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Abelian surfaces over finite fields with prescribed groups
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Abstract

Let A be an abelian surface over Fq, the field of q elements. The rational points on A/Fq form
an abelian group A(Fq) � Z/n1Z × Z/n1n2Z × Z/n1n2n3Z × Z/n1n2n3n4Z. We are interested
in knowing which groups of this shape actually arise as the group of points on some abelian
surface over some finite field. For a fixed prime power q, a characterization of the abelian groups
that occur was recently found by Rybakov. One can use this characterization to obtain a set of
congruences on certain combinations of coefficients of the corresponding Weil polynomials. We
use Rybakov’s criterion to show that groups Z/n1Z × Z/n1n2Z × Z/n1n2n3Z × Z/n1n2n3n4Z

do not occur if n1 is very large with respect to n2, n3, n4 (Theorem 1.1), and occur with density
zero in a wider range of the variables (Theorem 1.2).

1. Introduction

Let E be an elliptic curve over the finite field Fp. It is well known that the points on E over
Fp form a finite abelian group E(Fp) having at most two invariant factors, that is,

E(Fp) � Z/n1Z × Z/n1n2Z, (1.1)

for some positive integers n1, n2. It is natural to ask which groups arise in this manner as
p runs through all primes and as E runs through all curves over Fp. Let S(N1, N2) be the
set of pairs of integers n1 � N1, n2 � N2 such that there exist a prime p and a curve E/Fp

for which (1.1) holds. The problem of estimating the size of S(N1, N2) was first considered by
Banks, Pappalardi, and Shparlinski [1], who gave precise conjectures and numerical evidence for
this problem. In particular, they conjectured that the ‘very split’ groups (when n1 is very large
compared to n2) occur with density zero. This was proven by Chandee, David, Koukoulopoulos,
and Smith [2], who showed that

#S(N1, N2) = o(N1N2),

when N1 � exp (N1/2+ε
2 ), or equivalently, when N2 � (log N1)2−ε. Positive density results were

also conjectured in [1] and proved in part in [2].
In this paper, we examine analogous questions for abelian surfaces over finite fields. Here

and throughout, q will denote the prime power pr, and A will denote an abelian surface over
the finite field Fq. The points on A over Fq possess the structure of a finite abelian group A(Fq)
having at most four invariant factors, that is,

A(Fq) � Z/n1Z × Z/n1n2Z × Z/n1n2n3Z × Z/n1n2n3n4Z, (1.2)

for some positive integers n1, n2, n3, n4. For the sake of convenience, we will use the notation
G(n1, n2, n3, n4) to refer to the group on the right-hand side of (1.2). We then want to study
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which of the groups G(n1, n2, n3, n4) actually occur when we vary over all finite fields Fq and
over all abelian surfaces A/Fq.

For fixed q, a characterization of the groups occurring as the group of points on a general
abelian variety was recently found by Rybakov [10, 11]. Rybakov’s elegant criterion relates the
Newton polygon of the characteristic polynomial of the variety to the Hodge polygon of the
group. The work of Rybakov may be viewed as generalizing Rück’s characterization for elliptic
curves [8] to abelian varieties of any dimension. We give a detailed description of these results
in Section 2.

As with the case of elliptic curves, we expect that the ‘very split’ groups G(n1, n2, n3, n4)
(namely, when n1, n2 are large with respect to n3, n4) are less likely to occur. Rybakov’s
criterion, for example, shows that whenever there is an abelian variety with N points over Fq,
the cyclic group of order N will always occur. This is compatible with the general philosophy
of the Cohen–Lenstra heuristics, which predict that random abelian groups naturally occur
with probability inversely proportional to the size of their automorphism groups. Note that
the very split groups have many more automorphisms than the cyclic group of the same size.
We refer the reader to [3] or [6, Theorem 1.2.10] for an exact count.

We now state our main results. We recall that an abelian variety defined over a field K is
simple if it is not K-isogenous to a product of abelian varieties of lower dimension. Our first
result is that some groups never occur for simple abelian surfaces over Fq. In particular, when
n1 is too large with respect to n2, n3, n4, the group G(n1, n2, n3, n4) does not arise as the group
of points on any simple abelian variety over any finite field.

Theorem 1.1. Suppose that n1, n2, n3, n4 are positive integers. If

n1 � 60n
1/4
2 n

3/2
3 n

3/4
4 + 1,

then for every q, there is no simple abelian surface A/Fq with A(Fq) � G(n1, n2, n3, n4).

