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Abstract. We study the one-level density for families of L-functions asso-

ciated with cubic Dirichlet characters defined over the Eisenstein field. We

show that the family of L-functions associated with the cubic residue symbols
χn with n square-free and congruent to 1 modulo 9 satisfies the Katz-Sarnak

conjecture for all test functions whose Fourier transforms are supported in

(−13/11, 13/11), under GRH. This is the first result extending the support
outside the trivial range (−1, 1) for a family of cubic L-functions. This implies

that a positive density of the L-functions associated with these characters do

not vanish at the central point s = 1/2. A key ingredient in our proof is a
bound on an average of generalized cubic Gauss sums at prime arguments,

whose proof is based on the work of Heath-Brown and Patterson [23, 22].

1. Introduction

Let F be a family of primitive Dirichlet characters χ defined over Q, or more
generally over a number field K. From the work of Dirichlet and Hecke, we know
that the L-functions L(s, χ) satisfy a functional equation relating the values of
L(s, χ) to those of L(1 − s, χ), and the distribution of the non-trivial zeros of
L(s, χ) in the central critical strip is of particular interest.

The one-level density for the family F measures the density of the low-lying
zeros (i.e. the zeros near s = 1/2) of the L-functions associated with the characters
in F . Following the work of Montgomery [36], and then Katz and Sarnak [29, 28],
we believe that the statistics of the low-lying zeros of these L-functions match those
of the eigenvalues of random matrices in a certain symmetry group associated with
the family F , usually symplectic, orthogonal, or unitary.

Let φ be an even Schwartz test function. For a fixed character in F , the sum∑
ρ=1/2+iγ
L(ρ,χ)=0

φ
(γ logX

2π

)

counts, with multiplicity, the zeros of L(s, χ) that are within O(1/ logX) of the
central critical point s = 1/2. To study the statistics of these zeros, one has to
consider the average over the family. In this paper, we consider smoothed averages.

Key words and phrases. One-level density, low-lying zeros, non-vanishing, cubic Dirichlet char-
acters, cubic Gauss sums, Hecke L-functions.
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Let w : R→ (0,∞) be an even Schwartz function, and

D(X;φ,F ) =
1

AF (X)

∑
χ∈F

w

(
N(cond(χ))

X

) ∑
γ

L(1/2+iγ,χ)=0

φ
(γ logX

2π

)

AF (X) =
∑
χ∈F

w

(
N(cond(χ))

X

)
,

where N(cond(χ)) is the norm of the conductor of the primitive character χ. The
one-level density is then defined as

lim
X→∞

D(X;φ,F ).

Conjecture 1.1 (Katz-Sarnak [28, 29]). With the notation above, we have

lim
X→∞

D(X;φ,F ) =

∫ ∞
−∞

φ(x) WG(x) dx,

where WG(x) measures one-level density of eigenvalues near 1 of the classical com-
pact group G = G(F ) corresponding to the symmetry type of the family F .

We refer the reader to [28, page 409] for the precise formulae of the densities
WG(x) for the different symmetry groups G.

The conjecture of Katz and Sarnak is still open, but evidence for the conjecture
can be obtained by proving that the conjecture holds for test functions φ whose

Fourier transforms φ̂ have compact support.
Assuming GRH, Özlük and Snyder [38] showed that the one-level density for the

family of quadratic characters satisfies the Katz-Sarnak conjecture with symplectic

symmetry for test functions φ with φ̂ supported in (−2, 2). The same result was
obtained over functions fields by Rudnick [44] and Bui and Florea [4] (who also
identify some lower order terms).

Besides the family of quadratic Dirichlet L-functions, Conjecture 1.1 has been
confirmed (with limited support) for many other families of L-functions, such as
different types of Dirichlet L-functions [11, 18, 25, 34, 38, 43], L-functions with
characters of the ideal class group of the imaginary quadratic field Q(

√
−D) [15],

automorphic L-functions [26, 12, 27, 41, 42], elliptic curve L-functions [2, 3, 6, 24,
35, 46], Hecke L-functions for characters of infinite order [45], symmetric powers of
GL(2) L-functions [13, 19], and a family of GL(4) and GL(6) L-functions [13].

We study in this paper the one-level density for families of primitive cubic Dirich-
let characters defined over the Eisenstein field Q(ω), where ω = e2πi/3. Many new
conceptual and technical difficulties appear when considering cubic (and not qua-
dratic) characters, and the results in the literature are fewer and weaker. Meisner
[33] and Cho and Park [5] showed that, under GRH, the one-level density for fam-
ilies of cubic characters over Q satisfies the Katz-Sarnak conjecture with unitary

symmetry for test functions φ with φ̂ supported in (−1, 1). Unconditional (and
weaker) results were obtained by Gao and Zhao [17] and Meisner [33] .

The (−1, 1)-range for the support of φ̂ is a natural boundary for families attached
to Dirichlet characters, and our work provides the first example of a family of cubic
L-functions in which the support is extended past this trivial range, assuming GRH.
In the recent work [11], Drappeau, Pratt, and Radziwill computed the one-level
density over the family of all primitive Dirichlet characters, and proved the first
unconditional result extending the trivial range for this family.
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An important tool to extend the support past the trivial range for quadratic
characters is the use of Poisson summation. This is more intricate for cubic char-
acters, as Poisson summation leads to averages of Gauss sums, and while quadratic
Gauss sums are given by a simple formula, their cubic analogues exhibit chaotic
behaviour; in order to understand them, we must invoke the deep work of Kubota
and Patterson. Furthermore, other features of the cubic families seem to conspire
to make this strategy fail: for cubic characters over Q, the Gauss sums are not
defined over the ground field, and for cubic characters over Q(ω), there are “too
many characters”. For this reason, it had then become customary in the literature
to consider a thin subfamily of the cubic characters over Q(ω), as in [17, 31, 16, 10].
Only recently, moments for the whole family of cubic characters when the base field
contains the cubic root of unity were considered in the work of David, Florea and
Lalin, who computed the first moment for the whole family over function fields [7].

1.1. Statement of the results. The main result of this paper is the following
theorem, where we extend the support of the Fourier transform of the test function
for the thin family F ′3.

Theorem 1.2. Let F ′3 be the family of primitive cubic Dirichlet characters defined

by (12). Let φ be an even Schwartz function with φ̂ supported in (− 13
11 ,

13
11 ). If GRH

holds for L(s, χ) for each χ ∈ F ′3, then

lim
X→∞

D(X;φ,F ′3) =

∫ ∞
−∞

φ(x)WU (x)dx = φ̂(0),

where WU (x) is the kernel measuring the one-level density for the eigenvalues of
unitary matrices.

A folklore conjecture of Chowla predicts that L( 1
2 , χ) 6= 0 for all L-functions

L(s, χ) attached to Dirichlet characters. Over function fields, this is false, and in
a recent paper, Li [32] showed that there are infinitively many quadratic Dirichlet
L-functions such that L( 1

2 , χ) = 0 in this case. It is believed that the number of
such characters should be of density zero among all quadratic characters, which is
implied by (the function field version of) the conjecture of Katz and Sarnak. It is

well-known that proving Conjecture 1.1 for test functions where the support of φ̂
is large enough, yields a positive proportion of non-vanishing for the corresponding
set of L-functions, bringing evidence to Chowla’s conjecture. For the family of
cubic characters, one needs to extend the support beyond (−1, 1) to get a positive
proportion. Hence, by Theorem 1.2, we can prove the following result for the thin
subfamily of cubic characters.

Corollary 1.3. Let F ′3 be the family of primitive cubic Dirichlet characters defined
in (12). If GRH holds for the corresponding L-functions, then L( 1

2 , χ) 6= 0 for at
least 2/13 of the characters in F ′3.

