enkn)M

k,e,h
n ,

and we use Lemma 8.16 to replace Mk,e,h
n in the sum. The error term satisfies

K∑
k1,...,kn=1
e1,...,en=±1

I±K(e1k1) . . . I
±
K(enkn)O

(
q3(k1+···+kn)/2−d/2

)
�

(
K∑

k=1

q3k/2−d/2n

)n

� 1

when d > 3nK.
For the main term, we have to consider the sum of the terms T (k1, . . . , kn) from

Lemma 8.16. For each fixed T (k1, . . . , kn), we write the sum over k1, . . . , kn as s
nested sums Σ1 . . .ΣsEFd

(m1, . . . ,ms) where Σw is a sum over the ki such that
i ∈ Cw, and |EFd

(m1, . . . ,ms)| � 1. If |Cw| = 1, then we have a sum

K∑
k=1

Î±K(k)q−k/2
∑
m|k

mp|ek

π(m)m � 1,(8.8)

because of Theorem 8.7. For r = |Cw| ≥ 2, we have a sum of the type

K∑
k1,...,kr=1

Î±K(e1k1) . . . Î
±
K(erkr)q

−(k1+···+kr)/2
∑

m|(k1,...,kr)

mp|
∑r

i=1
eihiki

π(m)mr.
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When r = |Cw| > 2, we will show in Lemma 8.18 that the contribution from
the terms of the sum over k1, . . . , kr is bounded. Assuming this result, we have by
Lemma 8.16 that the leading term in S±(K, f, ψ)n will come from the contributions

Nk,e,h
n,d .
If n = 2�, the leading terms are of the form

K∑
k1,...,kr=1

Î±K(e1k1) . . . Î
±
K(erkr)q

−(k1+···+kr)/2

×
∑

m1|(k1,k�+1)

m1p|e1h1k�+1+e�+1h�+1k�+1

π(m1)m
2
1 . . .

∑
m�|(k�,k2�)

m�p|e�h�k2�+e2�h2�k2�

π(m�)m
2
�EFd

(m1, . . . ,m�).

By Definition 8.1 and Remark 8.2 combined with Proposition 8.12, for Fd =
Ford

d ,F full
d the above sum gives(

1

2π2
log (K|I|)

)�

.

For Fv
d , we have that EFd

(m1, . . . ,m�) = 1 unless some of the mj ’s equal some of
the ri’s. Since the ri’s are fixed constants, this simply introduces an error term of

the form O
(
log�−1 (K|I|)

)
which does not change the final result.

If n = 2�+ 1, the leading terms are of the form

O
(
log� (K|I|)

)
.

The final coefficient is obtained by counting the number of ways to choose the
� coefficients ki’s with positive sign (ei = 1) and to pair them with those with
negative sign (ej = −1). �

Lemma 8.18. Let r > 2. Then

S :=

K∑
k1,...,kr=1

Î±K(k1) . . . Î
±
K(kr)q

−(k1+···+kr)/2
∑

m|(k1,...,kr)

mp�(k1,...,kr)

π(m)mr = O(1).

Proof. Suppose that k1 ≥ · · · ≥ kr. We use repeatedly the estimates from Remark
8.2. If k1 = kr, we have ∑

m|(k1,...,kr)

mp�(k1,...,kr)

π(m)mr = O
(
kr−1
1 qk1

)
.

If k1 = 2kr and all the other ki are equal to k1 or kr, we have∑
m|(k1,...,kr)

mp�(k1,...,kr)

π(m)mr = O
(
kr−1
1 qk1/2

)
.

In all the other cases, the estimate is∑
m|(k1,...,kr)

mp�(k1,...,kr)

π(m)mr = O
(
kr−1
1 qk1/3

)
.
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Putting things together, we get

S �
K∑

k=1

Î±K(k)rkr−1q−(r−2)k/2 +

r−1∑
�=1

K∑
k=1

Î±K(2k)�Î±K(k)r−�kr−1q(1−r/2−�/2)k

+

K∑
k1,...,kr=1

Î±K(k1) . . . Î
±
K(kr)k

r−1
1 q−k1/6−(k2+···+kr)/2

� 1

by Proposition 6.2. �

Remark 8.19. We note that if n = 2�,

(8.9)

(p−1)/2∑
h1,...,hn=1

Θ(h1, . . . , hn) =
(p− 1)�(2�)!

2��!
.

There are (2�)!
�!2�

ways of choosing unordered pairs of the form {ei, ej}. Inside each
pair, exactly one of {ei, ej} is positive and the other is negative, so there is a total
of 2� choices for the signs. Finally, for each pair there are (p− 1)/2 possible values
for hi which automatically determine the value of hj .

Remark 8.20. By Theorem 8.17, the moments are given by sums of products of
covariances. Thus, they are the same as the moments of a multivariate normal
distribution. Moreover, the generating function of the moments converges due to
(8.9). Therefore, our random variables are jointly normal. Since the variables are
uncorrelated (cf. Theorem 8.13), it follows that our random variables (for h =
1, . . . , p−1

2 ) are independent.

Recall that

S±(K,Cf ) =

p−1∑
j=1

S±(K, f, ψj).