This is very different from the case of elliptic curves where one cannot rule out the possibility
of occurrence for the group Z/n1Z × Z/n1n2Z merely based on the relative sizes of n1 and n2.
For instance, while the group Z/n1Z × Z/n1Z is very unlikely to occur as the group of points
for some elliptic curve [2], and while examples of such groups are known not to occur at all [1],
it is quite likely that there are infinitely many examples of such groups that arise in this way.
In particular, this would follow from the standard conjecture that there are infinitely many
primes of the form n2

1 + 1.
We also show that fewer groups occur in a probabilistic sense. Our next result essentially

says that if n1 or n2 is very large compared to n3 and n4, then G(n1, n2, n3, n4) occurs
with probability zero. Given N1, N2, N3, N4 � 1, we define S(N1, N2, N3, N4) to be the set
of quadruples (n1, n2, n3, n4) for which Nj � nj � 2Nj for 1 � j � 4 and there exist a prime
power q and a simple abelian surface A/Fq with A(Fq) � G(n1, n2, n3, n4). Throughout, we
write f = o(g) as x → ∞ if f/g → 0 as x → ∞.

Theorem 1.2. If

N1N
1/4
2

N
1/2
3 N

1/4
4

→ ∞,

as N2N4 → ∞, then

#S(N1, N2, N3, N4) = o(N1N2N3N4),

as N2N4 → ∞.
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Remark 1.3. Just as this work was accepted for publication, Pierre Le Boudec shared
with us a proof that G(n1, n2, n3, n4) does not occur at all for n1n

1/4
2 /n

1/2
3 n

1/4
4 large

enough. In particular, this means that the conclusion of Theorem 1.1 can be strengthened
to #S(N1, N2, N3, N4) = 0. Unfortunately, it is not quite as easy as with the elliptic curve case
to say what one ought to expect for the distribution of groups in this setting. This is due to the
fact that the criteria for existence (see Theorems 2.3 and 2.4) are more complicated in higher
dimensions. In fact, neither our proofs nor the proof that Le Boudec shared with us seem to
use the full strength of Rybakov’s criteria.

2. Weil polynomials and groups of abelian surfaces

A classification of simple abelian varieties over Fq (up to Fq-isogeny) is given by Tate–Honda
theory, which gives a one-to-one correspondence between isogeny classes of simple abelian
varieties over Fq and conjugacy classes of Weil numbers (algebraic integers whose conjugates
have absolute value q1/2). This classification can be stated using the characteristic polynomial
of the Frobenius endomorphism πA of A/Fq. This polynomial, which we denote by fA(T ),
determines A up to isogeny, and it has Weil numbers as its roots. For an abelian surface A/Fq,
we write

fA(T ) = T 4 + a1T
3 + a2T

2 + a1qT + q2.

The number of Fq-rational points on A is equal to fA(1) and hence is an invariant of the isogeny
class. The fact that the roots of fA(T ) are Weil numbers implies that

(
√

q − 1)4 � #A(Fq) � (
√

q + 1)4. (2.1)

If A is a simple abelian surface, then fA(T ) = hA(T )e where hA(T ) is an irreducible
polynomial in Z[T ] whose roots are Weil numbers. Furthermore, the endomorphism algebra
EndFq

(A) ⊗ Q is a field if and only if e = 1. Computing the local invariants of the algebra
EndFq

(A) ⊗ Q allows one to obtain a correspondence between the set of simple abelian surfaces
over Fq such that EndFq

(A) ⊗ Q is a field and the set of irreducible polynomials f(T ) of
degree 4 whose roots are Weil numbers and whose monic irreducible divisors fi(T ) over
Qp have integer values of νp(fi(0))/νp(q). Here and throughout, we use the notation νp to
denote the usual p-adic valuation. Rück [9] gave the following explicit characterization of these
polynomials.

Theorem 2.1 (Rück). The set of fA(T ) for all abelian varieties A over Fq of dimension 2
whose algebra EndFq

(A) ⊗ Q is a field is equal to the set of polynomials f(T ) = T 4 + a1T
3 +

a2T
2 + a1qT + q2 where the integers a1 and a2 satisfy the conditions

(a) |a1| < 4q1/2, 2|a1|q1/2 − 2q < a2 < a2
1/4 + 2q;

(b) a2
1 − 4a2 + 8q is not a square in Z; and

(c) either
(i) νp(a1) = 0, νp(a2) � r/2 and (a2 + 2q)2 − 4qa2

1 is not a square in Zp;
(ii) νp(a2) = 0; or
(iii) νp(a1) � r/2, νp(a2) � r, and f(T ) has no root in Zp.

