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STATISTICS FOR ORDINARY ARTIN-SCHREIER COVERS
AND OTHER p-RANK STRATA

ALINA BUCUR, CHANTAL DAVID, BROOKE FEIGON, AND MATILDE LALIN

ABSTRACT. We study the distribution of the number of points and of the zeroes
of the zeta function in different p-rank strata of Artin-Schreier covers over Fy
when ¢ is fixed and the genus goes to infinity. The p-rank strata considered
include the ordinary family, the whole family, and the family of covers with
p-rank equal to p — 1. While the zeta zeroes always approach the standard
Gaussian distribution, the number of points over Fy has a distribution that
varies with the specific family.
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1. INTRODUCTION

Besides their central place in number theory, algebraic curves over finite fields
also play a pivotal role in applications via such fields as cryptography and error-
correcting codes. In both theory and applications, a key property of an algebraic
curve over a finite field is its zeta function, which determines and is determined
by the number of points on the curve over the finite extensions of the base field.
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These zeta functions exhibit a strong analogy with other zeta functions occurring
in number theory, such as the Riemann zeta function, with the added benefit that
the analogue of the Riemann hypothesis is known by results of Weil.

In addition to studying curves individually, it is also profitable to study curves
in families and ask aggregate questions over families. Historically, this generally
involved varying the finite field, as in the work of Deligne. More recently, a series
of results have emerged in which the finite field is fixed and other geometric pa-
rameters are allowed to vary. Examples include the work Kurlberg and Rudnick
[KRO9] that studies the distribution of the number of points on hyperelliptic curves
as the genus grows. Similar statistics for the number of points have been com-
puted for cyclic ¢-covers of the projective line [BDFLI10b[BDFL11lXio10a], plane
curves [BDFL10a], complete intersections in projective spaces [BK12|, general trig-
onal curves [Woo12|, superelliptic curves [CWZ15], curves on Hirzebruch surfaces
[EW15], and a subfamily of Artin-Schreier covers [Ent12].

A finer statistic for these curves is the distribution of the zeroes of the zeta
function. (Note that the distribution of the points can be easily deduced from the
distribution of the zeroes.) The problem of the distribution of the zeroes in the
global and mesoscopic regimes was considered by Faifman and Rudnick [FR10] for
hyperelliptic curves, while [XiolOb|, [Xiol5], and [BDFLS12| treated the cases of
cyclic f-covers, abelian covers of algebraic curves, and Artin-Schreier covers respec-
tively. On the other hand, Entin [Ent12] used the distributions of the number of
points of a subfamily of Artin-Schreier covers to obtain some partial results towards
the pair correlation problem for the zeroes.

Artin-Schreier curves represent a special family because they cannot be uniformly
obtained by base-changing a scheme defined over Z. This is intimately related to
the fact that their zeta function has an expression in terms of additive characters
of F),, and not in terms of multiplicative characters, as is the case for the family of
hyperelliptic curves and cyclic ¢-covers. On the other hand, the factor corresponding
to a fixed additive character has a nice description as an exponential sum (21),
which allows one to do a fair number of concrete computations. For instance, they
can sometimes be used to show that the Weil bound on the number of points is
sharp (especially in the supersingular case [Gar05L[GV92]).

The p-rank induces a stratification on the moduli space of Artin-Schreier covers
of genus g. We would like to remark that this stratification is not specific to Artin-
Schreier covers. Perhaps the best known example is the case of elliptic curves. The
moduli space of elliptic curves has only two p-strata — p-rank 1 (ordinary) and p-rank
0 (supersingular) — and these two classes of elliptic curves behave fundamentally
differently in many aspects. The ordinary stratum is Zariski dense in the moduli
space, but there are only finitely many supersingular IF‘q—points in the moduli space
of elliptic curves.

In the case of the Artin-Schreier covers, the picture is more complicated, as
there are many intermediate strata besides the minimal p-rank and the maximal
p-rank strata. But it is still the case that the p-rank 0 stratum, when non-empty,
is the smallest stratum in the moduli space ASg of Artin-Schreier covers of genus
g. However, the p-rank 0 stratum appears if and only if 2g/(p — 1) Z —1 (mod p).
Moreover, the supersingular locus is usually strictly contained in this stratum, and
it is not easy to locate the supersingular covers among those with p-rank 0. (See
[Zhu].) On the other hand, the maximal p-rank stratum is irreducible in AS, and
in some sense, it is still the biggest stratum. As it is noted in [PZ12] Example
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2.9], in the case of p > 3 that we are interested in, the ordinary locus is non-empty
whenever 2g/(p — 1) is even. Otherwise, we can still talk about the stratum of
maximal p-rank, but that maximal rank will be strictly smaller than the genus
(namely, equal to g — B 51), and there is no ordinary locus.

Fix a finite field I, of odd characteristic p. An Artin-Schreier cover is an Artin-
Schreier curve for which we fix an automorphism of order p and an isomorphism
between the quotient and P*. Concretely, an F,-point of the moduli space of Artin-
Schreier covers of genus g consists of, up to F;-isomorphism, a curve of genus g
with affine model

Cy:y? —y= f(x),

where f(z) € F,(z) is a rational function, together with the automorphism y —
y+ 1.
The genus of C is given by

r4+1 r+1

p—1 p—1
=1 =1

where r + 1 is the number of poles of f(x) and d; are their orders. (See [PZ12,
Lemma 2.6].) The p-rank is the integer s such that the cardinality of Jac(Cy)[p](F,)
is p®; by the Deuring-Shafarevich formula, we have s = r(p—1). We will write AS s
for the stratum with p-rank equal to s of the moduli space AS. For example, s = 0
corresponds to one pole, which can always be moved to infinity. This is the case
where f(z) is a polynomial that was considered in [Ent12[BDFLS12]. However,
this case only corresponds to a piece, namely AS; o, of the whole moduli space
ASg of Artin-Schreier covers of genus g. The next case is s = p — 1, which includes
the case when f(z) is a Laurent polynomial, but this is not the only way one may
get this p-rank, as we explain in Section For details on the moduli space of
Artin-Schreier covers and the p-rank stratification, we refer the reader to [PZ12].

1.1. Statement of results. The main object of this paper is the study of the
distribution of the number of points and zeta zeroes for the ordinary locus ASg 4
which only appears when 2g/(p — 1) is even. In addition, we treat the cases of
ASgyp—1 of covers with p-rank equal to p — 1 and the whole family AS,. More
precisely, we have the following results.

Theorem 1.1. (1) Assume that 2g/(p — 1) is even. The average number of F -
points on an ordinary Artin-Schreier cover in ASgy 4(Fq) is

qk + 1 + O (q(*1/2+5)(1+g/(p71))+2k) , p»f]g’

elu

_ p_l u/e
qk +1+ 1+qgliq_2 + Z 1 _’_qfu _ q72u Zﬂ(e)q /
r

+0 (q(—1/2+6)(1+9/(p—1))+2/c) , p| k.
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(2) The average number of Fx-points on an Artin-Schreier cover in ASq(FFy)
whose ramification divisor is supported at v + 1 points and has degree d is

F+1+0 <q(571)d+2k) ’ ptk,

¢* +1+(p— )’“/”+ e

_(p_1)21+q ZM u/e+0( 51d+2k), p|k

| k

(3) The average number of Fx-points on an Artin-Schreier cover in

ASmp_l(]Fq) iS
" +1, ptk,

*F+1+(p— 1)(qk/p —1), p|k, k even,

" +1+(p—1)g"", p |k, k odd.

Remark 1.2. The results in the previous theorem are only meaningful in part (1)
for g sufficiently large with respect to k and in part (2) for d sufficiently large with
respect to k.

By Weil’s conjectures, the zeta function of C/,

o uF
Zcy(u) = exp (Z Nk(cf)?> 5

k=1
where N (Cy) is the number of points on Cy defined over F x, can be written as

Pcf (’U,)
(1 —u)(1—qu)’
where Pc, (u) is a polynomial of degree 2g = (p —1)(A — 1) with A =+ ZTH
Using Lemma [ZT] and the additive characters of F,, to write a formula for N & (C f)
it follows easily that
: H L{u

(1.1) Pe,(
where the product is taken over the non—tmmal additive characters 1 of F,, and
L(u, f,1) are certain L-functions (given later by (ZIJ)). Understanding the distri-
bution of the zeroes of Z¢,(u) amounts to understanding the distribution of the
zeroes of each of the L(u, f, 1) as f runs in the relevant family of rational functions
and the genus goes to infinity.
If we write

ZCf( )

Ufl/J Hl_a]fv )a
j=1

we have that oj(f, 1) = \/ge?™% %) and 0;(f,¢) € [~1/2,1/2). We study the
statistics of the set of angles {6;(f,1)} as f varies in the family. For an interval
T C[-1/2,1/2), let
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and

p—1
Nz(Cy) ==Y Nz(f, ).
j=1
We show that the number of zeroes with angle in a prescribed non-trivial subinterval
T is asymptotic to 2g|Z|, has variance asymptotic to 2(17:1) log(g|Z|), and properly
normalized has a Gaussian distribution.

Theorem 1.3. Fiz a finite field Fy of characteristic p. Let AS denote the family
of Artin-Schreier covers, ordinary Artin-Schreier covers, or the p-rank p—1 Artin-
Schreier covers. Then for any real numbers a < b and 0 < |Z| < 1 either fized or
|Z| — 0 while g|Z| — oo,

Nz(Cy) — 2g|T 1t
lim Probysw,) [ a < z(C) ol7] b| = —/ e~ 2y,
o 2221 tog (g|Z]) ver Ja

This result is analogous to what was obtained in [BDFLS12] for p-rank 0 Artin-
Schreier covers and is compatible with the philosophy of Katz and Sarnak [KS99].
In fact, Katz [Kat87] shows that the monodromy of the L-functions defined in (2]
is given by SL (2g/(p — 1)) when the dimension of the moduli space is big enough.
Since the dimension grows with the genus, this occurs when g is big enough. In
particular, [DS94] implies that the limiting distribution as g — oo is Gaussian.

Remark 1.4. A similar result can be proved for Nz(f, ) with asymptotic mean
and variance (A — 1)|Z| and Z; log g|Z| respectively with the additional restriction
that the interval Z is symmetric. In fact, under this condition, the Nz(f,7) for
j=1,...,(p—1)/2 approach independently jointly normal distributions.

1.2. About the results and their proofs. While our work is inspired by the
earlier work of Kurlberg and Rudnick [KR09] and Faifman and Rudnick [FR10]
and resembles their work in the broad outlines, our techniques differ from theirs in
several respects. Firstly, the zeta functions associated to the family of hyperelliptic
curves studied by Rudnick et al. are expressed in terms of a real-valued multiplica-
tive character of F,,, whereas the zeta functions for the families of Artin-Schreier
covers that we consider are expressed in terms of a complex-valued additive charac-
ter of F,,. This distinction necessitates using techniques developed in Entin [Ent12]
and in [BDFLSI12]. However, both of these papers only work with p-rank 0 Artin-
Schreier covers. As remarked before, this stratum, when non-empty, is the smallest
stratum in the moduli space, and therefore other bigger strata may better represent
the behavior in the space of Artin-Schreier covers. In order to have results for all
covers (and particularly the ordinary case) we need to combine the previous tech-
niques with a careful use of the Tauberian Theorem in order to count the number
of covers taking prescribed values. For example, counting the number of p-rank 0
Artin-Schreier covers of a given genus reduces to the counting of polynomials of
fixed degree in F,[X], while counting the number of ordinary Artin-Schreier cov-
ers amounts to the counting of pairs of homogeneous polynomials of fixed degree
with various conditions (co-prime, square-free, and such), and requires some sieving
(Proposition and Corollary B7]).