Our result is the first result showing a positive proportion of non-vanishing for
any cubic family over number fields. Unconditionally, it is known that there are
infinitely many cubic Dirichlet characters χ such that L( 1

2 , χ) 6= 0, over Q [1]
and over Q(ω) [31]. Over function fields, a positive proportion of non-vanishing
was obtained by David, Florea and Lalin [8] for the family of cubic characters
when Fq does not contain a third root of unity (which is the equivalent of cubic
characters over Q), improving previous work [7, 14] exhibiting infinitively many
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cubic Dirichlet characters χ such that L( 1
2 , χ) 6= 0 over function fields. The proof

of [8] uses a completely different technique from this paper, based on the mollified
moments. It is interesting to compare the techniques and results, and we believe
that the results of [8] could be obtained for cubic characters over Q, where the
one-level density approach seems to fail. Of course, we would then need to assume
GRH (which is proven over function fields). We also speculate that the mollified
moments approach is more likely to succeed in obtaining a positive proportion
of non-vanishing for the full family of primitive cubic characters over Q(ω) than
the one-level density approach, as breaking the (−1, 1)-barrier using the one-level
density is harder due to the size of the family. As there is no result in the literature
for the one-level density for the full family over Q(ω), we include the following
result, which supports the Katz-Sarnak conjecture for test functions whose Fourier
transform has support in the trivial range (−1, 1).

Theorem 1.4. Let F3 be the family of primitive cubic Dirichlet characters defined

in Section 3. Let φ be an even Schwartz function with φ̂ supported in (−1, 1).
Assume GRH for L(s, χ) for each χ ∈ F3. Then,

lim
X→∞

D(X;φ,F3) =

∫ ∞
−∞

φ(x)WU (x)dx,

where WU (x) is the kernel measuring the one-level density for eigenvalues of unitary
matrices.

Finally, we state some unconditional results.

Theorem 1.5. Let F3 be the family of primitive cubic Dirichlet characters over

Q(ω) defined in Section 3. Let φ be an even Schwartz function with φ̂ supported in
(− 1

2 ,
1
2 ). Then,

lim
X→∞

D(X;φ,F ) =

∫ ∞
−∞

φ(x)WU (x)dx = φ̂(0),

where WU (x) is the kernel measuring the one-level density for eigenvalues of unitary

matrices. The same result holds for the subfamily F ′3 defined in Section 4 with φ̂
supported in (− 2

3 ,
2
3 ).

We remark that since we consider smooth sums, the support of φ̂ for the family
F ′3 in Theorem 1.5 is slightly better than the one obtained by Gao and Zhao in

[17], which requires supp(φ̂) ⊆ (− 3
5 ,

3
5 ) for the same family.

1.2. Structure of the paper. In Section 2, we collect the relevant facts about
cubic characters, cubic families and cubic Gauss sums. In Section 3, we prove The-
orem 1.4. In Section 4, we use Poisson summation to reduce the computation of
the one-level density to averages of generalized cubic Gauss sums at prime argu-
ments, and we prove Theorem 1.2, assuming the bounds for those averages given by
Theorem 4.4. We prove Theorem 4.4 in Section 5 and Section 6 by generalising the
work of Heath-Brown [22] and Heath-Brown and Patterson [23] on the distribution
of cubic Gauss sums at prime arguments. The proof of Corollary 1.3 is given in
Section 7.
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2. L-functions of cubic characters and cubic Gauss sums

2.1. Cubic Dirichlet L-functions. Let K = Q(ω), ω = e2πi/3. The ring of
integers Z[ω] of K has class number one and six units

{
±1,±ω,±ω2

}
. Each non-

trivial principal ideal n co-prime to 3 has a unique generator n ≡ 1 mod 3.
The cubic Dirichlet characters on Z[ω] are given by the cubic residue symbols.

For each prime π ∈ Z[ω] with π ≡ 1 mod 3, there are two primitive characters of
conductor π; the cubic residue symbol χπ(a) satisfying

χπ(a) =
( a
π

)
3
≡ a(N(π)−1)/3 modπ,

and its conjugate χπ = χ2
π. In general, for n ∈ Z[ω] with n ≡ 1 mod 3, the

cubic residue symbol χn is defined multiplicatively using the characters of prime
conductor by

χn(a) =
(a
n

)
3

=
∏
π|n

χπ(a)vπ(n).

Such a character χn is primitive when it is a product of characters of distinct
prime conductors, i.e. either χπ or χ2

π = χπ2 . Moreover, χn is a cubic Hecke
character of conductor nZ[ω] if χn(ω) = 1. Since(ω

n

)
3

=
∏
π|n

ωvπ(n)(N(π)−1)/3 = ω
∑
π|n vπ(n)(N(π)−1)/3 = ω(N(n)−1)/3,

we conclude that a given Dirichlet character χ is a primitive cubic Hecke character
of conductor n1n2Z[ω], co-prime to 3, provided that χ = χn, where

(1) n = n1n
2
2, where n1, n2 are square-free and co-prime, and

(2) N(n) ≡ 1 mod 9, or equivalently, N(n1) ≡ N(n2) mod 9.

Remark 2.1. Given n ∈ Z[ω], co-prime to 3, write n = n1n
2
2n

3
3, where n1n2

is square-free, and n1, n2 are co-prime. Then, the character χn modulo nZ[ω] is
induced by the primitive character χn1

χn2
2

of conductor n1n2Z[ω] unless n is a cube;
that is, n1, n2 are units.

We recall the cubic reciprocity for cubic characters.

Lemma 2.2. Let m,n ∈ Z[ω],m, n ≡ ±1 mod 3. Then,(m
n

)
3

=
( n
m

)
3
.

Let χ be a primitive cubic Hecke character to some modulus m = mZ[ω], co-
prime to 3. The completed Hecke L-series is then defined by

Λ(s, χ) = (|dK |N(m))s/2(2π)−sΓ(s)L(s, χ),

where dK = −3 is the discriminant of K.

Proposition 2.3 ([37, VII. Cor. 8.6]). The completed L-series above is entire, pro-
vided χ is primitive and m 6= Z[ω]. Futhermore, it satisfies the functional equation

Λ(s, χ) = W (χ)(Nm)−1/2Λ(1− s, χ)

where

(1) W (χ) =
∑

xmodm
(x,m)=1

χ(x)e
(
Tr(x/m

√
−3)

)
,

where x varies over a system of representatives of (Z[ω]/m)
×

.
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2.2. Explicit Formula and averaging over the family. We now state the ex-
plicit formula for cubic L-functions, which relate sums over the zeroes to sums over
the coefficients of the L-functions. Averaging over the family, we get the main term
for the one-level density, and our results are obtained by bounding the error term.

We state but not prove the next two lemmas as their proofs are standard.

Lemma 2.4. Let χ be a primitive cubic Hecke character modulo cZ[ω]. Then,
uniformly for s = σ + it satisfying |t| > 1 and −1 6 σ 6 2, or that 1/2 < σ 6 2,

(2)
L′

L
(s, χ) =

∑
|γ−t|61

1

s− ρ
+O

(
log
(
N(c)(3 + |t|)

))
where the sum runs over the zeros ρ = β + iγ of Λ(s, χ) counted with multiplicity.

Lemma 2.5. With the character as in the previous lemma, for any T > 1, there
is some T1 ∈ [T, T + 1] such that

(3)
L′

L
(σ ± iT1, χ)� log2

(
N(c)(3 + T )

)
uniformly for −1 6 σ 6 2.

Lemma 2.6 (Explicit Formula). Let χ be a primitive cubic Hecke character modulo
nZ[ω] with (n, 3) = 1, and let φ(x) be an even function of Schwartz class on R whose

Fourier transform φ̂(y) has compact support in (−v, v). Then,∑
ρ

φ
( (ρ− 1/2) logX

2πi

)
= φ̂(0)

log N(n)

logX
+O

( 1

logX

)
−
∑
p

∑
16k62

(
χ(pk) + χ(p2k)

)
φ̂

(
k log Np

logX

)
log Np

(Np)k/2 logX
,

where the implied constant depends only on φ.