The polynomials fA(T ) corresponding to simple abelian surfaces A over Fq whose algebra
EndFq

(A) ⊗ Q is not a field are much rarer. They can be described explicitly as well, see
[13, Theorem 4.1] and [14, Lemma 1].
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Theorem 2.2 (Waterhouse and Xing). The characteristic polynomial fA(T ) of any simple
abelian variety A of dimension 2 over Fq whose algebra EndFq

(A) ⊗ Q is not field must be of
the form

(a) fA(T ) = (T 2 − q)2 and r is odd;
(b) fA(T ) = (T 2 + q)2, r is even, and p ≡ 1 (mod 4); or
(c) fA(T ) = (T 2 ± q1/2T + q)2, r is even, and p ≡ 1 (mod 3).

The group structures for these ‘exceptional’ polynomials fA(T ) were studied by Xing [14, 15].
In the respective cases (corresponding to Theorem 2.2), Xing showed that the group structures
which arise are precisely

(a) (Z/(q − 1)Z)2, (Z/2Z)2 × (Z/((q − 1)/2)Z)2, or Z/2Z × Z/((q − 1)/2)Z × Z/(q − 1)Z;
(b) (Z/(q + 1)Z)2; or
(c) (Z/(q ± q1/2 + 1)Z)2.

We refer the reader to [14] for a precise description of when each group corresponding to
the first case arises. Thus, the abelian surfaces A whose algebra EndFq

(A) ⊗ Q is not a field
give rise to very few groups G(n1, n2, n3, n4). More importantly, n1, n2 � 2 for all such groups,
and hence they do not satisfy the conditions of Theorem 1.1 or Theorem 1.2. Therefore, we
exclude this case from consideration for the remainder of the paper.

For the typical case of abelian surfaces whose algebra is a field, there is a very elegant
criterion due to Rybakov [10, 11] that characterizes those isogeny classes which contain a
variety A with A(Fq) � G(n1, n2, n3, n4). The result of Rybakov applies to abelian varieties of
any dimension g � 1. We state it below in full generality and then for the particular case of
abelian surfaces. We first need some definitions.

Let � be a prime, and let Q(T ) =
∑

i QiT
i be a polynomial of degree d with Q(0) = Q0 �= 0.

The Newton polygon Np�(Q) is the boundary (without vertical lines) of the lower convex hull
of the points (i, ν�(Qi)) for 0 � i � d in R2. Now let 0 � m1 � m2 � . . . � mr be nonnegative
integers, and let H =

⊕r
i=1 Z/�miZ. The Hodge polygon Hp�(H, r) is the convex polygon with

vertices (i,
∑r−i

j=1 mj) for 0 � i < r. Given an abelian group G, we let G� denote the �-primary
component of G. The following is the main result of [10].

Theorem 2.3 (Rybakov). Let A be an abelian variety of dimension g over a finite field
whose algebra EndFq

(A) ⊗ Q is a field. Let fA(T ) denote its characteristic polynomial, and let
G be an abelian group of order fA(1) that can be generated by 2g or fewer elements. Then G
is the group of points on some variety in the isogeny class of A if and only if Np�(fA(1 − T ))
lies on or above Hp�(G�, 2g) for every prime number �.

The preceding theorem is the original formulation of [10], but it is easy to restate the theorem
without any reference to the Newton polygon or the Hodge polygon. Namely, we can state the
theorem in terms of the divisibility of the derivatives of fA(T ) at T = 1. We present this version
below.

Theorem 2.4 (Rybakov). Let A be an abelian variety of dimension g over a finite field
whose algebra EndFq

(A) ⊗ Q is a field. Let fA(T ) denote its characteristic polynomial, and let

G = Z/N1Z × . . . × Z/N2gZ where N1 | N2 | . . . | N2g,
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and such that #G = N1 . . . N2g = fA(1). Then G is the group of points on some variety in the
isogeny class of A if and only if

2g−k∏
j=1

Ni divides
f

(k)
A (1)
k!

for k = 0, . . . , 2g − 1.

Proof. We first write the Taylor expansion

fA(1 − T ) =
2g∑

k=0

f
(k)
A (1)
k!

(−T )k.

For each prime �, the condition that Np�(fA(1 − T )) lies on or above Hp�(G�, 2g) means that

ν�

⎛
⎝2g−k∏

j=1

Nj

⎞
⎠ � ν�

(
f

(k)
A (1)
k!