Theorem 8.21. Assume that K = g/ log log(g|I|), g → ∞ and either |I| is fixed
or |I| → 0 while g|I| → ∞. Then

S±(K,Cf )√
2(p−1)

π2 log(g|I|)

has a standard Gaussian limiting distribution when g → ∞.

Proof. First we compute the moments and then we normalize them.
With our choice of K we have

log(K|I|)
log(g|I|) = 1− log log log(g|I|)

log(g|I|) → 1 as g → ∞.

Because of this, log(K|I|) can be replaced by log(g|I|) in our formulas.
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Recall that S±(K, f, ψh) = S±(K, f, ψp−h); then

S±(K,Cf )
n =

⎛⎝2

(p−1)/2∑
h=1

S±(K, f, ψh)

⎞⎠n

= 2n
(p−1)/2∑

h1,...,hn=1

S±(K, f, ψh1) . . . S±(K, f, ψhn).

Therefore, the moment is given by

〈
S±(K,Cf )

n
〉
Fd

= 2n
(p−1)/2∑

h1,...,hn=1

〈S±(K, f, ψh1) . . . S±(K, f, ψhn)〉Fd
.

First assume that n = 2�. By Theorem 8.17, this is asymptotic to

2n

(2π2)�
log�(g|I|)

(p−1)/2∑
h1,...,hn=1

Θ(h1, . . . , hn).

Finally we use equation (8.9) to conclude that when n = 2�,〈
S±(K,Cf)

n
〉
Fd

∼ 2n(p− 1)�(2�)!

2��!(2π2)�
log�(g|I|) = (2�)!

�!π2�
(p− 1)� log�(g|I|).

In particular, the variance is asymptotic to 2(p−1)
π2 log(g|I|).

Now assume that n is odd, n = 2�+ 1. Theorem 8.17 yields〈
S±(K,Cf )

n
〉
Fd

= O
(
log�(g|I|)

)
.

Hence the normalized moment converges to

lim
g→∞

〈
S±(K,Cf )

2�
〉(√

2(p−1)
π2 log(g|I|)

)2�
=

(2�)!

�!2�
,

for n = 2�, and to zero for n odd. Hence, we have obtained the moments of the
standard Gaussian distribution. �

9. The distribution of zeroes

We prove in this section that

NI(Cf )− 2g|I|√
(2(p− 1)/π2) log(g|I|)|

converges in mean square to

S±(K,Cf )√
(2(p− 1)/π2) log(g|I|)

.

Then, using Theorem 8.21, we get the result of Theorem 1.3 since convergence in
mean square implies convergence in distribution.
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Lemma 9.1. Let Fd be any of the families under consideration. Assume that
K = g/ log log(g|I|), g → ∞ and either |I| is fixed or |I| → 0 while g|I| → ∞.
Then 〈∣∣∣∣∣NI(Cf )− 2g|I|+ S±(K,Cf )√

(2(p− 1)/π2) log(g|I|)

∣∣∣∣∣
2〉

Fd

→ 0.

Proof. From equation (7.4), using the Beurling–Selberg polynomials and the ex-
plicit formula (Lemma 7.1), we deduce that

−2g

K + 1
≤ NI(Cf )− 2g|I|+ S−(K,Cf ) ≤ S−(K,Cf)− S+(K,Cf) +

2g

K + 1

and
−2g

K + 1
≤ −NI(Cf ) + 2g|I| − S+(K,Cf ) ≤ S−(K,Cf )− S+(K,Cf ) +

2g

K + 1
.

Using these two inequalities to bound the absolute value of the central term, we
obtain〈(

NI(Cf )− 2g|I|+ S±(K,Cf )
)2〉

Fd

≤ max

{(
2g

K + 1

)2

,

〈(
S−(K,Cf )− S+(K,Cf) +

2g

K + 1

)2
〉

Fd

}

≤
(

2g

K + 1

)2

+max

{
0,

〈(
S−(K,Cf )− S+(K,Cf )

)2〉
Fd

+
4g

K + 1

〈
S−(K,Cf )− S+(K,Cf )

〉
Fd

}
.

Now Theorem 8.7 implies that〈
S−(K,Cf )− S+(K,Cf )

〉
Fd

=
〈
S−(K,Cf )

〉
Fd

−
〈
S+(K,Cf )

〉
Fd

= O(1).

For the remaining term we note that〈(
S−(K,Cf )− S+(K,Cf )

)2〉
Fd

=
〈(

S−(K,Cf )
)2〉

Fd

+
〈(

S+(K,Cf )
)2〉

Fd

−2

〈
p−1∑

j1,j2=1

S−(K, f, ψj1)S+(K, f, ψj2)

〉
Fd

.

By Corollary 8.14, this equals

4(p− 1)

π2
log(g|I|) +O(1)− 4(p− 1)

π2
log(g|I|) +O(1) = O(1).

Therefore, 〈(
NI(Cf )− 2g|I|+ S±(K,Cf)

)2〉
= O

((
2g

K + 1

)2
)

and 〈(
NI(Cf )− 2g|I|+ S±(K,Cf )√

(2(p− 1)/π2) log(g|I|)

)2〉
→ 0

when g tends to infinity and K = g/ log log(g|I|). �
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