Proof. Note that

G(s) := φ
((
s− 1

2

) logX

2πi

)
,

is holomorphic in −1 6 Re(s) 6 2 and satisfies

(4) G(s) = G(1− s), s2G(s)� 1.

Let T be a large real number and T1 ∈ [T, T + 1] be as in Lemma 2.5. Let R be
the rectangle with vertices 2− iT1, 2+ iT1,−1+ iT1,−1− iT1. By Cauchy’s Residue
Theorem we obtain ∑

ρ

G(ρ) =
1

2πi

∫
R

G(s)
Λ′

Λ
(s, χ)ds,

where the integral is taken counter-clockwise around R. By Lemma 2.5 and (4), the
contribution of the horizontal integrals is � T−2 log2(TN(c)). Thus, taking limit
as T →∞ and using the functional equations for G(s) and Λ(s, χ), we obtain∑

ρ

G(ρ) =
1

2πi

∫
σ=2

G(s)

(
Λ′

Λ
(s, χ) +

Λ′

Λ
(s, χ)

)
ds

=
1

2πi

∫
σ=2

G(s)

(
L′

L
(s, χ) +

L′

L
(s, χ) + 2

Γ′

Γ
(s) + log

3N(c)

4π2

)
ds.
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Using (4) again we can shift the contour to σ = 1/2 and conclude that∑
ρ

G(ρ) = F (1) log
3N(c)

4π2
+

1

2πi

∫
(1/2)

2G(s)
Γ′

Γ
(s)ds−

∑
p

H(p),

where

H(p) =
∑
n>1

(
χ(pn) + χ(pn)

)
F (N(pn)) log Np

and

F (y) =
1

2πi

∫
σ=1/2

G(s)y−sds = φ̂
( log y

logX

)
/(
√
y logX).

By the approximate formula (cf. [20, 8.363.3])

Γ′

Γ
(a+ ib) +

Γ′

Γ
(a− ib) = 2

Γ′

Γ
(a) +O

(
(b/a)2

)
we obtain

1

πi

∫
σ=1/2

G(s)
Γ′

Γ
(s)ds =

2

logX

∫ ∞
−∞

φ(t)
Γ′

Γ

(
1

2
+ i

2πt

logX

)
dt

=
2(Γ′/Γ)(1/2)

logX
φ̂(0) +O

(
(logX)−3

)
.

Finally, noting that∑
p

∑
k>2

(
χ(pk) + χ(p2k)

)
φ̂

(
k log Np

logX

)
log Np

(Np)k/2
�
∑
p

p−3/2 log p� 1

proves the claimed result.
�

Let F be one of the families that will be defined in the next two sections. Recall
that

D(X;φ,F ) =
1

AF (X)

∑
χ∈F

w

(
N(cond(χ))

X

) ∑
γ

L(1/2+iγ,χ)=0

φ
(γ logX

2π

)
,

where N(cond(χ)) is the norm of the conductor of the primitive character χ and

AF (X) =
∑
χ∈F

w

(
N(cond(χ))

X

)
.

Using the explicit formula, Lemma 2.6, we obtain

D(X;φ,F ) =
φ̂(0)

AF (X) logX

∑
χ∈F

w

(
N(cond(χ))

X

)
log N(cond(χ))

+O
(Xv/2 + |EF (X)|

AF (X) logX

)
,

(5)

where

(6) EF (X) =
∑

χ∈F∪{1}

w

(
N(cond(χ))

X

)∑
p-3

∑
16k62

χ(p)φ̂

(
k log Np

logX

)
log Np

(Np)k/2
.
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To establish Theorems 1.2 and 1.4, we need to find the largest v such that EF3
(X) =

o(AF (X) logX) for each family in question. Thus, the rest of the paper will be
devoted to the estimate of the sum

(7) SF (y) =
∑

χ∈F∪{1}

w(cond(χ)/X)
∑

Np6y
p-3

χ(p) log Np.

2.3. Cubic Gauss sums and Poisson Summation for cubic characters. We
now define the generalized Gauss sums associated with the cubic residue symbols
χn, where n ≡ 1 mod 3 ∈ Z[ω]. Notice that we do not suppose that n is square-free,
and these characters are not necessarily primitive. Let

(8) g(r, n) =
∑

αmodn

χn(α)e
(
Tr(rα/n)

)
.

Then, for (n,
√
−3) = 1,

W (χn) = χn(
√
−3)g(1, n),

where W (χ) is the sign of the functional equation given by (1).
The following two lemmas are classical results about cubic Gauss sums which

can be found in [23], or easily checked, and we include them without proof.

Lemma 2.7. Let n, n1, n2 ≡ 1 mod 3 and s, r be elements of Z[ω].
If (s, n) = 1,

g(rs, n) = χn(s)g(r, n).

If (n1, n2) = 1,

g(r, n1n2) = χn2
(n1)g(r, n1)g(r, n2) = g(rn1, n2)g(r, n1).

Lemma 2.8. Let π ≡ 1 mod 3 be a prime, (π, r) = 1, where r ≡ 1 mod 3. Let k, j
be integers with k > 0 and j > 0.

If k = j + 1,

g(rπj , πk) = N(πj)×


−1 if 3 | k
g(r, π) if k ≡ 1 mod 3

g(r, π) if k ≡ 2 mod 3.

If k 6= j + 1,

g(rπj , πk) =

{
ϕK(πk) if 3 | k, k 6 j
0 otherwise.

Our next lemma is obtained from the Poisson summation formula over Z2, which
is essentially [22, Lemma 10].

Lemma 2.9. Let χ be a primitive character of (Z[ω]/fZ[ω])×. Then,∑
n∈Z[ω]

χ(n)w(N(n)/Y ) =
Y

W (χ)

∑
n∈Z[ω]

χ(n)ŵ(
√
YN(n)/N(f)),

where W (χ) is given by (1) and for t ∈ R, t > 0,

ŵ(t) =

∫
R

∫
R
w(N(x+ yω))e

(
Tr(t(x+ yω)/

√
−3)

)
dxdy,

=

∫
R

∫
R
w(N(x+ yω))e(−ty)dxdy.
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We will often use the following lemma, which makes it easier to keep track
of the size of various parameters when optimizing an estimate of the form U �
AHa+BH−b, where A,B, a, b are positive constants and H can be chosen. Simply
choosing H to satisfy AHa = BH−b leads to U � (AbBa)1/(a+b), which is the best
bound apart for the value of the other parameters in the implied constant. This
can be generalized to the following lemma.

Lemma 2.10 ([21, Lemma 2.4]). Suppose that

L(H) =

m∑
i=1

AiH
ai +

n∑
j=1

BjH
−bj ,

where Ai, Bj , ai, bj are positive. Suppose that H1 6 H2. Then, there is some H
with H1 6 H 6 H2 such that

L(H)�
m∑
i=1

n∑
j=1

(
A
bj
i B

ai
j

)1/(ai+bj)

+

m∑
i=1

AiH
ai
1 +

n∑
j=1

BjH
−bj
2 ,

where the implied constant depends only on m and n.

3. Proof of Theorem 1.4

Let F3 be the family of cubic residue symbols χab2 where a, b ≡ 1 mod 3 ∈ Z[ω]
are square-free and co-prime, and ab2 ≡ 1 mod 9. By a slight abuse of notation
(dropping the letter χ), we write

F3 =
{
ab2 ∈ Z[ω] \ {1} :

a, b ≡ 1 mod 3 both square-free,
(a, b) = 1, ab2 ≡ 1 mod 9

}
.