)
for k = 0, . . . , 2g − 1.

By putting all of the primes together, we see that
2g−k∏
j=1

Nj divides
f

(k)
A (1)
k!

for k = 0, . . . , 2g − 1.

Recall that we always use the notation

G(n1, n2, n3, n4) � Z/n1Z × Z/n1n2Z × Z/n1n2n3Z × Z/n1n2n3n4Z,

for positive integers n1, n2, n3, n4 to describe the group of points on an abelian variety. In
particular, #G(n1, n2, n3, n4) = n4

1n
3
2n

2
3n4. Thus, for the case of abelian surfaces, we can rewrite

the conditions of Theorem 2.4 as follows.

Corollary 2.5. Let A/Fq be an abelian surface, and suppose that EndFq
(A) ⊗ Q is a field.

Let fA(T ) = T 4 + a1T
3 + a2T

2 + a1qT + q2 denote its Weil polynomial. Then the isogeny class
of A contains a variety with group of points isomorphic to G(n1, n2, n3, n4) if and only if

n4
1n

3
2n

2
3n4 = fA(1) = q2 + a1q + a2 + a1 + 1 (2.2)

and

4 + 3a1 + 2a2 + qa1 ≡ 0 (mod n3
1n

2
2n3), (2.3)

6 + 3a1 + a2 ≡ 0 (mod n2
1n2), (2.4)

4 + a1 ≡ 0 (mod n1). (2.5)

We remark that Corollary 2.5 implies that if fA(1) = N , then the cyclic group of order N
occurs as a group of points on some abelian surface in the isogeny class of A since in that case
we have n1 = n2 = n3 = 1, so the congruences (2.3)–(2.5) are trivially satisfied.

3. Key proposition

In this section, we prove the following key proposition. As is somewhat common, for any real
number x, we write ||x|| for the distance between x and its nearest integer neighbor. To ease
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notation, we define

δ = δ(n1, n2, n3, n4) =

{
1 if 2n3

√
n2n4 ∈ Z,

‖2n3
√

n2n4‖ otherwise,
(3.1)

for any positive integers n1, n2, n3, n4.

Proposition 3.1. Suppose that A/Fq is an abelian surface and that EndFq
(A) ⊗ Q is a

field. Suppose further that A(Fq) � G(n1, n2, n3, n4). Then

n1 <
10n

1/2
3 n

1/4
4

δn
1/4
2

+
1

n
3/4
2 n

1/2
3 n

1/4
4

.

Theorems 1.1 and 1.2 will follow from Proposition 3.1. Theorem 1.1 follows by specifying
lower bounds for ‖√m‖ that are valid for every integer m. For the details, see Section 4.
Theorem 1.2 follows from the fact that the triple sequence 2n3

√
n2n4 is uniformly distributed

modulo 1; we will prove this in Section 5.
First, we use the congruences of Corollary 2.5 to derive a simpler congruence on a1.

Lemma 3.2. Suppose that q, a1, a2, n1, n2, n3, and n4 satisfy (2.2)–(2.5). Then

a1 ≡ −2(q + 1) (mod n2
1n2).

Proof. Reducing (2.2) and (2.3) modulo n3
1n

2
2 yields

q2 + a1q + a2 + a1 + 1 ≡ 0 (mod n3
1n

2
2), (3.2)

4 + 3a1 + 2a2 + qa1 ≡ 0 (mod n3
1n

2
2). (3.3)

Reducing the above congruences modulo n2
1n2 and taking their difference gives

2a1 + a2 + 3 − q2 ≡ 0 (mod n2
1n2).

Subtracting this from (2.4), we obtain

a1 + 3 + q2 ≡ 0 (mod n2
1n2). (3.4)

The remainder of the proof is devoted to showing that n2
1n2 | (q − 1)2, which together with (3.4)

implies the desired congruence a1 ≡ −2(q + 1) (mod n2
1n2).