Secondly, our counting problem is in some sense more natural from a geometric
perspective in that we are averaging over strata of the moduli space and therefore
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the results of [PZ12] play a role in our results. In the work of Rudnick et al. the
statistics are computed for the family of hyperelliptic curves by running over all
square-free polynomials of a fixed degree. This is not the same as running over
the moduli space of hyperelliptic curves of a fixed genus, as not all points on the
moduli space appear with the same multiplicity in this family.

We also mention that it is very interesting to contrast Theorem [Tl to Theorem
[L3l In the first theorem the result is different for different families of Artin-Schreier
covers, while the latter theorem has the same result for any of the families under
consideration. Indeed, sets that describe different strata have distinct structures,
and this phenomenon appears in the statistics for the number of points, but it does
not appear in the statistics for the location of the zeroes of the zeta function.

1.3. Outline of the article. This article proceeds as follows. In the next section
we review basic facts about Artin-Schreier theory and explicitly describe and set
up notation for the various families we consider throughout the paper. In Sections
Bl and @ we use the Tauberian theorem to compute the expected number of Fx-
points on an Artin-Schreier cover defined over Fy for the ordinary locus and full
space respectively, while the same problem for the prescribed factorization type is
considered in Section [l The results of these three sections combined are a gener-
alization of Theorem [[T] stated above. Along the way to proving this theorem we
count the number of curves that take prescribed values. We will need these results
in Section Bl In Section B we review some facts on Beurling-Selberg polynomials
and approximate the characteristic function of Z with a sum of these polynomials.
In Section [7 we use the explicit formula as well as the results of the previous sec-
tion to approximate Nz(Cy) — 2g|Z| by a sum of characters of traces of a rational
function evaluated at elements of F x. In Section [§ we combine results of the pre-
vious section to calculate the moments of the sum of characters from the previous
section. Finally in Section @ we complete the proof of Theorem [[L3] by proving that
under suitable normalization Nz(C) — 2g|Z| converges in mean square and hence
in distribution to our approximating function.

2. BASIC ARTIN-SCHREIER THEORY

Fix an odd prime p and let F; be a finite field of characteristic p with ¢ elements.
We consider, up to F,-isomorphism, pairs of curves with affine model

Cr:y’ —y=[fl(x)
with f(x) a rational function together with the automorphism y +— y + 1.

For each integer n > 1, denote by tr,, : Fgn — F,, the absolute trace map (not
the trace to ).

Lemma 2.1. For each a € P! (Fgn), the number of points on the curve Cy : y? —y =
f(x) in the fiber above o which are defined over Fyn is given by

1 if fa) = oo,
p if f(a) € Fgn with tr, f(a) =0,
0 if f(a) € Fyn with tr, f(a) #0.

Proof. This is a simple application of Hilbert’s Theorem 90. (|
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ORDINARY ARTIN-SCHREIER COVERS AND OTHER p-RANK STRATA 2377

Let ¢, k=0,...,p — 1, be the additive characters of I, given by
Yp(a) = ™ ka/P =0, . p—1.

For each rational function f € F,(X) and non-trivial character ), we also define

Su(fih) = > Wltra(f(2))).

zG]P’l(Fqn)
f(z)#oo

Then, using the fact that for any a € IFp,
p—1
p, a=0,
> onio - {
P 0, a#0,
it is easy to check that
PCf(u) = H L(u)faw)

#ho
where

(2.1) L(u, £,16) = exp (Z Sullf, w)%) .

Recall that
A1

L(u, f,0) = [[ 0 = Vae*™ %)),
j=1
where 0;(f,v) € [-1/2,1/2). For an interval Z C [—1/2,1/2), let

Nz(f) =#{1<j<A—-1:0;(f,¢) €1}

and

p—1
Nz(Cy) == > Nz(f, 7).
j=1
Let S = F,[X, Z] be the homogeneous coordinate ring of P! and denote by S, the
F,-subspace of & of homogeneous polynomials of degree d. Notice that Sq contains
the 0 polynomial and its size is exactly ¢%*1.
Since each Artin-Schreier cover comes equipped with a prescribed map to P!, we
can think of C as the cover given by

9(X, Z)
Con:yP —y=
gh Y ) h(X, Z) )
where the fraction on the right hand side is obtained by homogenizing f(z) in the

usual way.

Given f € 84, we will denote by f*(X) € F,[X] the non-homogeneous polyno-
mial resulting from f(X, Z) by setting Z = 1. We observe that f* is polynomial of
degree at most d. Similarly, let f,(Z) € F,4[Z] be the non-homogeneous polynomial
resulting from f(X, Z) by setting X = 1.

Given o = [ax : az] € P1(F ) and h € S the value of h(a) can be zero or non-
zero; but if it is non-zero, it is not well defined. When we want to discuss an actual
non-zero value we will be talking about 2*(«) := h(ax/az, 1), which is defined for
a #[1:0] =00 and hy(a) := h(1,az/ax), which is defined for o # [0 : 1] = 0.

We recall that the rational function £ can be evaluated in [ax : az] as long as
g,h € Sy and (g(ax,az),h(ax,az)) # (0,0).
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Let p1,...,pr41 be the set of poles of f(z) and let d; be the order of the pole
p;. By Artin-Schreier theory, we can assume that p { d;. Recall that the genus of
Cy is given by

p— 1 r+1 p— 1 r+1
(22)  o(Cp="F— |2+ i+ D)) =" (r-1+> 4
j=1 j=1

We now proceed to explicitly describe the families to be considered. The ordinary
case occurs when the p-rank is maximal, in other words, when r is maximal. For
a given genus g, this happens when d; = 1 in formula (Z2) and 2g = (p — 1)2r.
(Notice once again that this imposes a restriction on the possible values for the
genus, as 2g/(p — 1) must be even.) Thus, f(z) is a rational function with exactly
r+ 1 simple poles. This corresponds to the fact that g(X, Z) and h(X, Z) are both
homogeneous polynomials of degree r 4+ 1 with no common factors and h(X, Z) is
square-free.
We let

]:grd ={(9(X,2),hX,2)): 9(X,Z), (X, Z) € Sg, h square-free, (g, h) = 1},

with the understanding that d = r + 1.

As (g,h) range over F9"4, the cover C, ) ranges over each F,-point of AS, g
exactly ¢ — 1 times. Thus, our problem becomes the study of statistics for Cy ;, as
(g, h) varies over F3'd and d tends to infinity.

We will work with the full family of covers in ASg as well. In this case we do
not have the restriction of simple poles, but we still require g(X, Z) and h(X, Z)
not to have common factors:

]_-;ull ={(9(X,2),h(X,2)):9(X,Z), (X, Z) € Sq,(g,h) =1}.

We will then study the statistics as d goes to infinity, which is the same as g going
to infinity provided that the number of poles r 4+ 1 remains bounded.
Finally, we will consider another family given as follows. We say that h has

. d die d d, .
factorization type v = (r{"', ...,y ot ) i

_ pdia di,eq dm 1 A,
h=Py Pyt Pyt P 7

m,1 Ml
where the P; ; are distinct irreducible polynomials of degree r; and r; # r; if ¢ # j.
Thus the degree of h is given by d = > | r; Zle d; ;.

Let

4 =1{9(X,2),MX,2)): 9(X,Z),MX, Z) € S4,(g,h) =1,
h has factorization type v}.

In this case, formula ([2.2)) implies 2g = (p — 1) (d — 2+ >, £;r;). Here " | 4
represents the number of poles and the p-rank is given by (p — 1) (301", r; — 1).
We will assume the parameters m, r;’s and ¢;’s to be fixed. This implies that the
covers considered are all in the same p-rank. However, in general, the set of the
covers considered does not constitute the whole p-rank stratum. We will study the
statistics as d goes to infinity, which is the same as g going to infinity with a bound
on the number of poles.

This family includes some important particular cases. Suppose that v = (14).
This corresponds to the case of only one pole of multiplicity d. This pole can always
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be moved to infinity (i.e., h(X,Z) = Z¢). After dehomogenizing with Z = 1, this
gives the family of p-rank 0 covers ASy o indexed by polynomials of degree d:

Fi™k0 = {g(x) : deg(g) = d}.

The statistics for this family were studied in [Ent12/[BDFLS12).

Another interesting case is v = (1%, 192). In this case we have two poles defined
over F, that can always be moved to zero and infinity (i.e., h(X,Z) = X4 Z%).
After dehomogenizing with Z = 1, this gives a piece of the family of p-rank p — 1
covers AS, ,—1 indexed by Laurent polynomials with bidegree (d2, d1):

Frp =t = {g(w)/a™ : deg(g) = da}.

The other possibility within p-rank p — 1 covers is having two poles defined over
Fg2 \ Fy, corresponding to v = (24). In terms of polynomials, we get, in this case,

Far=t — fg(x) /h(x)? : deg(h) = 2, h irreducible, (g, h) = 1}.

We will show that the statistics for this family are very similar to the statistics for
ASg 0.

We will need to compute the number of elements in a family that take certain
values at certain points. The following notation will be useful.

Definition 2.2. Let ay,...,ap,,B1,..., 3, € P! (Fgr). Let Fq be any of the families
under consideration. We define

Fd(ala"'vanaﬂla"'vﬂn) :{(g?h) e]:d : (ﬂz,Xh_Bz,Zg)(az) 2071 SZSH}

We remark that when 8 # oo we identify 8 = [Sx : 8z] with g—)z( € Fyx, thus

(Bxh = Brg)(@) = 0 = % _ 5.

A particularly useful case is Fy(a, §). We remark that the cardinality of this set
does not depend on the value of 3, provided that 8 # oo, as we prove below.

Lemma 2.3. Fiz o € PY(F ) of degree u over Fy. Let B € Fgu. Let Fy be any of
the families under consideration. Then

| Fala, B)| = [ Fala,0)].
Proof. Recall that
Fala, B) ={(g,h) € Fa: (Bxh — Bzg)(a) = 0}.
Now let ¢’ = Bxh — Bzg. Since Bz # 0 we have that (g,h) = 1 is equivalent to
(¢',h) = 1. Then (g,h) € Fa(a, B) if and only if (¢', h) € Fy(a, 0). O

3. THE ORDINARY CASE

In this section, we consider the family

Ford = {(g(X,2),MX,2)) : 9(X,Z),h(X, Z) € Sg, h square-free, (g, h) = 1} .
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3.1. Heuristics. We want to calculate, for given o = [ax : az],8 = [Bx : Bz] €
P!(F,«) such that deg o = u, the probability that

(3.1) (Bxh — Bzg)(ax,az) =0

as (g, h) € Fgrd.