Lemma 3.1. Let φ be a Schwartz class test function whose Fourier transform is
supported in (−v, v). Then, for the family F3 defined above,

AF3(X) =
2πw(1)

9h(9)

√
3

∏
p-3

(
1− 3

Np2
+

2

Np3

)
X logX +O(X),

∑
ab2∈F3

w(N(ab)/X) log N(ab) = AF3(X) logX +O(X logX),

and for any ε > 0,

EF3
(X)�

{
X1/2+v/2+ε under GRH

X1/2+v+ε unconditionally,

where EF3(X) is defined in (6), w(s) =
∫∞

0
w(x)xs−1ds is the Mellin transform of

w and h(9) = |J (9)/P (9)| is the order of the ray class group modulo 9.

Proof. We first write

AF3
(X) + w(1/X) =

1

h(9)

∑
ψmod 9

∑
q≡1 mod 3
q sqf

w(N(q)/X)ψ(q)
∑

b≡1 mod 3
b|q

ψ(b),

where ψ runs over the ray class characters modulo 9. By Mellin inversion,

AF3
(X) + w(1/X) =

1

h(9)

∑
ψmod 9

1

2πi

∫
Re(s)=2

w(s)XsGψ(s)ds,
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with generating series

Gψ(s) =
∑
q∈Z[ω]

q≡1 mod 3
q square-free

ψ(q)

N(q)s

∑
b∈Z[ω]

b≡1 mod 3
b|q

ψ(b)

=
∏

π≡1 mod 3

(
1 +

ψ(π)

N(π)s
(
1 + ψ(π)

))
= L(s, ψ)L(s, ψ2)F (s, ψ),

(9)

where

L(s, ψ) =
∏

π≡1 mod 3

(
1− ψ(π)

N(π)s

)−1

=
∑
a

ψ(a)

Nas

is the Hecke L-function associated with the character ψ, and

Fψ(s) =
∏

π≡1 mod 3

(
1− ψ(π)

N(π)s

)(
1− ψ2(π)

N(π)s

)(
1 +

ψ(π)

N(π)s
(
1 + ψ(π)

))
=

∏
π≡1 mod 3

(
1− ψ2(π) + ψ3(π) + ψ4(π)

N(π)2s
+
ψ4(π) + ψ5(π)

N(π)3s

)
Note that Fψ(s) converges absolutely for Re(s) > 1/2 for all ψ modulo 9, whereas
L(s, ψ) and L(s, ψ2) both have analytic continuation to entire functions except for
a simple pole at s = 1 when the characters are principal.

Hence, moving the contour to Re(s) = 1/2 + ε, we get

(10)
1

2πi

∫
Re(s)=2

w(s)XsGψ(s)ds

=
∑
ψ=ψ0

ψ2=ψ0

Res
s=1

(
Xsw(s)L(s, ψ)L(s, ψ2)Fψ(s)

)
+O

(
X1/2+ε

)
,

where, for the error term, we used the fact that w(s)� |s|−n for all n > 1, with the
classical convexity bound L(s, ψ), L(s, ψ2)�ψ |s|max(0,1+ε−Re(s)) for 0 6 Re(s) 6 2,
uniformly for any ε > 0.

When ψ = ψ0, there is a pole of order 2 at s = 1 with residue(
4

9
(Res
s=1

ζK(s))2Fψ0
(1)w(1)

)
X logX +O(X),

and when ψ2 = ψ0, ψ 6= ψ0, then there is a simple pole and the contribution of the
residue is O(X). Substituting in (10), this proves the first result.

For the second assertion, using Mellin inversion, we have∑
ab2∈F3∪{1}

w(N(ab)/X) log N(ab) = − 1

2πih(9)

∑
ψmod 9

∫
Re(s)=2

w(s)XsG′ψ(s)ds,

where Gψ(s) was defined above in (9). Using integration by parts, for each character
ψ, the above integral is

−
∫

Re(s)=2

w′(s)XsGψ(s)ds− logX

∫
Re(s)=2

w(s)XsGψ(s)ds.

Working as above, the main contribution from each integral comes from the double
pole of Gψ0

(s) at s = 1. For the first integral, we bound this contribution by
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O(X logX). Summing the second integral over the characters gives AF3
(X) +

w(1/X). This proves the second assertion.
Finally, we prove the last assertion. Let

SF3
(y) =

∑
3<Np6y

log Np
∑

ab2∈F3∪{1}

χab2(p)w(N(ab)/X).

Writing each prime ideal p as p = (π) with π ≡ 1 mod 3, we have

SF3
(y) =

1

h(9)

∑
ψmod 9

∑
π≡1 mod 3

N(π)6y

log N(π)
∑
q∈Z[ω]

q≡1 mod 3
q sqf

(χπψ)(q)w(N(q)/X)
∑
b∈Z[ω]

b≡1 mod 3
b|q

(χπψ)(b)

=
1

h(9)

∑
ψmod 9

∑
π≡1 mod 3

N(π)6y

logN(π)
1

2πi

∫
(2)

Xsw(s)G(χπψ)(s)ds.

We evaluate the integral working as above. Since (ψχπ) is non-trivial for every
character ψmod 9, the generating series has no pole when Re(s) > 1/2. We move
the integral to Re(s) = 1/2 + ε, and we use the bound

L( 1
2 + ε+ it, χ)�

{
tε N(cond(χ))ε under GRH

|t|1/2+ε N(cond(χ))1/4 unconditionally,
(11)

which holds for any non-trivial character χ. This gives

SF3(y)�

{
X1/2+εy1+2ε under GRH

X1/2+εy3/2 unconditionally.

By partial integration

EF3
(X) =

∑
16k62

∫ ∞
3

φ̂
(k log y

logX

)
y−k/2dSF3

(y)

=
∑

16k62

∫ Xv/k

3

SF3
(y)y−k/2−1

(k
2
φ̂
(k log y

logX

)
− φ̂′

(k log y

logX

) k

logX

)
dy

�

{
X1/2+v/2+ε under GRH

X1/2+v+ε unconditionally.

This establishes the third assertion. �

Using the lemma in (5) of Section 2.2, the proof of Theorem 1.5 for the family
F3 follows, and assuming GRH, the proof of Theorem 1.4 follows.

4. Proof of Theorem 1.2

Let F ′3 be the family of primitive cubic Dirichlet characters determined by the
cubic residue symbols χn, where n 6= 1 is square-free and congruent to 1 modulo 9.
Again, with a slight abuse of notation, we write

(12) F ′3 = {n ∈ Z[ω] : n 6= 1, n ≡ 1 mod 9 and square-free}.

Lemma 4.1. Let w : R→ (0,∞) be an even Schwartz function. Then,

AF ′3
= ζ−1

K (2)
πw(1)

4
√

3h(9)

X +O(X1/2+ε),
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n∈F ′3

w(N(n)/X) log N(n) = AF ′3
logX +O(X),

and for any ε > 0,

EF ′3(X)�

{
X1/2+v/2+ε under GRH

X1/2+3v/4+ε unconditionally,

where w(s) =
∫∞

0
w(x)xs−1ds is the Mellin transform of w, h(9) = |J (9)/P (9)| is

the order of the ray class group modulo 9, and ζK(s) is the Dedekind zeta function
of K.

Proof. As in the proof of Lemma 3.1, we start by writing

AF ′3
=

1

2πih(9)

∑
ψmod 9

∫
σ=2

Xsw(s)Gψ(s)ds− w(1/X),

where

(13) Gψ(s) =
∑

a∈J(9)

ψ(a)|µ(a)|
(Na)s

=

{
ζ−1
K (2s)ζK(s)(1 + 3−s)−1 if ψ = ψ0

F (s)L(s, ψ) if ψ 6= ψ0,

with ψ0 the principal character modulo 9, and

F (s) =
∑
a

µ(a)ψ2(a)

(Na)2s
, L(s, ψ) =

∑
a

ψ(a)(Na)−s.