Taking twice (3.2) and subtracting off (3.3) yields

2q2 + a1q − a1 − 2 ≡ 0 (mod n3
1n

2
2). (3.5)

From (3.4), we know that there is an integer k such that a1 = −3 − q2 + kn2
1n2. After some

slight rearrangement, plugging this expression for a1 into (3.5) gives

kn2
1n2(q − 1) − (q − 1)3 ≡ 0 (mod n3

1n
2
2). (3.6)

Working prime by prime, we will show that (3.6) implies that n2
1n2 | (q − 1)2. To this end,

let � be an arbitrary prime, and suppose that ν�(n2
1n2) = r. Then we want to show that

ν�((q − 1)2) � r. Assume for the sake of contradiction that ν�((q − 1)2) < r. Since
ν�(kn2

1n2) � r, it follows that ν�(kn2
1n2 − (q − 1)2) = ν�((q − 1)2), and hence

ν�(kn2
1n2(q − 1) − (q − 1)3) = ν�(q − 1) + ν�(kn2

1n2 − (q − 1)2) = 3ν�(q − 1) <
3r

2
.

On the other hand, since n3
1n

2
2 divides kn2

1n2(q − 1) − (q − 1)3, it follows that

3ν�(n1) + 2ν�(n2) � ν�(kn2
1n2(q − 1) − (q − 1)3) <

3r

2
=

3
2
(2ν�(n1) + ν�(n2)).

However, this implies that ν�(n2) < 0, which is impossible since n2 is an integer.
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Lemma 3.3. Suppose that A/Fq is an abelian surface, EndFq
(A) ⊗ Q is a field, and A(Fq) �

G(n1, n2, n3, n4). If fA(T ) = T 4 + a1T
3 + a2T

2 + qa1T + q2 is the characteristic polynomial of
A/Fq, then there exists an integer k such that

a1 = kn2
1n2 − 2(q + 1)

and

2n3
√

n2n4

(√
q − 1

√
q + 1

)2

< k < 2n3
√

n2n4

(√
q + 1

√
q − 1

)2

. (3.7)

Proof. By Theorem 2.1(a), we know that −4
√

q < a1 < 4
√

q. By Lemma 3.2, there exists
an integer k such that a1 = n2

1n2k − 2(q + 1). Substituting this into the bounds for a1 and
adding 2(q + 1) to each side of the inequalities yields

2q − 4
√

q + 2 < n2
1n2k < 2q + 4

√
q + 2.

Factoring and dividing through by n2
1n2 allows us to obtain

2(
√

q − 1)2

n2
1n2

< k <
2(
√

q + 1)2

n2
1n2

.

Since #A(Fq) = n4
1n

3
2n

2
3n4, the Weil bound (2.1) implies that

(
√

q − 1)2

n3
√

n2n4
� n2

1n2 � (
√

q + 1)2

n3
√

n2n4
.

Together these bounds imply (3.7).

For q large enough, the interval from Lemma 3.3 will contain at most one integer k. The
following lemma makes this statement precise. Recall the definition of δ given by (3.1).

Lemma 3.4. If
√

q � 10n3
√

n2n4/δ, then the interval (3.7) contains no integral values of k
unless 2n3

√
n2n4 is an integer, in which case k = 2n3

√
n2n4.

Proof. To further ease notation, let m = 2n3
√

n2n4. Note that the interval (m − δ,m + δ)
does not contain an integer unless m = 2n3

√
n2n4 is itself an integer, in which case it is the

only such integer. Since(√
q + 1

√
q − 1

)2

= 1 +
4
√

q

(
√

q − 1)2
and

(√
q − 1

√
q + 1

)2

= 1 − 4
√

q

(
√

q + 1)2
,

it follows that the interval (3.7) is contained in the interval (m − δ,m + δ) if and only if

m
4
√

q

(
√

q − 1)2
� δ.

Factoring the latter inequality and dividing by δ yields

0 �
(
√

q − 2m + δ − 2
√

m2 + mδ

δ

)(
√

q − 2m + δ + 2
√

m2 + mδ

δ

)
. (3.8)

Now, since

2m + δ − 2
√

m2 + mδ

δ
� 1,
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it follows that (3.8) holds if and only if

√
q � 2m + δ + 2

√
m2 + mδ

δ
.

However,

2m + δ + 2
√

m2 + mδ

δ
� 2m + 1 + 2

√
m2 + m + 1/4
δ

=
4m + 2

δ
� 5m

δ
,

and so (3.8) holds if
√

q � 5m/δ = 10n3
√

n2n4/δ.

Proof of Proposition 3.1. First, suppose that k = 2n3
√

n2n4 is an integer and

a1 = kn2
1n2 − 2(q + 1) = 2n2

1n
3/2
2 n3n

1/2
4 − 2(q + 1).

Then substitution into (2.2) gives

a2 = n4
1n

3
2n

2
3n4 − 1 −

(
2n2

1n
3/2
2 n3n

1/2
4 − 2(q + 1)

)
(q + 1) − q2.