Locally at o this means that we want to look at pairs (g*, h*) such that (m?)? { h*
(where m}, € F,[X] denotes the minimal polynomial of o over F,) and (¢*(«), h*())
# (0,0) (mod (mg;)?).

Therefore
(9", h*) = (71 + 61ma, Y2 + d2my)  (mod (mf)?),

with ~;,d; € F,[X], and if they are non-zero, deg~y;,degd; < w. In addition, the
conditions at « imply that (y1,72) # (0,0) and (v2,d2) # (0,0).

For each 5 # 0, there are ¢“ choices for each of the other parameters, thus
¢>*(q* — 1) total possibilities. If 7o = 0, then there are ¢* — 1 choices for each of
v1 and &z, and ¢* choices for dy, for a total of ¢“(¢* — 1)? possibilities.

For (g* (mod(m})?), h* (mod(m?)?)), this yields a total of ¢*(¢*—1)(¢*“+q“—1)
possibilities.

Now if § = [1 : 0] = oo, condition BII) reduces to h*(a) = 0 <= v = 0.
This leaves ¢* — 1 choices for v, and 5 respectively and ¢ choices for d;. Thus the
probability that g/h € ]-'grd takes the value co at a given point « is

¢“(q" —1)° _g(l=q")
q“(g" = 1)(g* +q*—1) 1+qgv—qg 2
In all other cases, including 8 = 0, we must have h*(a) # 0. So there are
q* — 1 choices for ;. Once we know 72, equation [B.I]) fixes 71 () (and therefore

~1, since its degree is less than u), and we have ¢* choices for each of d1,d5. Thus
the probability that g/h € fgrd takes the value 8 # oo at a given point « is

—Uu

“(¢* - 1) q

qu(qu _ 1)(q2u +q¥ — 1) - 1+ q % — q—2u :
Then, the heuristic confirms the result of Proposition B.I0 and the expected
number of points of Theorem [[T] for the family F5*.

3.2. The number of covers with local conditions. In this subsection, we are
going to compute the proportion of polynomials with certain fixed values. We will
obtain the size of the family and the expected number of points as corollaries.

Unless otherwise indicated, we fix ai,...,q, € P! (Fgx) of degrees uq, ..., uy,
over Fy and f; € Fgu; for 1 < i < n (i.e., none of the f,;’s is 00). Also, f1,..., B¢
are not zero, and 11 = --- = 3, = 0. Finally, none of the «; are Galois conjugate

to each other; i.e., all the minimal polynomials m,, are distinct.
We start by making the following observation.

Remark 3.1. If o = [o : 1] € Fp has degree u over Fy, then the map Sy —
Fyu,h — h*(a) is a linear map of Fy-vector spaces. The map is surjective as long
as d > u, and in this case its kernel has dimension d + 1 — u. If d < u the elements
1,a,02,...,a%are linearly independent over FF,. Therefore the image has dimension
d+ 1 and thus the kernel has dimension 0. In other words the map is injective and

the preimage of any element is either empty or a point.
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If = [1:0] = oo, then it has degree 1 over F,, and a condition fixing a value
for h(«) can be rewritten in terms of h,(1) such that it does become linear and the
reasoning above applies.

Lemma 3.2. Fiz ay,...,a, € ]Pl(]Fqk) of degrees ui,...,un over Fy such that
none of the a; are conjugate to each other, and B; € Fqu; for 1 <1 < mn such that
Bi,..., B¢ are not zero, and Byy1 = -+ = B, = 0. Fiz g € S such that g(a;) =0

forl+1<i<mn, and g(a;) #0 for 1 <i < {. Then we have
qd+1_2f=1 ui> d > Zle Us
[{h € Sa: (Bi,xh = Bi,zg)(ei) =0,1 <i<n}|=

0orl, otherwise.

Proof. For f8; # 0, the condition imposed over h is h(a;) = g(ﬂLfi), while there is no
condition imposed if 8; = 0. By the Chinese Remainder Theorem, imposing all the
conditions together for ay, ..., ay is the same as imposing a condition for A modulo

the product mg, - - - mq,. The result then follows from Remark Bl O

Let D € §4. In all the following, the notation (D) means the ideal generated by
the polynomial D.

Lemma 3.3. Fiz ay,...,a, € ]P’l(IFqk) of degrees ui,...,un over Fy such that
none of the «; are conjugate to each other, B; € Fgu; for 1 < i < n such that
Bi,..., B¢ are not zero, and Byy1 = -+ = B = 0. Fiz g € Sy such that g(a;) =0

forl+1<i<mn, and g(a;) # 0 for 1 <i <. Then we have for any € > 0,

HheSd:(h,g)zl, zgz; :ﬁi,lgign}

= ¢ 2 I = 1P +0 (¢ -
(P)I(9)

If g(a;) # 0 for some £+1 < i <n org(a;) =0 for some 1 < i <, then the above
set is empty.

Proof. If g(a;) # 0 for some £+ 1 <i < n or g(a;) = 0 for some 1 < ¢ < ¢, then it
is clear that the above set is empty. We then suppose g(«;) =0 for £+ 1 < i < n,
and g(a;) #0for 1 < i < /.

By inclusion-exclusion and Lemma we have

{heSd:(h,g)zl,fLEZi_; :/@i}‘: > w(D) 3 1
! (D)l(9) heSg

9(@q) _ 5. 1<y
Din, Fiaiy =8y, 1<ist

= Y uD)gttrdeEP Ry N o)

(D)I(g) (D)|(9)
deg D<d—Y¢_ | u, d—3¥Y_| up<deg D<d
A1 —deg D
=gz N (D) P+ > o(1)
(D)I(9) (D)I(9)

d—3%_ | uy<deg D<d

IS _ .
=gt X [T a=1PY +0 (¢
(P)I(g)
where p is the Mobius function. (Il
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Definition 3.4. Let g € Sy4. Set
AY ={h € 8 : h square free and (h,g) = 1}.
Let oq,...,an,B1,..., B € P(F ). We define
Ag(ala R 7an7/81a R 7ﬂn> = {h € Ag : (BZ,Xh - ﬂi,Zg)(ai) = 07 1 < 1 < Tl} .

Lemma 3.5. Fiz ay,...,a, € ]Pl(]Fqk) of degrees ui,...,un over Fy such that
none of the oy are conjugate to each other. Let B; € Fgu; for 1 < i < n such that
Bi,..., B¢ are not zero, and Byy1 = -+ = B, = 0. Fiz g € Sq such that g(a;) =0

fort+1<i<nand g(a;) #0 for 1 <i<{. Then

|Ag(a17"'aana517"'aﬂn)‘

d+1-3071 wi

B q —1y-1 (1/2+¢e)d
_ (I+[PI7")"+0|(q :
Ca(2) TTizy (1= g=2) <P1>qu> ( )

If g(a;) # 0 for some £ +1 < i < n, or glag) = 0 for some 1 < i < £, then the
above set is empty.

Proof. 1t is clear that A%(aq,...,an,B1,...,B,) is empty if the condition on the
values g(o;) of the lemma are not satisfied, and we then suppose that g(a;) = 0 for
+1<i<n,and g(a;) #0for 1 <i </

By inclusion-exclusion,

|Ag(a17 e 70[717617 .. 7ﬁn)|
= Z/ (D) th € Sq—2deg(p) : (h1,9) = 1, 9() = D2(04i)/8i}‘

hi(oy
(D):(D,g)=1 1(ai)
deg(D)<d/2

:qd+1fzf:1u,1 H(1_|P|71) Z/ w(D)|D| ™2 + Z/ O(qsd)

(D):(D,g)=1 (D):(D,g)=1
(P)I(9) dea(D)2d/2 des DLis2

/
by Lemma [3.3] where we have written Z ") for the sum over (monic) polynomials

D such that D(ay;) #0 for 1 <i <.

But
!/
Yo wDpI= I -l = II (1= [P[7%),
(D):(D,g)=1 (P):Ptg (P):Ptgmay ...ma,

P(a;)#0,1<i<t

where we made use of the fact that (g,ma,) = 1 since g(a;) # 0. This can be
rewritten as

! I a-ipr)

2
$a(29) (o) (grmay may)
1

_ 1—|P —2s —1'
Cq(25) Hf:l(l — g2 (Pl}g)( e

Therefore
’ 1
> wD)DI? = IT a=1P>)"+0 (2
(D):(D,g)=1 Ca(2) Ty (1 —q72) (P)I(g) ( )
des(D)<d/2
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and
|Ag(oz1, cey Oy By, B
_ g1 -Tin v H (1+P ™) 40 (q(1/2+5)d) .
G Loy (1= a72") By
O
Proposition 3.6. Fix aq,...,a, € Pl(]Fqk) of degrees uy, . .., u, over Fy such that

none of the a; are conjugate to each other. Let 3; € Fgu; for 1 <i <n. Then

H(1)g?H2-2in w 5
-y Oy, sy Pn)| = n +0 (3/2+e)d y
o B G2 [[im (1 4+ g v — g2w) (q )

1
nm =11 (1 NGEEDEE 1>> '

(P)

Fa (o,

where

Proof. Denote by m,, the homogenized minimal polynomial of a; over F,. We have

|]:3rd(a17' "704717517' 7671)' = Z ‘Ag(alu' "704717517' 7671)'

g€Sa

Assume without loss of generality that 51,..., 8¢ are not zero, and fBp11 = -+ =
Bn = 0. By Lemma [3.5] the above sum equals

|]:¢(1)rd(al>‘"704717617"‘7671)‘

B q —1\—1 (1/24¢€)d
_ 1+|P7")"'+0(q
gezsd Co(2) iy (1 = g72) (Pl)_l{a) ( )

9(a;)#0,1<i<e
g(e;)=0,£41<i<n

d+1-3"0 ) uy
B q i=1 —1\—1 (3/2+e)d
— ; = >, Il a+iprH7+o(q :

G2 L= (1 —g72%) g5, (P)I(9) ( )

9(a;)#0,1<i<t
g(a;)=0,£4+1<i<n

dH—Ele Ui

Set
bg)= J[ a+PH"
(P)I(9)
and o)
g
G(s) = Z o
(9)#0 g

Since b(g) is a multiplicative function, it follows that G(s) has an Euler product
of the form

G(s) = H( b(P’“)IPI’“>

(P) \k=0
_ (P)|P|
- L{(1+1—Ps)
. T
-l (++ a=prma )
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Thus

() H(s),

Gle) = Cq(2s)

where

. [Pl (1~ [P~ — |P|*)
=1l (- Fomem e )

which converges for Re(s) > 1/2. In addition, G(s) has a simple pole at s = 1 with
residue

H(@1) 1 1
((2)logqg  (4(2)logg 11 (1 TP+ D(PE - 1)) '

(P)
Define the additional Dirichlet series

B bo) _ i
Gl = 2 . (o )