Proceeding as before, shifting the contour to Re(s) = 1/2+ε and using the convexity
bound we conclude that

AF ′3
=

1

h(9)
Res
s=1

(Xsw(s)Gψ0
(s)) +O(X1/2+ε).

Since Gψ0
(s) has a simple pole at s = 1, we have

Res
s=1

(Xsw(s)Lψ0
(s)) = Xw(1) lim

s→1
(s− 1)Gψ0

(s) = Xw(1)ζ−1
K (2)

π

4
√

3
,

where we used (cf. [37, Ch VII. Corollary 5.11])

Res
s=1

ζK(s) =
2πhKR

6|dK |1/2
=

π

3
√

3
.

This gives the first claim. The second identity follows as in the previous section
along the same lines using integration by parts. For the third identity, using the
bound (11) and working as in the proof of Lemma 3.1 with the generating series
(13), we get

SF ′3
(y)�

{
X1/2+εy1+ε under GRH

X1/2+εy5/4 unconditionally.

The third identity follows by partial integration. �

Using Lemma 4.1 in equation (5) of Section 2.2, the proof of Theorem 1.5 for
the family F ′3 follows. We also remark that using the bound for EF ′3(X) of the
lemma, under GRH, gives the one-level density for the family F ′3 only when the
support of the Fourier transform is contained in (−1, 1). We now turn to the proof
of Theorem 1.2 which increases this support.
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Using Lemma 4.1 in (5), we have that

D(X;φ,F ′3) = φ̂(0) +O
( 1

logX

)
+O

(Xv/2 + |EF ′3(X)|
X logX

)
,

and we want to show that EF ′3(X) = o(X logX) when supp(φ̂) ⊆ (−v, v). For the
family F ′3 in (12), the sum defined in (7) can be written as

SF ′3
(y) =

∑
3<Np6y

log Np
∑

n∈F ′3∪{1}

χn(p)w(N(n)/X)

=
∑
n∈Z[ω]

n≡1 mod 9

w(N(n)/X)
∑

3<Np6y

χn(p) log Np
∑
d∈Z[ω]

d≡1 mod 3
d2|n

µK(d)

=
∑
d∈Z[ω]

d≡1 mod 3

µK(d)
∑
n∈Z[ω]

n≡d−2 mod 9

w(N(nd2)/X)
∑

3<Np6y

χnd2(p) log Np.

where µK is Moebius function over K and we use the detector∑
d∈Z[ω]

d≡1 mod 3
d2|n

µK(d) =

{
1 if n is square-free

0 otherwise.

We write SF ′3
(y) = S1(y) + S2(y) where

S1(y) =
∑

3<Np6y

log Np
∑
d∈Z[ω]

d≡1 mod 3
N(d)6D

µK(d)χd2(p)
∑
n∈Z[ω]

n≡d−2 mod 9

w
(N(nd2)

X

)
χn(p)(14)

S2(y) =
∑
d∈Z[ω]

d≡1 mod 3
N(d)>D

µK(d)
∑
n∈Z[ω]

n≡d−2 mod 9

w(N(nd2)/X)
∑

3<Np6y

χnd2(p) log Np.(15)

4.1. Estimate of S2(y).

Lemma 4.2. Given n ≡ 1 mod 3 in Z[ω] with N(n) ≡ 1 mod 9, write n = n1n
2
2n

3
3

with n1, n2 square-free and co-prime, and ni ≡ 1 mod 3. Assuming GRH for
L(s, χn), and that n is not a cube, the estimate∑

Np6x

χn(p) log Np� x1/2 log3 (xN(n))

holds for x > 1.

Proof. We shall give only a sketch of the proof as it uses standard techniques.
The estimate trivially holds for x < 3 since the sum equals zero and the right

side is positive. Thus we assume x > 3, and write

L(s, χn) =
∏
p-n

(
1− χn(p)Np−s

)−1
=
∏
p|d

(
1− χ(p)Np−s

)
L(s, χ),

where χ = χn1n2
2

is the primitive character to modulus n1n2Z[ω] that induces χn,
and where d denotes the product of primes dividing n3, but not n1n2. For T > 1,
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we find T1 ∈ [T, T + 1] given by Lemma 2.5 for L(s, χ). Using Perron’s formula
with a = 1 + (2 log x)−1,

∑
Np6x

χn(p) log Np =
1

2πi

∫ a+iT1

a−iT1

−L
′

L
(s, χn)

xs

s
ds

+O

(
x1/2 +

x log x

T
+ log x+

x log2 x

T

)
.

Next we shift the contour to b = 1/2 + (2 log x)−1 and use (2) and (3) to estimate
the horizontal and vertical integrals to get

∑
Np6x

χn(p) log Np� x log2(N(n1n2)(3 + T ))

T log x
+
(
x1/2 log T +

x

T log x

)
log N(d)

+
x log2 x

T
+ x1/2

(
log x log(3N(n1n2)) + log T log2(N(n1n2)(3 + T ))

)
.

Choosing T = x gives the claimed estimate. �

Lemma 4.3. Let 1 < D 6
√
X. Then,

(16) S2(y)�


Xy1/2

D
log3 (yX) + ymin

{ X
D2

, X1/3 logX
}

under GRH

yX

D
unconditionally

Proof. Trivially estimating the innermost sum over primes in (15) gives

S2(y)� y
∑
d∈Z[ω]

d≡1 mod 3
N(d)>D

µK(d)
∑
n∈Z[ω]

n≡d−2 mod 9

w(N(nd2)/X).

Since 1 6 D 6
√
X, we have∑

d∈Z[ω]

D<N(d)6
√
X

( ∑
n∈Z[ω]

N(n)6X/N(d2)

+
∑
n∈Z[ω]

N(n)>X/N(d2)

)
w(N(nd2)/X)� X/D,

and ∑
d∈Z[ω]

d≡1 mod 3
N(d)>

√
X

∑
n∈Z[ω]

w(N(nd2)/X)� X1/2 6 X/D.

If we assume GRH, we can use Lemma 4.2 whenever nd2 is not a cube. The
contribution of these terms to S2(y) is

� y1/2
∑
d∈Z[ω]

N(d)>D

∑
n∈Z[ω]

w(N(nd2)/X) log3(yN(nd2))� Xy1/2

D
log3(yX).
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Note that nd2 is a cube if and only if n = da3 for some a ∈ Z[ω], since d is
square-free. Thus, the contribution of cubes to S2(t) is

� y
∑
d∈Z[ω]

d≡1 mod 3
N(d)>D

∑
a∈Z[ω]

w(N(a3d3)/X)� ymin{X/D2, X1/3 logX}.

Combining all the estimates, the result follows. �

4.2. Estimate of S1(y). Writing each prime ideal p co-prime to 3 as p = πZ[ω]
with π ≡ 1 mod 3, and using cubic reciprocity, we have

χnd2(p) = χnd2(π) = χπ(nd2) = χπ(n)χπ(d2),

where the first equality follows since nd2 ≡ 1 mod 9. Replacing in (14), and using
the ray class characters to detect the congruence condition, we have

S1(y) =
1

h(9)

∑
ψmod 9

∑
π≡1 mod 3

N(π)6y

log N(π)
∑

d≡1 mod 3
N(d)6D

µK(d)χπ(d2)ψ(d2)

×
∑
n∈Z[ω]

w
(N(nd2)

X

)
χπ(n)ψ(n),

where ψ runs over the ray class characters modulo 9, and h(9) is the order of the ray
class group modulo 9. When ψ is the principal character modulo 9, the innermost
sum over n is∑

n∈Z[ω]

w
(N(nd2)

X

)
χπ(n)−

∑
n∈Z[ω]

w
(N((1− ω)nd2)

X

)
χπ((1− ω)n).