Under these assumptions, we then find that

a2
1 − 4a2 + 8q = 0.

According to Theorem 2.1(b), this contradicts the assumption that EndFq
⊗ Q is field.

Therefore, by Lemmas 3.3 and 3.4, regardless of whether 2n3
√

n2n4 is an integer, we see
that if A(Fq) � G(n1, n2, n3, n4) and EndFq

⊗ Q is a field, then
√

q < 10n3
√

n2n4/δ. Using this
together with the Weil bound (2.1), we have that

n1n
3/4
2 n

2/4
3 n

1/4
4 � √

q + 1 < 10n3
√

n2n4/δ + 1.

Whence,

n1 <
10n

1/2
3 n

1/4
4

δn
1/4
2

+
1

n
3/4
2 n

1/2
3 n

1/4
4

.

4. Proof of Theorem 1.1

The proof of Theorem 1.1 can be deduced from the following simple observation, which gives
a lower bound for ‖2n3

√
n2n4‖. As usual, for any real number x, we write [x] for the largest

integer less than or equal to x, and {x} = x − [x] for the fractional part of x.

Lemma 4.1. Let m be an integer that is not a perfect square. Then

‖
√

m‖ >
1

3
√

m
.

Proof. Since
√

m = [
√

m] + {√m}, upon squaring both sides, we find that

m = [
√

m]2 + 2{
√

m}[
√

m] + {
√

m}2

= [
√

m]2 + (
√

m + [
√

m]){
√

m}
� [

√
m]2 + 2

√
m{

√
m}.

Therefore, since 1 < m − [
√

m]2, we have {√m} > 1/2
√

m.
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Similarly, since we can write
√

m = [
√

m] + 1 − (1 − {√m}), we have that

m = ([
√

m] + 1)2 − 2(1 − {
√

m})([
√

m] + 1) + (1 − {
√

m})2

= ([
√

m] + 1)2 − (
√

m + [
√

m] + 1)(1 − {
√

m})
� ([

√
m] + 1)2 − (2

√
m + 1)(1 − {

√
m}).

Therefore, since 1 � ([
√

m] + 1)2 − m, we obtain 1 − {√m} � 1/(2
√

m + 1) > 1/3
√

m.

Proof of Theorem 1.1. In light of Theorem 2.2, we need to consider only abelian surfaces A
with EndFq

(A) ⊗ Q a field. In this case, Proposition 3.1 applies, and if there is a prime power
q and an abelian surface A/Fq with group G(n1, n2, n3, n4), then

n1 <
10n

1/2
3 n

1/4
4

δn
1/4
2

+
1

n
3/4
2 n

1/2
3 n

1/4
4

� 10n
1/2
3 n

1/4
4

δn
1/4
2

+ 1,

where δ is as defined by (3.1). By Lemma 4.1,

n1 < 60n
1/4
2 n

3/2
3 n

3/4
4 + 1,

since δ � (6n3
√

n2n4)−1.

5. Proof of Theorem 1.2

In this section, we use the standard notation f � g to mean that there exists a positive constant
c such that |f | � cg. We also use the notation n � N (in a somewhat nonstandard way) as a
shorthand for N � n � 2N .

To prove Theorem 1.2, we use the fact that for most triples of integers (n2, n3, n4) with
nj � Nj (2 � j � 4), the distance between 2n3

√
n2n4 and the nearest integer is larger than

any function tending to zero as N2N4 → ∞. This follows from the uniform distribution of
2n3

√
n2n4 modulo one; see Theorem 5.6. For the sake of completeness, we review much of the

relevant material here.
Let

T (N2, N3, N4) = {(n2, n3, n4) : n2 � N2, n3 � N3, n4 � N4},
and let {f(n2, n3, n4) : n2, n3, n4 � 1} be any triply indexed sequence of real numbers. For
0 � α < β � 1, let

Zf (N2, N3, N4;α, β) = #{(n2, n3, n4) ∈ T (N2, N3, N4) : α � {f(n2, n3, n4)} � β},
where, as in the previous section, {f(n2, n3, n4)} denotes the fractional part of f(n2, n3, n4).
We say that the sequence f(n2, n3, n4) is uniformly distributed modulo one if

lim
N2,N3,N4→∞

Zf (N2, N3, N4;α, β)
N2N3N4

= β − α.