(ma;)1(9),1<i<e (P)#(ma,),
(ma,;)(9),t+1<i<n

x II (i b(P’“)IPI_’“>

(P)=(ma,) £+1<i<n

ﬁ q—uis -1 ﬁ q—uis
= G(S) (1 + —u; s —u; ) —u; s —u,
paley (I—gmwe)(A+g) ) 20 (L—gme)(1+q7%)
_ ﬁ (1—g ™) (L+q ™) ﬁ g "
= 1 4 q —uy ui(s+1) 1 + q*ui — qfui(5+1) .

i=1 i=0+1

Thus, G1(s) has a simple pole at s = 1 with residue

(0} ﬁ 1— g2 ﬁ g
Ca(2)logq 7 1+ g7t — g2 i L~ q 2w’

and

Gi(s) — -2

s—1

is holomorphic for Re(s) > 1/2. Then, using Theorem 17.1 of [Ros02], which is the
function field version of the Wiener—Ikehara Tauberian Theorem, we get that

( ) 1— q—Zui n q_u’i
S by = H A | T—
(9).9€5q Ca(2) L+qg™ —¢q s e+11+q g

(ma;)t(9),1<i<e
(ma)|(9)+1<i<n

+0 (q(1/2+a)d) _
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Using the line above in the formula for |F$* (a1, ..., an, B, ..., )], We get

|]:§rd(a17' .. aruﬁlu' 7671)'
7271,7‘,

d+1 Zl U H(l)qd+1

_ 1—¢q q
- G(2) H (1 —qg=2w) Cq(2) };[1 14 g i — g—2u H 1+qw —qg 2w

i=0+1
L0 (q 3/2+¢) )

H(1l q2d+2 Do ug
_ . (n) — ——+0 (q(3/2+5)d) .
G(2) Hi:1(1+q i — g2

—u;

O

The previous result may be used to obtain the number of covers in the whole
ordinary family by specializing to n = 0.

Corollary 3.7.

H(1)g+?
2P

By combining Proposition and Corollary [3.7] we obtain the following result.

73| = +0 (q2+97).

Proposition 3.8. Fix aq,...,a, € ]P’I(IFqk) of degrees uy, . .., u, over Fy such that
none of the o; are conjugate to each other. Let 3; € Fgu; for 1 <i <n. Then

7 RV

=q X (1 +0 (i q“)) +0 (g2t
=1

We finish this section by computing the expected number of points in an ordinary
Artin-Schreier cover. For this, we need to compute the case n = 1, i.e., |.}’-'C‘l)rd(a7 B)|.

|]::i)rd(a17'"70‘71’517""[3”” qiz?:“” +O(q(*1/2+5)d)

Corollary 3.9. Fiz o € P1(F 1) of degree u over Fy. Let 3 € P*(Fqu). Then

2d+2—u
H((l))q2(1+q (1 gzu) +0 ( (3/2+6)d+u) , B =00,

Fg (. 8)| =

H(1 2d+2—u
Gt T O (@29, fEeFy

Proof. The case of § € Fyu is a simple consequence of Proposition For 8 =
[1: 0], we have, by Lemma 23] that
|f'3rd (a, OO)| _ ]:ord| Z |]:ord
BEF u
= |F - U FT (e, 0)
H1)g* (1 -q7")

— +0 q(3/2+s)d+u )
G(2P(L+q =g ( )

O

By combining Proposition B.8and Corollaries3.7land 3.9 we obtain the following
result.
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Proposition 3.10. Fiz o € P*(F ) with degree u over Fy. Let # € P1(Fqu). Then
M —1/2+4¢)d+u _
L2 +0 , B=oc,
Fyita.py) _ [T oW b

7

T O (@), peFp

Lemma 3.11. Fiz o € ]PI(IFqk) of degree uw over F,. The expected number of
F,x-points in the fiber above a is

1+0 (q(—1/2+€)d+u) , pr)[ %

1+ W —I—O(q( 1/2+5)d+u)’ ifpl %

Proof. By Lemma 2.1 and Proposition B.I0, the expected number of F «-points in
the fiber above « is

“(1-q") —1/2+4e)d
—+o( (=1/2+e) +u)
1_|_q7u _q72u q

4q
+ Z OP (H—q‘T

9] —1/2+¢€)d
q 2u (]( / : ))
BEF u try, (8)=

If pt £, then try(8) = 0 iff tr,(B) = 0 and there are % points in Fgu with that

property.
If p | %, then try(8) = %tru(ﬂ) =0 for all § € Fgu, and therefore the expected
number of points in the fiber is

g"(1-q") (—1/2+e)d+ p —1/2+¢)d+
) o () B o (i),
14+ qfu _ q72u q 1+ qfu _ q72u q

]

For our main result, we recall that an ordinary Artin-Schreier cover has r + 1
simple poles. This corresponds to taking d = r 4+ 1. We are ready to prove the first
part of Theorem [[1}

Theorem 3.12. The expected number of Fx-points on an ordinary Artin-Schreier
cover defined over Fy is

gk + 1+ 0 (¢ /21 +2k) p1tk,

¢" +1+ Miz + Zu\ k 1+q—1 m(uyu+ O (¢(T1/FFEDTR) g |k,
where mw(u) is the number of monic irreducible polynomials in Fy[X] of degree wu.

Proof. If p 1 k, the result follows by adding the result of Lemma BII] over all
a € PY(F). If p | k we still get the term ¢* + 1 and an additional term given by

p—1 _ p—1 p—1
Z Z 1+q—u_q—2u - 1+q_1 _q_g +Zmﬂ(u)ua

u\ﬁ a,deg a=u u\ﬁ
P 13

where the first term on the right hand side accounts for the case a = cc. (Il
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Remark 3.13. When k = p, we obtain

(p—1)(g+1) -1
pqp WwZ D@L 0( ( /2+s>(r+1)+2p)_
q" + +1+q—1—q—2+ q

4. THE FULL SPACE

In this case, we consider the family
Fi' ={(9(X. 2),M(X, 2)) : g(X, Z), (X, Z) € Sa, (g, h) = 1}

Proposition 4.1. Fiz oq,...,a, € PY(F,) of degrees uy,. .., u, such that none
of the a; are conjugate to each other. Let B; € Fqu: for 1 <i < n. Then we have

full _ i
d sy Ung sy Mn)|
[Fa (e, oy amy B B

G2 I (T4 q)

Proof. Assume without loss of generality that (1,..., B¢ are not zero and Sy =
-+ = f, = 0. We have, by Lemma [3.3] that

|]-'(§u“(041,.- '70[,,,“/817.- ,ﬁn)|

>

L0 <q(1+a)d) .

{hESd:(h,g)zl,M:Bi,lgign}’

= h(a;)
=Y g T a= 1P +0 (o049,
9€Sa (P)I(9)
We set
bg)= [[ a-1P™)
(P)1(g)
and

o=y 29

(9)#0 l9l°
Since b(g) is a multiplicative function, it follows that G(s) has an Euler product of
the form
S b(P)|P|”*
_ k —ks o
Gis) = ] (Zb(P )| P ) _H(1+ﬁ)
(P) \k=0 (P)
_ A= [PITHIPI7*N 1—|P|717°
B H(” e ) )
(P) (P)
Therefore
Gq(s)
G(s) = ———
NS

1

is analytic for Re(s) > 0, except for a simple pole at s = 1 with residue IAOICTE
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Now define the Dirichlet series

b(g) 1 |P|~1*
G = _— = _—
1(s) 2 FE 1— [P~
(ma;)t(g) 1<i<e (P)#(ma,;),1<i<n
(may )I(g) £+1<i<n

x II (i b(P’“)IPI’“>

(P)=(maq,),t+1<i<n \k=1

_ f[ ( o —uy (1+s)) ﬁ <q—uis(1 _ q—ui))
i=1 L—qgmme =01 L—qme
¢
B 1_qus qusl_q—ui)
= G(s) H 1_ 1+s) H “ui(its)
=1

Thus G1(s) is analytic for Re(s) > 0, except for a simple pole at s = 1 with

residue
L n w;

1 1 q-
Cq(2) logq £[1 1 + qfuv: H 1 + qfu,', .

i=0+1

Then, again using Theorem 17.1 of [Ros02], we get that
|J—_-§ull(a1, coey Olpy 51, ey ﬂn)|
— i w Z b(g) + O ( (1+¢) )

(9),9€84
(ma Hg) 1S i<e
(ma;)(g),4+1<i<n

B q2d+2—Zf:1ui ¢ 1 n -
O G® 1;[1 (1 + q—ui> H (W) +0 (q(1+s>d) .

1=0+1

O

We may now proceed to compute the number of covers in the whole family by
setting n = 0 in the previous result.

Corollary 4.2.
2

2d+
|]_-§u11| — (é ( ) +O( (1+E)d) )
q

By combining Proposition 1] and Corollary [£2] we obtain the following result.

Proposition 4.3. Fiz ay,...,«a, € P! (Fgx) of degrees uy,...,u, such that none
of the a; are conjugate to each other. Let B; € Fqui for 1 <i <n. Then we have
|-Fcflull(a1a'"aan,ﬂla"'aﬂn” _ q72?:1 i 1o} (q(sfl)d)

M [[ (T +q)

= q S ui (1 +0 (i q_"’i>> +0 (q(a—l)d) '
=1

We finish the section by computing the expected number of points in the full
Artin-Schreier family.
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Corollary 4.4. Fiz o € PY(F,.) of degree u over F,. Let 3 € P*(Fgu). Then

2d+2—u 0 (q(5+1)d+u) , B =00,

| full( )l _ q

=+
WO o ey, pe,

Proof. The case of 8 € Fyu easily follows from Proposition Il For 8 = [1: 0], we
have, by Lemma [Z3] that

‘]_-;ull(a7oo)| _ ]_-full| Z |]_-fu11
BEF u
= |FM = ¢ FM (@, 0)]
2d+2—u
q e+1)d4u
o s—,Y P
e Ol )

We then obtain the following result.
Proposition 4.5. Fiz o € P1(F ) of degree u over Fy. Let 8 € P'(Fgu). Then

O (g~ D), B =00,
g g JOT)

‘]:51411‘ - 1+ g

+
0V, BeF.

Lemma 4.6. Fir o € P! (Fyx) of degree u over Fq. The expected number of I k-
points in the fiber above o is

140 (= Vi) i ot

L+ e +0 (a7 ™), i pl g

Proof. By Lemma [ZT] and Proposition L5l we have

—Uu

: j_ ot O (q(E*l)d‘i’u) I 3 p (1 jjq L0 ( (61)d>> .

BEF qu try (8)=0

If pt %, then try(8) = 0 iff tr,(8) = 0, and there are % points in F,« with that

property.
If p | %, then trg(8) = %tru(ﬂ) =0 for all § € Fyu, and therefore the expected
number of points in the fiber is

—u +O(q(5—1)d+u> n

b —1)d4u
+0 (gD,
1+q™ I+q™ 1
We are ready to prove Theorem [I] (2).