Hence, we can write S1(y) = S11(y) + S12(y)− S13(y), where

S11(y) =
1

h(9)

∑
ψmod 9
ψ 6=ψ0

∑
π≡1 mod 3

N(π)6y

log N(π)

×
∑

d≡1 mod 3
N(d)6D

µK(d)χπ(d2)ψ(d2)
∑
n∈Z[ω]

w
(N(nd2)

X

)
(ψχπ)(n),

S12(y) =
1

h(9)

∑
π≡1 mod 3

N(π)6y

log N(π)
∑

d≡1 mod 3
N(d)6D

µK(d)χπ(d2)
∑
n∈Z[ω]

w
(N(nd2)

X

)
χπ(n),

and

S13(y) =
1

h(9)

∑
π≡1 mod 3

N(π)6y

log N(π)
∑

d≡1 mod 3
N(d)6D

µK(d)χπ((1−ω)d2)
∑
n∈Z[ω]

w
(3N(nd2)

X

)
χπ(n).

Note that since 9 is a prime power, each non-principal character ψ takes on the
same values as the primitive character that induces ψ. Hence, we can treat each ψ
as primitive, and we denote its conductor by fψ. Then, ψχπ is a primitive character
of modulus fZ[ω], where f = fχπ, since (π, 9) = 1.
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We now apply Poisson summation (Lemma 2.9) to the innermost sums over
n ∈ Z[ω]. For S11(y), this gives

(17)
∑
n∈Z[ω]

w(N(nd2)/X)(ψχπ)(n) =

Xψ(−1)χπ(fψ
√
−3)ψ(π)W (ψ)g(1, π)

N(d2)N(fψπ)

∑
n∈Z[ω]

ψ(n)χπ(n)w̃

(
XN(n)

N(d2)N(fψπ)

)
,

where w̃(t) = ŵ(
√
t), and we used the identities

W (χπψ) = χπ(−1)ψ(−1)W (χπψ) = ψ(−1)W (χπψ), |W (χπψ)|2 = N(π)N(fψ),

and (from the Chinese Remainder Theorem),

W (χπψ) = χπ(fψ)ψ(π)W (χπ)W (ψ) = χπ(fψ)ψ(π)W (ψ)χπ(
√
−3)g(1, π)

with g(1, π) defined by (8).
We now insert (17) into S11(y), then write each ñ ∈ Z[ω] as un(1 − ω)k, where

n ≡ 1 mod 3, u is a unit and k > 0, and use

χπ(d2)χπ(n)g(1, π) = χπ(nd)g(1, π) =

{
g(nd, π) when (nd, π) = 1

0 otherwise

to get

S11(y) =
X

h(9)

∑
ψmod 9
ψ 6=1

W (ψ)ψ(−1)

N(fψ)

∑
d≡1 mod 3
N(d)6D

µK(d)ψ(d2)

N(d2)

∑
u∈Z[ω]×

∑
n∈Z[ω]

n≡1 mod 3

ψ(un)

×
∑

π≡1 mod 3
(π,nd)=1
N(π)6y

g(nd, π)

N(π)
w̃

(
XN(n)

N(d2fψπ)

)
χπ(u2

√
−3fψ)ψ(π) log N(π).(18)

We get similar and simpler (since there is no character ψ) formulae for S12(y)
and S13(y), namely

S12(y) =
X

h(9)

∑
d≡1 mod 3
N(d)6D

µK(d)

N(d2)

∑
u∈Z[ω]×

k>0

∑
n∈Z[ω]

n≡1 mod 3

×
∑

π≡1 mod 3
(π,nd)=1
N(π)6y

g(nd, π)

N(π)
χπ(u2(1− ω)2k

√
−3)w̃

(
X3kN(n)

N(d2π)

)
log N(π),

and

S13(y) =
X

h(9)

∑
d≡1 mod 3
N(d)6D

µK(d)

N(d2)

∑
u∈Z[ω]×

k>0

∑
n∈Z[ω]

n≡1 mod 3

×
∑

π≡1 mod 3
(π,nd)=1
N(π)6y

g(nd, π)

N(π)
χπ(u2(1− ω)2k+1

√
−3)w̃

(
X3k−1N(n)

N(d2π)

)
log N(π).
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We first estimate the sum over primes. To this end, we define for any character
λ on Z[ω] and r ≡ 1 mod 3,

H(Z, r, λ) =
∑

π≡1 mod 3
(π,r)=1
N(π)6Z

g̃λ(r, π) log N(π) =
∑

c≡1 mod 3
(c,r)=1
N(c)6Z

g̃λ(r, c)Λ(c)

g̃λ(r, c) = g(r, c)λ(c)N(c)−1/2,

(19)

where the second equality in the first line follows from Lemma 2.8.

Theorem 4.4. Let λ be a character on Z[ω] and r ∈ Z[ω] with r ≡ 1 mod 3. Then
for any ε > 0,

H(Z, r, λ)� Zε
(
Z2/3N(r)1/6+ε + Z1/2N(r)1/4+ε

+ Z5/6N(r)1/12+ε + Z4/5N(r)1/10+ε
)
,

where the implied constant depends on the modulus of λ and ε.

We will prove this result in Section 5 following the techniques of [22]. Theorem
4.4 can be compared with Theorem 1 of [22] which corresponds to the case r = 1
with a bound of Z5/6+ε.

We first show how Theorem 4.4 implies Theorem 1.2. Write the estimate in
Theorem 4.4 as H(Z, r, λ) �

∑4
j=1 Z

ϑjN(r)θj with each 0 < θj < 1/2 < ϑj < 1.

We only bound S11(y) since the estimates for S12(y) and S13(y) follow similarly.
By partial summation, we have for

λ(π) = χπ(u2
√
−3fψ)ψ(π),

which is a character on Z[ω] of bounded modulus,

∑
π≡1 mod 3
(π,nd)=1
N(π)6y

g(nd, π)

N(π)
λ(π) log N(π)w̃

(
XN(n)

N(d2fψ)N(π)

)

=

∫ y

3

w̃

(
XN(n)

N(d2fψ)Z

)
Z−1/2dH(Z, nd, λ)

=
w̃
(

XN(n)
N(d2fψ)y

)
y1/2

H(y, nd, λ) +

∫ y

3

H(Z, nd, λ)

( w̃′ ( XN(n)
N(d2fψ)Z

)
Z5/2

+
w̃
(

XN(n)
N(d2fψ)Z

)
2Z3/2

)
dZ

�
4∑
j=1

N(nd)θj min

(
yϑj−1/2,

(
XN(n)

N(d2fψ)

)−2

yϑj+3/2

)
,

using Theorem 4.4. We also used the fact that w̃ is bounded and w̃′(x)� x−1 for
the first bound, and the fact that w̃(x) � x−2 and w̃′(x) � x−3 for the second
bound.



18 CHANTAL DAVID AND AHMET M. GÜLOĞLU

Inserting this estimate in (18) yields

S11(y)� X

4∑
j=1

∑
d≡1 mod 3
N(d)6D

N(d)θj−2

( ∑
n∈Z[ω]

N(n)6yN(d2fψ)/X

N(n)θjyϑj−1/2

+
∑

N(n)>yN(d2fψ)/X

N(n)θj
(

N(d2fψ)

XN(n)

)2

yϑj+3/2

)

� X

4∑
j=1

(
yϑj−1/2

∑
d≡1 mod 3
N(d)6D

N(d)θj−2

(
yN(d2)

X

)1+θj

+ yϑj+3/2
∑

d≡1 mod 3
N(d)6D

N(d)θj−2

(
N(d2)

X

)2 ∑
N(n)>yN(d2)/X

N(n)θj−2

)

�
4∑
j=1

yϑj+θj+1/2D1+3θj

Xθj
.

The estimates for S12(y) and S13(y) are similarly carried out and result in the
same bound, so we conclude that

(20) S1(y)�
4∑
j=1

yϑj+θj+1/2D1+3θj

Xθj
.