By Weyl’s criterion, this is equivalent to showing that

Ek(N2, N3, N4) :=
∑

n2�N2,
n3�N3,
n4�N4

e(kf(n2, n3, n4)) = o(N2N3N4),

for every integer k �= 0. As usual, we have written e(x) = e2πix. We can put this equivalence
in quantitative form using the Selberg polynomials. This is explained in [7, Chapter 1] for a
sequence of one variable. The proof for a sequence of three variables f(n2, n3, n4) follows along
the same lines. The next theorem is then the analog of [7, Chapter 1, Theorem 1] for triple
sequences.
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Theorem 5.1. Let f(n2, n3, n4) be a sequence of real numbers, and let 0 � α � β � 1.
Then

|Zf (N2, N3, N4;α, β) − (β − α)#T (N2, N3, N4)|

� #T (N2, N3, N4)
K + 1

+ 2
K∑

k=1

(
1

K + 1
+ min

(
β − α,

1
πk

))
|Ek(N2, N3, N4)|, (5.1)

for any positive integers N2, N3, N4, and K.

Proof. For each positive integer K, let

S+
K(n) =

∑
−K�k�K

Ŝ+
K(k)e(kn)

be the Selberg polynomial upper bounding the characteristic function of [α, β] as defined in [7,
p. 6]. Then

Zf (N2, N3, N4;α, β) �
∑

n2�N2
n3�N3
n4�N4

S+
K(f(n2, n3, n4))

=
∑

−K�k�K

Ŝ+
K(k)

∑
n2�N2
n3�N3
n4�N4

e(kf(n2, n3, n4)).

Now, since

Ŝ+
K(0) = β − α +

1
K + 1

and
E0(N2, N3, N4) = #T (N2, N3, N4),

we have that

Zf (N2, N3, N4;α, β) − (β − α)#T (N2, N3, N4)

� #T (N2, N3, N4)
K + 1

+
∑

−K�k�K
k �=0

Ŝ+
K(k)Ek(N2, N3, N4).

It follows from properties of Selberg polynomials that

|Ŝ+
K(k)| � 1

K + 1
+ min

(
β − α,

1
π|k|

)
,

for 0 < |k| � K (see [7, p. 8], for example). Combining the inequalities from above, we have

Zf (N2, N3, N4;α, β) − (β − α) #T (N2, N3, N4)

� #T (N2, N3, N4)
K + 1

+ 2
∑

1�k�K

(
1

K + 1
+ min

(
β − α,

1
π|k|

))
|Ek(N2, N3, N4)|.

Using the Selberg polynomials S−
K(n) as defined in [7, p. 6], the other inequality follows, as

does the theorem.

For the remainder of the paper, we will specialize to the sequence f(n2, n3, n4) = 2n3
√

n2n4.
We now bound the sum appearing in Theorem 5.1 to show that the sequence 2n3

√
n2n4 is

uniformly distributed modulo 1. In order to obtain our result without any conditions on the
relative sizes of the parameters N2, N3, N4, we bound the sum appearing in (5.1) in two different
ways (Lemmas 5.3 and 5.5). First, we use the following result from [5, p. 77].
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Lemma 5.2. Let g(t) be a real, continuously differentiable function on the interval [a, b],
with |g′(t)| � λ > 0, and let N > 0. Then∑

a�n�b

min {N, 1/‖g(n)‖} � (|g(b) − g(a)| + 1)
(

N +
1
λ

log(b − a + 2)
)

.

Lemma 5.3. For every ε > 0 and K � 1,∑
k�K

1
k
|Ek(N2, N3, N4)| � (N2N4)1/2+εN3K + (N2N4)1+ε log 2K.

Proof. Let
bn =

∑
n2�N2

∑
n4�N4n2n4=n

1,

and note that bn � nε/2. Recall the well-known bound∑
n�N

e(αn) � min{N, 1‖α‖}.

See [4, p. 199], for example. Applying Lemma 5.2, we have∑
k�K

1
k
|Ek(N2, N3, N4)| =

∑
k�K

1
k

∑
N2N4�n�4N2N4

bn

∑
n3�N3

e(2kn1/2n3)

� (N2N4)ε/2
∑
k�K

1
k

∑
N2N4�n�4N2N4

min
{

N3,
1

‖2kn1/2‖

}

� (N2N4)ε/2
∑
k�K

(N2N4)1/2(N3 + k−1(N2N4)1/2 log(2N2N4))

� (N2N4)ε((N2N4)1/2N3K + (N2N4) log 2K).

We now bound the same sum using the following consequence of the van der Corput method
found in [12, p. 94].