Theorem 4.7. The expected number of Fx-points on an Artin-Schreier cover in
ASy defined over Fy is

q* + 1+ 0 (qle=Dat2k) Pk,

¢"+1+ (- D7+ B = (0 - D X, i m(wu+ 0 (¢4 p |k
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Proof. The result for p 1 k follows from Lemma If p | k, we still get the term
¢* + 1 and an additional term given by

p—1 p—1 q"
E E = +(p—1 m(u)u
ulE a,dega=u T+g™ 1+q7 ( )u\ﬁ 1+q* )
p— k/ 1
= + 1 P 1 u)u.
T (p—1)g (r-1) w1+qU()
O

Remark 4.8. When k = p, we obtain

f+1+@—1m+0(¢“””%)

5. PRESCRIBED FACTORIZATION TYPE
Recall that
Fi ={(9(X,2),MX,2)): (X, Z), (X, Z) € S4,(g.h) =1,
h has factorization type v},

di1 die dm 1 dm,e
where v = (ry"', e o ™) and

_ pdina di,ey dm .1 dm e
h= Pyt Pl Pt P

m,1 m o,

where the P; ; are distinct irreducible polynomials of degree r; and r; # r; if ¢ # j.
The degree of h is then given by d =Y 1" | r; Zle d;j.

We will first compute the expected number of points for this family. We need
the following result.

Lemma 5.1. Fiz a polynomial h € Sq. Then, if h # 0,

{g€Sa:(g.h) =1} =¢"" [ a-1PI7").
(P)I(h)
We remark that this lemma follows directly from the proof of Lemma [3.3]

Proposition 5.2. Fiz o € P1(F ) of degrees u over Fy. Let 8 € PY(Fgu). Then,

if u <d,
g, deg(a) = u # r;Vi, B # o0,
0 desl) = u £ 7%, 5 = .
|7 (. B)| _
FY o (1w (ri ) —4s
|74 %M, deg(a) = 1y, B # 00,
L;

71'(7“?0)’ deg(a) = 14y, 8 = 0.

If u > d the above quotient is O(q~%).
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Proof. We first consider the size of the whole family. By Lemma [5.1] we have

73] = > {g€S8a: (g.h) =1}

deg P; j=r;, all different
m
(5.1) =g —g)" > L
i=1 deg P; j=r;, all different
If deg(a) = u # r;, and 8 € Fyu, then by Lemma 23 it suffices to find |F} (e, 8)|
for 8 = 0. If this is the case, then we need g(a) = 0 or m, | g.

[Fi (. B)] = > [{g € Sa : (9,h) = 1,ma | g}
deg P; j=r;, all different

m

— qd+1—u H(l _ q—m)&- Z 1.

i=1 deg P; j=r;, all different
If deg() = u # r; and 8 = oo, we get a contradiction and thus
[ Fi (a;00) = 0.

Now assume that deg(o) = u = r;,, for some g, and that § € Fyu. By Lemma
we can again assume that § = 0. In this case we need to impose the condition
that h(a) # 0. Therefore,

m

Fi(e, ) = g™t [T —g7m)" > L

i=1 deg Pi,j:'ri,PiO,j;éma, all different
Finally, if deg(a) = r;, for some i and 5 = oo, we need that h(a) = 0 and g(a) # 0.
m
[Fi(a,00)| = ¢ [T(1 =7 > L
=1 deg P; j=r;,3P;,, j=mq, all different

The result now follows from the identity

|{deg Pr,j = i, all different}| = | (”(”))

2
i=1 v

We are now ready to prove the main result of this section.

Theorem 5.3. The expected number of F x-points on an Artin-Schreier cover with
poles given by the factorization type v defined over Fy is

q" +1, 1k,

¢* +1+(p—1)¢""+(p—1) (1 - kafm) ; plk

Proof. We can assume that p { ;. This is because the F -isomorphisms (z,y) —
(x,y + ax®) allow us to eliminate all the terms in h such that x appears to a power
multiple of p.
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By Lemma 2.1 the final count becomes

%3 (@,00)] T35,
L AT L 2 L E

a€P(F ) a€P(F k) BEF deg(a),trk(8)=0

=2 ﬁfﬁ) 2. 1 ) > g Y

rilk a€P(F 1), deg(a)=r; Q€PH(F 1) BEF deg(a) trr(8)=0

¢ .
3 DY 2. mn

rilk a€PL(F 1 ), deg () =r; BEF vy tri (8)=0

q"i

If pt k, then tri(8) = 0 if and only if tr,(8) = 0 and there are q% elements in
F,u with that property. Thus we obtain ¢* + 1. If p | k, then since p { ry, if r; | k,
then p | Tﬁ and tr,(8) = 0 for 8 € Fyr;. The final count then becomes

3 3 g 4es(@)

Q€PH(F 1) BEF deg(a) trr(B)=0

> - x w

1|l€ aE]P’l (IF r; ),deg a=r; BEF ;r; ,tr (8)=0

—F - D@ )Y Y o)

W(Ti) .
ri|k a€PH(F r;),deg a=r;

=" +1+ -1+ -1 1= b
rilk

]

Now suppose that we take the p-rank 0 family. We recall that this corresponds
to v = (1¢). A simple application of Theorem [5.3] yields the following.

Theorem 5.4. The expected number of Fx-points on a p-rank 0 Artin-Schreier
cover in ASq o defined over Fy is

¢ +1, ptk,

" +1+(p—1)4"?, p|k.

This recovers the result from [Ent12].

Finally we consider the family of curves with p-rank equal to p — 1. This means
that we consider the case when f(x) is a rational function with exactly two poles.
If the poles happen to be at Fy-rational points, we are in the case corresponding
to v = (191,192). Note that in this case we could use an automorphism of P!(F,)
to move the two poles to zero and infinity, and therefore this case corresponds to
the case when f(X) is a Laurent polynomial. Otherwise, the two poles have to be
I, Galois conjugate points in Fg2, and we find ourselves in the case of prescribed
factorlzatlon v = (2%). The ﬁnal answer for the whole p-rank equal to p—1 stratum
is given by taking the average between these two cases. Again, by applying Theorem
we get the third part of Theorem [[11
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Theorem 5.5. The expected number of F . -points on a p-rank p—1 Artin-Schreier
cover in ASgy -1 defined over Fq is

" +1, ptk,
*F+1+(p— 1)(qk/p —1), p|k, k even,

"+ 1+ (p—1)g"", p |k, k odd.

Proof. The different formulas occur when p | k. For k even we get that both 1 | &
and 2 | k, and therefore we always get ¢* + 1 + (p — 1)(¢®/? — 1) for p | k. When k
is odd, the case p | k will yield

" +1+(p—1)(¢"" 1)
for (191,1%) and
¢ +1+(@-1)("""+1)

for (2%).

Each case happens half of the time. To see this, notice that (2¢) corresponds
to counting degree 2 irreducible monic polynomials over F,, while (191, 1%) corre-
sponds to counting degree 2 reducible monic polynomials with two different roots
over F,. The number of degree 2 monic polynomials that are not squares is ¢* — g,
and exactly half of them are reducible. We take the average and obtain the final
result. (]

We now proceed to the case where we fix several values, which will be needed
for the computation of the moments.

Proposition 5.6. Let oy, ...,a, € PY(F ) of degrees ui, ..., u, over Fy be such
that none of the oy are conjugate to each other. Let B; € Fyu: for 1 <i <mn. Then

Fl(at,...,0n,B1,---Pn " (s et o
e |]-'vﬂl = = [[=7(ri, lisur, . un))g T ) 1O (gl DY),
d

i=1

where 0 < 7(r;, 4;ur, ..., u,) < 114s a constant that depends on the number of u;’s
that are equal to vy and is equal to zero if u; # r; for all j.

Proof. Without loss of generality we can assume that fi,..., [, are not zero and
that B¢11 =+ = B, = 0. We have that
(5.2)

|‘F(11)(a17"',anaﬂl,“-aﬁn”

>

deg P; j=r;, all different
P j#ma

{gl S Sd_E;:ZJrl uj - (glvh’) =4
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Notice that B{l € Fyu, for 1 <i </{. By Lemma[3.3]

h(ev)
g1 € Sa-yor uj +\9 yh) =1, 0
‘ { 1 d Z]:£+1 J ( 1 ) gl(ai) Hj:g+1 maj (az)

— ¢ Ehe I =P + 0 (¢
(P)I(h)

=B{1,1§i§€}‘

S [ (1= )% + 0 ().
j=1
On the other hand, |{degP;; = r,all different, P, ; # my}| is a product of

binomials of the form
7T(T‘Z‘) — S;
/; ’

where s; corresponds to the number of u;’s that equal the particular ;.
This gives that

|{deg P; ; = r;, all different, P; ; # mq }|
|[{deg P; j = 7y, all different }|

is a product of terms of the form
(1 =7(ri lisury ..o up))
(T () — ) () — = 1) (w(re) — b — i+ 1)

K

(ray m(ri)(m(ri) = 1) (w(ri) — si +1)
By dividing equation (B:2)) by equation (&), we get
Filag,...,an,B1,..., _ ¥ u,m _
il B Bull - S TT = o0t ) + 0,
d i=1
where the constant satisfies the desired properties. O

6. BEURLING-SELBERG FUNCTIONS

In this section we start the development of the tools needed to prove Theorem
[L3l By the functional equation, the conjugate of a root of Z¢, (u) is also a root,
so we can restrict to considering symmetric intervals. Let 0 < f < 1 and set
I=[-5/2,8/2] C[-1/2,1/2). Our goal is to estimate the quantity

2g/(p—1)
No(fo) = # {120 < B0 eTh = Y alb(fv)
j=1

where yz denotes the characteristic function of Z. We are going to approximate xz
with Beurling-Selberg polynomials I ?5

In what follows, we use the standard notation e(z) := e2™**. Let K be a positive
integer, and let h(0) = >3 < ane(kO) be a trigonometric polynomial. Then, the
coefficients ay are given by the Fourier transform

ar = h(k) = L 11//22 h(0)e(—k6)do.
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Here is a list of a series of useful properties of the Beurling—Selberg polynomials
(see [Mon94], Ch. 1.2] that will be used in this paper.

(a) The I;—; are trigonometric polynomials of degree < K, i.e.,
Lig(x) = Y Ti(kye(ka).
|k|<K
(b) The Beurling—Selberg polynomials yield upper and lower bounds for the
characteristic function:
Ip < xz < Iy

(c) The integral of Beurling—Selberg polynomials approximates the length of
the interval:

1/2 . 1/2 1 1
I dr = dr+ —— = |Z| £ ———.
/1/2 w(@)de /1/2 xz(@)de K+1 2 K+1

(d) The I are even (because the interval Z is symmetric about the origin).

Therefore the Fourier coefficients are also even, i.e., flﬂg(—k) = flﬂg(k’) for
k| < K.

(e) The non-zero Fourier coefficients of the Beurling—Selberg polynomials ap-
proximate those of the characteristic function:

- ~ 1 -~ sin(mk|Z|) 1
TE(k) — Xz (k)| € —— TE(k) = ——=2 — k> 1.
W -t < oy = ey =TTD o (L) ks

Therefore we obtain the following bound:
1
K+1

™
K|

‘We now list some results that will be useful in future sections.