4.3. Finding the maximal support. Combining (16) (under GRH) and (20),
and assuming that 1 6 D 6 X1/3 and y 6 Xv, we obtain

SF ′3
(y)� Xε

(
y4/3D3/2

X1/6
+
y5/4D7/4

X1/4
+
y17/12D5/4

X1/12
+
y7/5D13/10

X1/10+ε

)
+
Xy1/2

D
log3X + yX1/3 logX.

Using partial integration as we did at the end of the proof of Lemma 3.1, and
replacing y = Xv, this gives

EF ′3(X)� Xε
(
X5v/6−1/6D3/2 +X3v/4−1/4D7/4 +X11v/12−1/12D5/4

+X9v/10−1/10D13/10
)

+
X log3X

D
+Xv/2+1/3 logX,

and choosing D = Xε, we have that

EF ′3(X) = o(X) for any v < 13/11.

We remark that the bound on v comes from the term X11v/12−1/12D5/4 above,
which in turns comes from the term Z5/6N(r)1/12+ε of Theorem 4.4.

This completes the proof of Theorem 1.2, assuming Theorem 4.4, which is proven
in the next two sections.
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5. Proof of Theorem 4.4

The proof of Theorem 4.4 is a slight generalization of the proof of Theorem 1 of
[22], where the author proves the bound∑

c≡1 mod 3
N(c)6X

g(c)

N(c)1/2
Λ(c)� X5/6+ε.

Comparing the above and the statement of Theorem 4.4, and replacing g(c) =
g(1, c) by g(r, c)λ(c) when (r, c) = 1, we need to keep the dependence on the shift
r (the character λ has absolutely bounded conductor).

Lemma 5.1 (Vaughan’s Identity [22, p. 101]). Let r ∈ Z[ω], and

Σj(Z, r, u) =
∑
a,b,c

Λ(a)µK(b)g̃λ(r, abc), (0 6 j 6 4)

where g̃λ is defined in (19) and each sum runs over a, b, c ∈ Z[ω] which are square-
free with a, b, c ≡ 1 mod 3, Z < N(abc) 6 2Z, (r, abc) = 1, and subject to the
conditions

N(bc) 6 u, j = 0

N(b) 6 u, j = 1

N(ab) 6 u, j = 2′

N(a), N(b) 6 u < N(ab) j = 2′′

N(b) 6 u < N(a), N(bc) j = 3

N(a) < N(bc) 6 u, j = 4.

Then,

Σ0(Z, r, u) = Σ1(Z, r, u)− Σ2′(Z, r, u)− Σ2′′(Z, r, u)− Σ3(Z, r, u) + Σ4(Z, r, u).

Furthermore,

Σ0(Z, r, u) = H(2Z, r, λ)−H(Z, r, λ),

and if we suppose that 1 6 u 6 Z1/3, then Σ4(Z, r, u) = 0.

When using Lemma 5.1, the sums Σj are divided into the so-called Type I sums
(Σ1 and Σ2′) and Type 2 (bilinear) sums (Σ2′′ and Σ3), and each type is bounded
with a different technique. For the Type II sums, the proof of [22] goes through
in the exact same way, replacing g̃(1, e) by g̃λ(r, e) with the obvious modifications,
see Section 5.2. For the Type I sums, we have to use a general version of the work
of Patterson for the distribution of the generalized Gauss sums g̃λ(r, e), and keep
the dependence on the parameter r, see Section 5.1.

5.1. Type I Sums. The so-called Type I sums of Vaughan’s formula are Σ1(Z, r, u)
and Σ2′(Z, r, u) and they are bounded using the work of Patterson on the distribu-
tion of the generalized Gauss sums g̃λ(r, c).
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Lemma 5.2. For 1 6 u 6 Z1/3,

|Σ1(Z, r, u)| 6 3 log(2Z)
∑

a≡1 mod 3
(a,r)=1
N(a)6u

|µK(a)| sup
Z6z62Z

|Fa(z, r, λ)|

|Σ2′(Z, r, u)| 6 2 log u
∑

a≡1 mod 3
(a,r)=1
N(a)6u

|µK(a)| sup
Z6z62Z

|Fa(z, r, λ)|,

where

(21) Fa(z, r, λ) =
∑

b≡1 mod 3
(r,b)=1,a|b

N(b)6z

g̃λ(r, b).

Proof. We have

Σ1(Z, r, u) =
∑

N(abc)∼Z
N(b)6u

(abc,r)=1

Λ(a)µK(b)g̃λ(r, abc) =
∑

N(bd)∼Z
N(b)6u
(bd,r)=1

µK(b)g̃λ(r, bd)
∑
a|d

Λ(a)

=
∑

N(b)6u
(b,r)=1

µK(b)
∑

N(d)∼Z
(d,r)=1
b|d

g̃λ(r, d) logN(d/b),

and using partial integration for the inner sum gives the first assertion. As for the
second, we have

Σ2′(Z, r, u) =
∑

N(abc)∼Z
N(ab)6u
(abc,r)=1

Λ(a)µK(b)g̃λ(r, abc)

=
∑

N(d)6u
(d,r)=1

( ∑
ab=d

µK(b)Λ(a)

) ∑
c≡1 mod 3
(c,r)=1,d|c

N(c)∼Z

g̃λ(r, c)

6
∑

N(d)6u
(d,r)=1

|µK(d)||F (2Z, a, r, λ)− F (Z, a, r, λ)| logN(d),

where on the second line we used the fact that the sum in the parenthesis is sup-
ported only on square-free d. This proves the second assertion. �

5.2. Type II (Bilinear) Sums. In this section, we bound the sums

Σ2′′(Z, r, u) =
∑

N(abc)∼Z
(abc,r)=1

N(a),N(b)6u<N(ab)

Λ(a)µK(b)g̃λ(r, abc)

Σ3(Z, r, u) =
∑

N(abc)∼Z
(r,abc)=1

N(a),N(bc)>u
N(b)6u

Λ(a)µK(b)g̃λ(r, abc).
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Note that since (abc, r) = 1, g(r, abc) = χab(c)g(r, ab)g(r, c) whenever (ab, c) = 1
and is zero otherwise, by Lemmas 2.7 and 2.8. Therefore, in all cases, we have

g̃λ(r, abc) = χab(c)g̃λ(r, ab)g̃λ(r, c),

and we can write

Σ2′′(Z, r, u) =
∑

N(vw)∼Z
N(v),N(w)>u

A(v)B(w)χv(w)

Σ3(Z, r, u) =
∑

N(vw)∼Z
N(v),N(w)>u

C(v)D(w)χv(w)

where we put

A(v) =
∑
ab=v

N(a),N(b)6u

Λ(a)µK(b)g̃λ(r, ab), B(w) = g̃λ(r, w)

C(v) = Λ(v)g̃λ(r, v), D(w) =
∑
bc=w
N(b)6u

µK(b)g̃λ(r, bc)

whenever (r, vw) = 1 and zero otherwise. Notice that we have used the fact that
u 6 Z1/3 to write N(w) > u in the sum for Σ2′′ .

Note also that

A(v), B(w), C(v), D(w) 6ε X
ε,

for all relevant v, w and that the functions are supported on square-free integers
in Z[ω] which are congruent to 1 modulo 3 by the hypothesis on a, b, c. We can
now use directly the proof of [22, Lemma 2] with the new functions A,B,C,D as
defined above, which differ only by fact that g̃(v) = g̃(1, v) is replaced by g̃λ(r, v),
which does not change the size. This uses the large sieve [22, Theorem 2] for cubic
characters to catch the oscillation of the character χv(w) in the above equations
for Σ2′′ and Σ3, and we get the following.