Lemma 5.4. Let g(t) be a twice continuously differentiable function on the interval [a, b]
such that |g′′(t)| � λ > 0. Then∑

a�n�b

e(g(n)) � (b − a + 1)λ1/2 + λ−1/2.

Lemma 5.5. For every K � 1,∑
k�K

1
k
|Ek(N2, N3, N4)| � K1/2N

3/2
3 (N2N4)3/4 + N

1/2
3 (N2N4)3/4.

Proof. We first apply Lemma 5.4 with g(t) = 2kn3

√
n2t, noting that |g′′(t)| =

kn3
√

n2/(2t3/2). This yields∑
k�K

1
k
|Ek(N2, N3, N4)| �

∑
k�K

1
k

∑
n2�N2,
n3�N3

(N1/4
4 (kn3

√
n2)1/2 + N

3/4
4 (kn3

√
n2)−1/2)

� N
1/4
4 K1/2N

3/2
3 N

5/4
2 + N

3/4
4 N

1/2
3 N

3/4
2 .
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Then, applying Lemma 5.4 again with g(t) = 2kn3

√
n4t, we see that the same bound holds

with the roles of N2 and N4 reversed. Therefore, we have∑
k�K

1
k
|Ek(N2, N3, N4)| � K1/2N

3/2
3 min{N5/4

2 N
1/4
4 , N

1/4
2 N

5/4
4 } + N

1/2
3 (N2N4)3/4

� K1/2N
3/2
3 (N2N4)3/4 + N

1/2
3 (N2N4)3/4.

Combining Lemmas 5.3 and 5.5, we now show that the triple sequence 2n3
√

n2n4 is uniformly
distributed modulo 1.

Theorem 5.6. Let N2, N3, N4 � 1, and 0 � α < β � 1. Then

lim
N2N4→∞

Zf (N2, N3, N4;α, β)
N2N3N4

= β − α.

Remark 5.7. Note that we do not require that each of N2, N3, and N4 tends to infinity in
the above limit. Rather, we require only that the product N2N4 → ∞.

Proof. Fix 0 < ε < 1
16 . Applying Lemmas 5.3 and 5.5 with K = (N2N4)1/4, we see that∑

k�K

1
k
|Ek(N2, N3, N4)| � (N2N4)3/4+εN3 + min{(N2N4)1+ε, N

3/2
3 (N2N4)7/8}

� (N2N4)3/4+εN3 + (N2N4)15/16+εN
3/4
3 .

Since (with this same choice of K) we have N2N3N4/K = (N2N4)3/4N3, using the above bound
in Theorem 5.1 yields the theorem.

Proof of Theorem 1.2. Let F (N2, N4) be any function tending to infinity with N2N4 and
satisfying the bound

F (N2, N4) � N1N
1/4
2

18N
1/2
3 N

1/4
4

. (5.2)

Without loss of generality, we may assume that N2N4 is large enough that F (N2, N4) � 1.
Hence, we may write

#S(N1, N2, N3, N4) = #S1(N1, N2, N3, N4) + #S2(N1, N2, N3, N4),

where

S1(N1, N2, N3, N4) := {(n1, n2, n3, n4) ∈ S(N1, N2, N3, N4) : ‖2n3
√

n2n4‖ � 1/F (N2, N4)},
S2(N1, N2, N3, N4) := {(n1, n2, n3, n4) ∈ S(N1, N2, N3, N4) : ‖2n3

√
n2n4‖ > 1/F (N2, N4)}.

It follows from Theorem 5.6 that #S1(N1, N2, N3, N4) = o(N1N2N3N4) as N2N4 → ∞. On the
other hand, if (n1, n2, n3, n4) ∈ S2(N1, N2, N3, N4), then by Proposition 3.1

N1 � n1 <
10n

1/2
3 n

1/4
4

||2n3
√

n2n4||n1/4
2

+
1

n
3/4
2 n

1/2
3 n

1/4
4

<
10(2N3)1/2(2N4)1/4

(1/F (N2, N4))N
1/4
2

+
1

N
3/4
2 N

1/2
3 N

1/4
4

< 18F (N2, N4)
N

1/2
3 N

1/4
4

N
1/4
2

.
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However, this contradicts our choice of F (N2, N4) that satisfies (5.2). Therefore, we con-
clude that S2(N1, N2, N3, N4) is empty, and hence #S(N1, N2, N3, N4) = o(N1N2N3N4) as
N2N4 → ∞.
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