Tl < gy i {1zl dL o<k <K

Proposition 6.1 ([FR10, Proposition 4.1]). For K > 1 such that K|Z| > 1, we
have

SN TEeR) = o),

k>1
ST = 5 los(KIZI) +O(1),
E>1

ST Tk = 2—;1og(K|I|)+0(1).

k>1

We remark that for a given K the above sums are actually finite, since the
Beurling—Selberg polynomials II% have degree at most K. We will also need the
following estimates.

Proposition 6.2 ([BDFLS12, Proposition 5.2]). For aq,...,&r,Y1,...,7 > 0 and
B1,...,0, € R, we have

ST LRk TER) R KD gk = 0(1),
ki, kr>1
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For ay,a0,v>0 and 8 € R,
STTER) T TEEK) K g = 0(1).

k>1

7. SET-UP FOR THE DISTRIBUTION OF THE ZEROES

We state here an explicit formula that will be used to relate L(u, f,v) to the
Beurling—Selberg polynomials. Recall that 2g = (p — 1)(A — 1).

Lemma 7.1 ([BDFLS12, Lemma 3.1}). Let h(0) = ZWSKﬁ(k)e(kﬂ) be a trigono-
metric polynomial. Let 8;(f, 1) be the eigenangles of the L-function L(u, f,).
Then we have

A-1 K o~
(7.1) EIM@UWW=<A—UMm—§jh@”“ﬁW;£( ﬁMﬂw7

where

Se(f) =Y W(n(f(@)).
zG]P’l(Fqk)
F (w700
We use the Beurling—Selberg approximation of the characteristic function of the
interval Z to rewrite Nz(f, ) and Nz(Cj) where f varies over one of the families
Fa. By property (b) of the Beurling—Selberg polynomials, we have

>

—1 A—1

T (0;(f,4) < Nz(f,9) < > IE0;(f, ),
j=1

1

<.
I

and using the explicit formula of Lemma [7] and property (c), we have
= A1
> Te(0:(f:0)) = (A= VIZI = SH(K, f.v) & 7
where
K TER)Sk(f, ) + T (=k)Sk(f,
k=1
This gives
. ~1 . A—1
(73) =8 (vaaw) - K—‘H < NI(fuz/]) - (A - 1)|I| < =8 (Kufuw) + Ta
and
(7. 4)
h 29 = + h 2g
—ZS (K, f,0") = 75 < N2(Cp) = 20[7) < - thS (K, [ +

In the next section we are going to compute the moments

|f|Zsin,¢) and |f|Zsich),

fE€Fq fE€Fq
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where
p—1
(7.5) SEEK,Com = Y SEEK, foM) . SEE, 0.
hi,...,hpn=1

We will show that they approach the Gaussian moments when properly normal-
ized. We will then use this result to show that

Nz(Cy) — 2g/7]
22 log(g|71)

converges to a normal distribution as g — oo since it converges in mean square to
S*(K,Cy)
22D log(g|Z])

8. MOMENTS

Our goal is to compute the moments of ST (K, Cy) when f varies in any of the
families of curves F9rd, }'2““, and Fj.

Definition 8.1. Let
(1+q7u_q72u)71’ fd:f,‘frda

(1 + q—u)—17 ]:d — ]:(gull,
E i) gi .
7a(u) m(r:) , Fq = F] and u = r; for some 7,
mw(r;)
1, Fq = F; and u # r; for any .

More generally, we have

H Er,(ui), Fi= f(ti)rd7f(1;ull7
E]:d(ula"'aun): i;l
]‘_[(1—7'(7“1‘,&;11,1,...,un))7 Fa=FY,

i=1
where 7(r;, £;;u1, . .., uy,) is as defined in Proposition
Remark 8.2. Let Fy be any one of the families considered. Then
Er,(u)=1+0 (ug™").

The estimate can be improved to Ex,(u) =1+ O (¢~%) for F3*¢ and F*. In the
case of F, we are assuming that the ¢; are fixed constants and using the estimate
w(m) = %m +0 (#) (see [Ros02, Theorem 2.2]).

In addition, we have that

Er,(ui,...,up) < 1.

From now on we will use the notation a; ~ a9 to indicate that a; and as are
Galois conjugate, and a7 % ag for the opposite statement.
Then, for all the families under consideration we have the following result.
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Lemma 8.3. Let a € P'(F ) of degree u over Fy. Let 3 € Fyu. Let Fy be any of
the families under consideration. Then
Fale B [Fala0)l _ Er,(w) (qfd/2)'

8.1 = —
®.1) 7 i n

Let aq,as € ]P’I(IFqk) of degrees w1, ug respectively overFy. Let 1 € Fpui, fa € Fyus.
Let F4 be any of the families under consideration. Then, if a1 o4 s,

|]:d(0417a2751762)| Efd(’l,tl,’LLQ) —d/2
8.2 = oL 2] +O( / ) :
( ) ‘j—_'d| qu1+u2 q

where Ex,(u1,us) does not depend on the values of 1, Pa.

If ay ~ ag and By ~ By by the same automorphism, then

| Fa(a, ag, B, B2)] |Fa(ar, B1)|  Er,(u1) —d/2
8.3 = = o} 2) .
(53 7 7 o)
Otherwise, we get zero.

Let aq,...,a € PYF ) of degrees uq, ... ,u, over Fy and let §; € Fgu; for

1<i<n.
If none of the a; are conjugate to each other, then
“Fd(ala"'vanmﬁla"'ﬂn)‘ E]:d(ula"-aun) —d/2
8.4 = +0 / ,
(8-4) 7l gt (%)
where Ex,(u1,...,u,) does not depend on the values of B1, ..., Bn.

If some of the ay’s are conjugate to others, then we get zero, unless the corre-
sponding B;’s are conjugate by the same automorphisms, and in that case we get
formula (B4, where the w;’s correspond to the degrees for each of the different
conjugacy classes of the a;’s.

Proof. This follows from Propositions 3.8 B.10] 1.3 £33 5.2 and |

We recall that for a family F, a function G depending on f, and a vector a =
(a1,...,ay), we have the notation

G, = %ZGU),

feFr

G ra = % S G

ferF
fla;)#00,1<i<n

The main idea in the computations of moments is that if we sum the value of
a non-trivial additive character ¢ evaluated at a linear combination of the traces
try, (8;) over all B; € Fgu; for 1 < i < s, then the sum will be 0 unless each coefficient
is divisible by p.

Lemma 8.4. Let my,...,ms € Z, and v a non-trivial additive character of IFp.

Then

gttt pmy for1<i <,

St ()4 mgtr, (8:) =

Bi€F Ju; , 1<i<s 0, otherwise.
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8.1. First moment.

Lemma 8.5. Let h be an integer such that p t h, e € {—1,1}, and k > 0. Let

a € Fyr of degree u over Fy. Let Fq be any of the families under consideration.
We have

Er,(u)+0(¢"?), p|&,
(Wlehtny f(@)z, . =
0] (q“_d/2) , otherwise.

Proof. By reversing the order of summation, we obtain

(W(ehtrg f(@))r, = > Wlehtre(8 |]:d( Fala, B)|
“ BEF 4u |]:d|

We now apply Lemma [B3]in order to obtain
E hk
.7:d Zw(@ ﬂ)>+0(ud/2).
BEF u

Lemma [B4] implies that the main term is zero unless p | % This completes the
proof of the statement. O

For positive integers k, h with pt h and e € {—1, 1}, set

Myt = <q_’“/2 >, w(ehtrkf(a))>

aEFqk
fla)#oo Fa
— ke Z Y(ehtry f(a ))>F¢,a'
a€l

Lemma has the following consequence.

Theorem 8.6. Let h be an integer such that pt h and let F4 be any of the families
under consideration. Then

Mlk),de,h _ ka(Efd (k/p) g~ (1/2—1/p)k +O( (1/2—1/2p) ))+O( 3k/27d/2)

- 0 (q—(l/Z—l/p)k + q3k/2—d/2) 7

A L ik,
Pk = 1, plk

where

Proof. By Lemma [R5 we have that

Mlk),de,h _ qsz/2 Z E]:d (u) + qsz/2 Z O(qdeg(a)fd/Q)
w,pulk a€F &
¥ deg(a)=u q
e _
p, Z Ex,(m )m+0(q3k/2 d/2).
m,pm|k
Finally, if p | k, the estimates from Remark yield
> Ex(m)n(m)m = Ex, (k/p)¢"" + 0 (¢/*). -
m,pm|k

Licensed to Concordia Univ. Prepared on Mon Sep 19 15:04:47 EDT 2016 for download from IP 132.205.236.66.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2400 A. BUCUR, C. DAVID, B. FEIGON, AND M. LALIN
Notice that changing h allows us to vary the character from v to ¥". This will
be useful later.

Theorem 8.7. Let h be an integer such that pt h and let F4 be any of the families
under consideration. Then for any K with max{1,1/|Z|} < K < d/3,

(ST(K, f,9") 2, = O(1).
Proof. We have that

K 7% h T+ Th
(SEK L") 5, = T L

k=1 q
K ~ ~

= > TW)My" + Le(=k)Myy
k=1
K o~

_ lei((k)O (q7(1/271/p)k 4 qdk/Qfd/2) 7
k=1

and the result follows from Proposition [6.2] O

Theorem 8.8. Let Fy be any of the families under consideration. Then,

(N2(f, ) 5, = wi_\ ST Nz(f) = (A-DII[+0(),

feFa
1
(Nz(Cy)) 5, = 57 > NZ(Cp) = 2g/T]+0(1).
fe€Fa

Proof. This follows from Theorem B and equations (Z3) and ([C4) using K = ed
for any 0 < e < 1/3. O

8.2. Second moment.

Lemma 8.9. Let hy, ho be integers such that pt hiha, e1,eo € {—1,1} and k1, ko >
0. Let ay € Fyry, az € Fyry of degrees uy,ug respectively over Fy. For any of the
families under consideration, we have

(lerhy try, flon) + e2ha trr, f(a2))) £, (a1.09)
61h1]€1 + 62h2k2

E]:d(ul) +0 (qlﬂid/Q) y Q1 ~ a2, p | u—7

1
= O(1+qu1+u2—d/2>7 0417(/a27p| (5_175_2>7
(0] (q“ﬁ“rd/z) , otherwise.

Proof. Reversing the order of summation, we write

(Wlerhy try, flon) + e2ha trr, f(a2))) £, (a1.a0)

(8.5) = > Y(erhy try, B1 + ezha trg, B2)

B1EF quy ,B2€EF jug

Assume that a1 # ay. By Lemma B3 we can write (1) as

Ex,(u1,uz) erhik: e2haks urtus—d/2
qu1+u2 Z ¢ Uy trul 51 + Us truQ ﬂ2 +0 (q e ) .

B1EF u1 ,B2€F juz

|Fa(o, az, B, B2)|
| Fal '
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Then Lemma [B4] implies that the sum is zero unless p | % and p | 7%
Now assume that a; ~ as. Then f(a1) ~ f(a2) and try, f(a1) = try, f(ag).
By Lemma B3] we can write (835 as

)
Fa(u1) Z " (elhlk‘l + eahako ra, 51) L0 (qul—d/z) .

U1 U
7 pieF,u L

Then Lemma B4] implies that the sum is zero unless p | W O

Lemma 8.10. Let hy,hy be integers such that p 1 hiha, e1,e2 € {—1,1} and
ki,ko > 0, k1 > ko. Let Fy be any of the families under consideration. Then,

> Ex,(m)r(m)m?

m|(ky,k2)
mptky, ko
mp|(erh1ki+eghoka)

Ex,(k1)kig"™ + O (k1g"/2) , ki =ka,p| (erhy + e2ha),

_ )0 ki = ka,p 1 (exh1 + eaha),
o0 (qukl/Q) ) k1 = 2ka,
O (qukl/g) 5 kl # kQ, 2]€2
Proof. For the first case when ky = k3, the conditions on the summation in-

dices become m | ki, mp t k1, and mp | (e1h1 + eaho)k1, a contradiction unless
p | (e1h1 + eshs). In this case, one gets

Z Ex,(m)n(m)m® = Er,(k1)ki¢® + O (/ﬁqklﬂ) ;
m|ky
mptky

where we have used the estimates for m(m) and Ex,(m) discussed in Remark
On the other hand, when k1 = 2ks, one gets

Z Ex,(m)m(m)m? = O (quk1/2) .

mlkg
mptho
mp|(2e1hy+egho)ky

Finally, if k1 > ko but k1 # 2ks, we have (kq1, ko) < k1/3 and
Z Ex,(m)r(m)m? = O (qukl/g) .

m|(ky,k2)
mptky, ko
mp|(e1h1ki+eahoks)

This completes the proof. O

For positive integers ki, ko, hy, ho with p1 hihs and ey, eq € {—1,1}, let
M2(7kdhk2)7(81762)7(h17h2)

= <q(kl+k2)/2 Z p(erhy tr, f(a1) + eahg try, f(042))>

O1€F kg @2€F ko
flap)#oo, f(ag)#oo Fu

=q T2 N (erhy try, flon) + eaha trr, f(a2)))

a1EF gy
ag €l
2 qk2

Fa(ar.a2)

Using Lemma R0, we can prove the following analogue of Theorem 8 in [Ent12].
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Theorem 8.11. Let 0 < hy,he < (p—1)/2, e1,ea € {—1,1}, k1 > ko > 0, and let
Fq be any of the families under consideration. Then

M2(7kdlvk2)1(el7e2)7(hl ,ha)

ks (Ex (k)b + O (kig™"/2 + kg =4/2)) | ey = —es, hy = ha,
0, otherwise,

+ Ok, 2k, O (qu_k2/2 + quk2/2—d/2)
+ 0 (k1q7k2/27k1/6 + qukl/ﬁka/Q,d/z)

L0 (q(l/Pfl/Q)(klﬂcg) n q3(k1+k2)/27d/2)

where

5 _ 15 kl == kQa
MR TN 0, ky £ k.

Proof. From Lemma B9l we have

M2(7kdl,k2),(e1,eg),(h1,h2)

_ Eperhikiteshaks 2 m—d/2
= ORI Y wlm® (Br(m) + 0" ?)
m|(ky,k2)
mptky, ko

mpl(erhyky+eghoks)

€p,k1 Epk _
b= D DN (R
q deg oy =uq,deg ag=ug
p\%yz)\%
1 w1 +ug—d/2
O\ Tz > gt

deg avq =u1q,deg ag=usg
uylky,ug ko

It is easy to see that the last two terms are

10 (q(l/p—l/z)(k1+k2> n qs(k1+k2>/2—d/2) .

For the first term, we use Lemma [BI0 As a final observation, the condition
p | erh1 + e2hy translates into hy = ho and e; = —eq because of the restriction on
the possible values for hi, ho. This concludes the proof of the theorem. O

Using Lemma [0 we can prove the following result which will also be used in
the general moments.
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Proposition 8.12. Let hq, ho be integers such that pt hihs, e1,es € {—1,1} and
ki,ko > 0. Let F4 be any of the families under consideration. Then,

K
ST Ti(erkn) T (exks)q~Fitha)/2 > Ex, (m)m(m)m?
k1,ko=1 ml(ky,k2)

mptky, ko
mpl(erhikiteghgka)

1
ﬁlog (KlIl) + 0(1), p ‘ (61h1 + eghg),

0(1), otherwise.
Proof. Using Lemma [BT0] we see that the sum is

K
epernitesns D T (k) Tic(—kn) (E}'d(kl)kl +0 (qu"“l/2))
k1=1

K K
+O [ N kgF /4 DT kg Ok
ki1=1 k1,k2=1

= €p,e1hitezhs Z Ii kl I ( kl)E}-d(kl)kl +O( )
k1=1

Now the estimates from Remark and Proposition [6.1] yield
K
Z TE(k)TE (k) Er,(k1)k = Z TE(k)TE(—k) ks + O <Z k3 ’“)
ki=1 ki=1 ki1=1
1
= 52 log(K|Z|) + O(1),

which finishes the proof of the statement. O

Finally, we are able to compute the covariances.

Theorem 8.13. Let 0 < hy,he < (p—1)/2, and let Fy; be any of the families under
consideration. Then for any K with 1/|Z] < K < d/6,

(S*(K, f,whwsi(K F")) = (ST(K, ") ST(K, f0"2)) 1
; log(K|Z|) + O (1), hi = h,

o), hy # hs.
Proof. By definition,

<Si(K f,lﬁhl)si(K f7whg) Z I:I: kl)I:I:(kQ)M(kl,kQ) ,(1,1),(h1,h2)
k1 ka=1

+ IAI%(kl)fi(—kz)Méfgx’f2>a<1»—1)7(h1,h2>
+ T (k) T (kg) Mgy R0 (S 1D (k)
+ ffjé(_kl)f[i((—kg)Mz(fctil’kQ)!(*lvfl),(hl,h2).
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Using Theorem B.IT] to replace the terms above, we first remark that the contribu-
tion of the last two error terms from Theorem B.1T] to the sum is

K
< Z qu—kz/Z—lﬂ/G+k1qk1/6—k2/2—d/2+q(1/p—1/2)(k1+k2)+q3(k1+k2)/2_d/2 <1

E1,ka=1
provided that d > 6K.

Similarly, the contribution of the error terms for k; = ko and k1 = 2k; is bounded
by

K
<Y kg + kgt <1
k=1
provided that d > 2K. Finally, the main term comes from summing Er,(k1)k1
when k; = ks, and this occurs only when h; = hy and {e;,es} = {1, —1}. Proceed-
ing as in the proof of Proposition m we then get that

(SE(K, f,9")%), = 2 Z TE(k)TE(—k) k1 Ex, (k1) + O(1)

k=1
1
= = log(K|Z|) + O(1).

The proof for (S*(K, f,9")SF(K, f, 1/)h2)>}_d follows exactly along the same
lines. (Il

Corollary 8.14. For any K with 1/|Z] < K < d/6,

2(

(SH(K,Cp)?) 2, = (ST(K,Cp)S™(K,C)) -, = %1) log(K|Z|) + O(1).

Proof. First we note that

(S%(K, Cy)? Z (ST(K £ 0m)SHE, f,07)) g,
hi,ho=1
Notice that by Theorem BI3} the mixed average contributes =3 log(K|Z|)+O(1) for
each term where hy = hy or hy = p — hy. The proof for (ST (K,Cf)S™ (K, Cr))x,
is identical. 0

8.3. General moments. Let n, kq,...,k, be positive integers, let ey, ..., e, take
values +1 and let hq,...,h, be integers such that p 1 h;;, 1 < i < n. Let k =
(k1,...,kn),e=(e1,...,en), and h = (hy,..., hy). Let a; € Fr;, 1 <14 < n, and

q 79

let & = (e, ...,ay). Let Fy be any of the families under consideration. Then, we
define

my®t (@) = (Ylethtrg, flar) + -+ ephntrg, flan)) 5,

1
= T X Vlehitng floa) + ot enhntr, flan)
feFy
flag)#oe,1<i<n

and

Mo = N7 gk 2l ),

@i €F i,
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Lemma 8.15. Let F; be any of the families under consideration. Let Cy,...,Cs be
the distinct conjugacy classes of the aq, ..., ay,. Let u; be the degree of the elements
of C;. Fori=1,...,s, let

1
n; = u— Z ejhjkj.
¢ a,ECi
Then
E]:d(Ul, e 7U'S) + O (qu1+...+us_d/2) ) pr | i fOT' 1 S 7 S S,
i o) =
O (q“ﬁ"'*“sfd/z) , otherwise.

Proof. Renumbering, suppose that a; € C; for 1 < i < s. Since try, f(o;) =
ﬁ— try, f(ay) for i =1,...,s, by the definition of #;, we have that

my ot a) = — > ¢ (erh try, flan) + -+ + enhn trg, f(an))

feEF,
fla;)#00,1<i<n

1
N | Z ¥ (mtry, flon) + -+ s tr, fos))
fan ke d<ign

= Z ¢(n1tru1ﬂl+"'—|—’r}strusﬁs)|‘/—:d(al7~"7a35[317"'7/83)|

Bi€F yu; , 1<i<s [ Fal
Ex, (uy,..., us)
:W Z Y (1 try, b1+ o+ s tra, Bs)
Bi€F u; , 1<i<s
+0 (qu1+-~+usfd/2)
by Lemma B3l The result now follows from Lemma O

Lemma 8.16. The quantity MX®P is bounded by a sum of terms
g k) 2y Ky,
where each T(k1,...,kn) is a product of elementary terms of the type
Z m(m)m”
mp|ST_y s

such that the indices ji,...,Jr of the elementary terms appearing in each
T(k1,...,kn) are in bijection with ki, ..., k.
For n=2( even, let NX*B be the sum of all possible terms

q_(kl+.'.+kn)/2T(k’17 ceey kn)7

where the T'(k1, ..., kn) are made exclusively of the following nested sums:
(8.6)
2 2
E w(my)my - E w(me)mzEx,(m1,...,my).
m1|(J1.de41) mp|(dg.doe)
miplerhidpp1+est1hot1iot1 mypleghgiogteaghapiog
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Ifn =20+ 1 is odd, let NS be the sum of all possible terms q~(F1++kn)/2
T(ki,...,kn), where T(ky,...,k,) are made exclusively of the following nested

) wmgmd Y a(mem?

m1|(i1:de41) myl(Gg.dze)
miplethijopiteryihet1det mypleghgiagteaghopiog
X E T(mep1)me 1 Ex,(ma, ... mg, meg).

myy1lizeta
myopipleggtihary1izeta
Let LX®™ be the sum of all the other terms g~ F1 4t +tk)/2T (k1 k,) as defined
above. Then,

Mok N};;;’h +0 (Lkeh) 40 <q3(k1+~--+kn>/27d/2) .
Proof. Using Lemma BT we first write

Mo — g (k) /2 3 Ex (u,...,u) + O (qs(k1+-~~+kn)/2—d/2) :

O‘iequk,i ,i=1,..., n
[T anp)EA

where the set A of admissible (a1, ..., a,) are those where p | n;, i =1,...,s. To
count the number of admissible (ay,...,ay,), we first fix a partition of {1,...,n}
in s classes Cy,...,Cs. Let k(Cy) be the ged of the k; such that i € C,, and let
8(Cw) = > ico, €ihiki. Then, for any such partition, the number of (a1,...,a,) €
Fyry X - X Fyr, such that a; and «; are conjugate when i, j are in the same class
C, and which are counted in A is bounded by

(8.7) H Z m(m)mlCil,

i=1 mlk(C,)

mp|8(Cy)
where we have used the fact that the number of (ay,...,a¢) € Fyry x <o X Fyw,
which are conjugate over I, is given by

Z 7(m)m?.

m|(k1,....k¢)

Since Ex(uq,...,us) < 1 by Remark B2l we get the first result of the statement
by summing 87 over all partitions of {1,...,n} in s classes Cy,...Cs.

Suppose that n = 2¢ is even. Then, using inclusion-exclusion, the number of
(a1,...,0n) € Fey X -+ X Fyr, such that a; and a; are conjugate, if and only if
i = j(mod/), can be written as

Z m(my)m?3 - - - Z n(me)miEx,(my, ..., myg)

my|(k1,kgq1) myl(kg kag)
miplethikitepi1hoyikesy mypleghgkgteaphapker
+ S(k1,... kn),
where S(ki, ..., ky) is a sum of terms in LX®B. (We have to do inclusion-exclusion

to remove the cases where conjugate values of « belong to two different classes C,,.)
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The case of n = 2/ + 1 follows similarly, taking into account that one has to
multiply by the factor ¢~ *»/2 Z w(m)m. O

m|kn
mplekn

Theorem 8.17. Let F4 be any of the families under consideration. For any K
with 1/|Z| < K < d/n,
0)! —
ey log! (K|Z)) (1+ O (log (KZ)))), n =2,
(SE(K f,)") . =

d

0(1ogf(K\z\)), n=20+1.

More generally, let 0 < hy,...,hy, < (p—1)/2. Then for any K with 1/|Z| < K <
d/n,
(SE(K, fi") . S*(K, f,e"))
Szt log" (K|Z)) (1+ O (log ™ (K|Z)))), n =2,

0 (1og€(K|I|)) : n=20+1.
The constant ©(hq, ..., hy) is given by

#{(61, . ,en) S {—1, 1}, oES, : elha(l) + 62h0(2)
= = ex_1ho2e—1) + €20ho(20) = 0 (modp)},
where S, denotes the permutations of the set of n elements.

Proof. We have that

(S ™) SEE S5, = DL T(erkn). - T (enkn) My,

and we use Lemma B.I6] to replace M" in the sum. The error term satisfies
K

K n
Z Iﬁ(eﬂﬁ) ' -~I;i<(€n/€n)0 (qS(k1+...+kn)/2—d/2> < (Z q3k/2—d/2n> <1

k=1

when d > 3nK.

For the main term, we have to consider the sum of the terms T'(k1, ..., ky,) from
Lemma For each fixed T'(k1,...,ky), we write the sum over kq,...,k, as s
nested sums % ... XsEx,(my,...,ms) where ¥, is a sum over the k; such that
i € Cy, and |Ex,(mq,...,ms)| < 1. If |Cy| = 1, then we have a sum

K
(8.8) Zfi q k2 Z m(m)m < 1,

mlk
mpleg

because of Theorem R7 For r = |C\,| > 2, we have a sum of the type
K

Z TE(erkn) .. T (ephy)q= it tho)/2 E w(m)m”.
ki,....kr=1 ml (ks k)
7nP|ET 1 eihik;
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When r = |Cy| > 2, we will show in Lemma [RI§] that the contribution from

the terms of the sum over ki, ..., k&, is bounded. Assuming this result, we have by
Lemma[BI6] that the leading term in ST (K, f, )" will come from the contributions
Nk,e,h'

n,d
If n = 2¢, the leading terms are of the form

K
S TE(erkr) .. T (epky)g Rtk

k1, kp=1
2 2
X E w(my)mi ... E w(me)mzEx,(mq,...,my).
myl(k1,kgq1) myl(kg,kag)
myplerhikoyitesyihop1kora mypleghpkopteashapkap

By Definition B and Remark combined with Proposition 812l for F; =
Ford Fiull the above sum gives

= <K|I|>)Z.

For FY, we have that Ex,(m1,...,m;) = 1 unless some of the m,’s equal some of
the r;’s. Since the r;’s are fixed constants, this simply introduces an error term of

the form O (logg_1 (K|Z |)) which does not change the final result.
If n =20+ 1, the leading terms are of the form

0 (1ogf (K|I|)) .

The final coefficient is obtained by counting the number of ways to choose the
¢ coefficients k;’s with positive sign (e; = 1) and to pair them with those with
negative sign (e; = —1). O

Lemma 8.18. Letr > 2. Then

K
Si= Y If(k).. . TE(k)g B2 N m)m” = O(1),
K, kn=1 ml(ky,..., k)

mpt(ky,..., kr)

Proof. Suppose that k1 > --- > k,.. We use repeatedly the estimates from Remark
If ky = k,., we have

Z m(m)ym” =0 (k{"'¢").

If k1 = 2k, and all the other k; are equal to ki or k,, we have

Z ﬂ_(m)mr =0 (k;ilqkl/z) .
m|(ky,..., kr)
mpt(ky,..., kr)
In all the other cases, the estimate is

Z m(m)m” =0 (k{flqkl/?’) .

m|(ky,....kr)
mpt(ky,..., kr)
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Putting things together, we get

K r—1 K
S < Zf}i{(k)rkr 1 —(r—2)k/2 ZZT}( 2]€ KIi )rfékrflq(lfr/Qfé/Q)k
=1 k=1
K A~ A~
+ Z I?E(kl) o I?E(kr)ki’*1q_k1/6_(k2+'“+kr)/2
ki kr=1
< 1
by Proposition [6.2] 0
Remark 8.19. We note that if n = 2/,
(p—1)/2 )
(p—1)°(20)!

hi,yeehn=1
There are % ways of choosing unordered pairs of the form {e;,e;}. Inside each
pair, exactly one of {e;, e;} is positive and the other is negative, so there is a total
of 2¢ choices for the signs. Finally, for each pair there are (p — 1)/2 possible values
for h; which automatically determine the value of h;.

Remark 8.20. By Theorem RBI7] the moments are given by sums of products of
covariances. Thus, they are the same as the moments of a multivariate normal
distribution. Moreover, the generating function of the moments converges due to
®3). Therefore, our random variables are jointly normal. Since the variables are
uncorrelated (cf. Theorem BI3J), it follows that our random variables (for h =

1,..., pg—l) are independent.

Recall that
p—1
SE(K,Cp) =D SH(K, f,4).
j=1

Theorem 8.21. Assume that K = g/loglog(g|Z|), g — oo and either |Z| is fized
or |Z| — 0 while g|Z| — oo. Then

SE(K,CY)
22 log(g|Z])

has a standard Gaussian limiting distribution when g — oo.

Proof. First we compute the moments and then we normalize them.
With our choice of K we have

log(K|Z|) _, logloglog(g|Z])
log(g|Z]) log(g|Z1)

Because of this, log(K|Z|) can be replaced by log(g|Z|) in our formulas.

— 1l as g— oo.
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Recall that ST (K, f,¢") = S*(K, f,4?~"); then

(p—1)/2 "

SEE.Com =2 Y. SEHK, 4"
h=1

(p=1)/2
=2" Y SEEK f,4M). SEK, fuM).
hiyehn=1

Therefore, the moment is given by

(r—1)/2
(ST(K,Cp)")p = 2% Y (SH(K, fig") . SE(E, f,0") 5,
hi,...;hn=1

First assume that n = 2¢. By Theorem [BI7] this is asymptotic to

on (p—1)/2
(2m2)¢ logé(g|I|) Z O(hi,...,hy).
hi,..., hp,=1

Finally we use equation ([89) to conclude that when n = 2¢,

(SE(K,Cp)") .~ 2"(p - 1)°(20)! (20)!

1ot
d 2001(272)¢ N2t (p—1)"log"(alZ]).

log(g/Z]) =

In particular, the variance is asymptotic to 2(’;1) log(g|Z]).
Now assume that n is odd, n = 2¢ + 1. Theorem BT yields

(S*(K.Cp"™ 5, = O (log'(alT])) -
Hence the normalized moment converges to
S*(K,C )% !
i SEELCHY) (20

g—o0 20 7 1907
( %Mg(gm))

for n = 2¢, and to zero for n odd. Hence, we have obtained the moments of the
standard Gaussian distribution. O

9. THE DISTRIBUTION OF ZEROES
We prove in this section that
Nz(Cy) —2g|Z]
V(2(p —1)/7%) log(g/Z])|

converges in mean square to

SE(K,Cy)
V@2(p —1)/n?)log(g|Z])

Then, using Theorem B.21] we get the result of Theorem [[3] since convergence in
mean square implies convergence in distribution.

Licensed to Concordia Univ. Prepared on Mon Sep 19 15:04:47 EDT 2016 for download from IP 132.205.236.66.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ORDINARY ARTIN-SCHREIER COVERS AND OTHER p-RANK STRATA 2411

Lemma 9.1. Let Fy be any of the families under consideration. Assume that
K = g/loglog(g|Z]), g — oo and either |Z| is fized or |Z| — 0 while g|Z| — oo.
<‘ Nz(Cy) - 20|Z] + S*(K. Cy)

Then )
0.
V20— 1)/ logalZ) >fd -

Proof. From equation ([4)), using the Beurling—Selberg polynomials and the ex-
plicit formula (Lemma [T1]), we deduce that

K——Zl-gl < NI(Cf) —2g|Z| 4+ S™ (K, Of) < ST (K, Cf) - S+(K, Cf) + KQ——il
and
2 NL(Cp) +20|T) — ST(K,Cp) < ST(K, Cp) — SHK, Cf) + —3,
K+1~ ’ - ’ ’ K+1
Using these two inequalities to bound the absolute value of the central term, we
obtain

((Vz(Cy) = 2iZ|+ 5*(K.C)")

) (- ),

< <K2—i1)2 + max {O, <(S‘(K, Cy) - ST(K, Cf))2>fd

+K4—i1 (S(K,Cy) - SH(K, cf)>fd} .

Now Theorem implies that
<Si(Ka Cf) - S+(Ka Cf)>]:d = <57(K7 Cf)>]:d - <S+(Ka Cf)>]:d = O(l)
For the remaining term we note that

(57 (.0 =S*(K.Cp)*)

- (s menr), (swen),

p—1

_2< > s-<K,f,wl>s+<K,f,wh>> -
J1,52=1 Fa

By Corollary [B14] this equals

12" Drosgaiz) +001) ~ 25 wog(alz1) +001) = 0(1).
Therefore,
+ 2 26\
<(NI(Cf) — 29|I| + 5 (K, Cf)) > =0 ((K—H> )
and )
<<Nz<cf> — 2917] + 5*(K, cf>> > o
V(2(p — 1)/72) log(g|Z])
when g tends to infinity and K = g/loglog(g|Z]). O
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