Lemma 5.3. For any ε > 0, and 1 6 u 6 Z1/3, we have

Σ2′′(Z, r, u), Σ3(Z, r, u)� Z1/2+ε
(
Z1/2u−1/2 + Z1/3

)
,

where the implied constant depends only on ε. In particular, choosing u = Z1/3,
this gives

Σ2(Z, r, Z1/3), Σ3(Z, r, Z1/3)� Z5/6+ε.

Proof. We remark that [22, Lemma 2] states only the second part of the above
lemma. For the first part, one uses the bound on the bottom of page 104 which
leads

Σ2′′(Z, r, u), Σ3(Z, r, u)� Z1/2+ε
(
V 1/2 +W 1/2 + Z1/3

)
together with (9) of page 103 which implies that V,W ≤ Z/u. �
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5.3. Putting things together. Using Lemmas 5.1, 5.2 and 5.3, we have for 1 6
u 6 Z1/3 that

H(2Z, r, λ)−H(Z, r, λ)� logZ
∑

a≡1 mod 3
(a,r)=1
N(a)6u

sup
Z6z62Z

|Fa(z, r, λ)|

+ Z1/2+ε
(
Z1/2u−1/2 + Z1/3

)
.

Assuming Proposition 6.2, which gives an upper bound for |Fa(z, r, λ)|, we de-
duce that

H(2Z, r, λ)−H(Z, r, λ)� Z1/2+ε
(
Z1/2u−1/2 + Z1/3

)
+ Z5/6+εN(r1)−1/6+εN(r∗3)ε + u1/2Z2/3+εN(r)1/6+ε + u3/4Z1/2+εN(r)

1
4 +ε.

Finally, using Lemma 2.10 with u ∈ [1, Z1/3] to balance the terms containing u
proves Theorem 4.4, where the term Z5/6+εN(r)1/12+ε which gives the final esti-
mate corresponds to u = Z1/3N(r)−1/6.

6. Estimate of Fa(z, r, λ)

Recall from (21) that

Fa(z, r, λ) =
∑

b≡1 mod 3
a|b, (b,r)=1

N(b)6z

g̃λ(r, b),

where g̃λ(r, b) was defined in (19). To evaluate Fa(z, r, λ), we will use the non-
normalized generating function defined by

ha(r, λ, s) =
∑

b≡1 mod 3
a|b, (b,r)=1

gλ(r, b)N(b)−s,

where gλ(r, b) = λ(b)g(r, b) = g̃λ(r, b)N(b)1/2. The following lemma contains the
analytic information on the generating function ha(r, λ, s).

Lemma 6.1. Write r = r1r
2
2r

3
3, where r1, r2 are square-free and co-prime, and

ri ≡ 1 mod 3. Let a ≡ 1 mod 3 be square-free and (a, r) = 1. Then, ha(r, λ, s+ 1/2)
can be meromorphically continued to the whole complex plane; it is entire for <(s) >
1/2 except possibly for a simple pole at s = 5/6 with residue

Res
s=5/6

ha(r, λ, s+ 1
2 )� N(a)−1N(r1)−1/6 log 2N(ar1) log 2N(r∗3)

when r2 = 1 and λ3 6= λ0, and zero otherwise.
Let ε > 0 and σ1 = 1 + ε. For s = σ + it satisfying σ1 − 1/2 6 σ 6 σ1 and

|s− 5/6| > 1/12,

(22) ha(r, λ, s+ 1
2 )� N(r1r

2
2)

1
2 (σ1−σ)N(a)

1
2 (σ1−σ)−σN(ar1r

∗
3)ε(1 + t2)σ1−σ.

Furthermore,

(23)

∫ T

−T
|ha(r, λ, σ1 + it)|2dt� T 2N(a)−1/2−εN(r1r

2
2r
∗
3)1/2+2ε.

We assume Lemma 6.1 for now, and we prove the following proposition.
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Proposition 6.2. Suppose a ∈ Z[ω] is square-free with (a, r) = 1, and let λ be a
Dirichlet character on Z[ω]. Write r = r1r

2
2r

3
3 with ri ≡ 1 mod 3, r1, r2 square-free

and co-prime, and let r∗3 be the product of the primes dividing r3 but not r1r2.
Then, for any ε > 0,

Fa(z, r, λ)� z5/6N(a)−1+εN(r1)−1/6+εN(r∗3)ε + z2/3+εN(a)−1/2N(r)1/6+ε

+ z1/2+εN(a)−1/4N(r)1/4+ε.

where the first term appears only when r2 = 1, and the implied constant depends
on ε and the character λ.

Proof of Proposition 6.2. It follows from Perron’s Formula (cf. [9, Ch.17 p.105])
that for z − 1

2 ∈ Z+ and σ1 = 1 + ε,

Fa(z, r, λ)− 1

2πi

∫ σ1+iT

σ1−iT
ha(r, λ, s+ 1

2 )
zs

s
ds

�
∑

b≡1 mod 3
a|b,(b,r)=1

(z/N(b))σ1 min
(
1, T−1| log(z/N(b))|−1

)
�ε T

−1z1+εN(a)−1.

(24)

Shifting the contour to Re s = 1
2 + ε, we pick up the possible residue of ha(r, λ, s)

at s = 4/3 by Lemma 6.1 and therefore get

1

2πi

∫ σ1+iT

σ1−iT
ha(r, λ, s+ 1

2 )
zs

s
ds =

6z5/6

5
Res
s=5/6

ha(r, λ, 1
2 )

+
1

2πi

(∫ σ1−1/2−iT

σ1−iT
+

∫ σ1+iT

σ1−1/2+iT

+

∫ σ1−1/2+iT

σ1−1/2−iT

)
ha(r, λ, s+ 1

2 )
zs

s
ds.

Using the convexity bound (22) of Lemma 6.1, we see that(∫ σ1−1/2−iT

σ1−iT
+

∫ σ1+iT

σ1−1/2+iT

)
ha(r, λ, s+ 1

2 )
zs

s
ds

� N(ar1r
∗
3)ε
∫ σ1

σ1−1/2

T 2(σ1−σ)−1N(r1r
2
2)

1
2 (σ1−σ)N(a)

1
2 (σ1−σ)−σzσdσ

� N(ar1r
∗
3)ε
(
T−1N(a)−1−εz1+ε + N(r1r

2
2)1/4N(a)−1/4−εz1/2+ε

)
.

(25)

By the mean value estimate (23) of Lemma 6.1 and Cauchy-Schwarz inequality, we
obtain ∫ T

−T
|ha(r, λ, σ1 + it)| dt� T 3/2N(a)−1/4−ε/2N(r1r

2
2r
∗
3)1/4+ε,

so that ∫ T

−T

∣∣∣ha(r, λ, σ1 + it)

σ1 + it

∣∣∣dt� T 1/2N(a)−1/4−ε/2N(r1r
2
2r
∗
3)1/4+ε

on integrating by parts. Thus,

(26)

∫ σ1−1/2+iT

σ1−1/2−iT
ha(r, λ, s+ 1

2 )
zs

s
ds� T 1/2z1/2+εN(a)−1/4−ε/2N(r1r

2
2r
∗
3)1/4+ε.
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Combining (24), (25) and (26) together with the bound on the residue from
Lemma 6.1, we obtain

Fa(z, r, λ)� N(ar1r
∗
3)ε
(
T 1/2z1/2+εN(r1r

2
2)1/4N(a)−1/4−ε

+ T−1N(a)−1−εz1+ε + z5/6N(a)−1N(r1)−1/6
)

where the last term is needed only when r2 = 1.
Using Lemma 2.10 with T ∈ [1, z1/2] to bound the first two terms inside the

parentheses yields the desired estimate. �

Remark 6.3. Using Lemma 2.10, we obtain automatically a result independent of
the various parameters. It would have been equivalent to choosing

T = z1/3N(a)−1/2N(r1r
2
2)−1/6,

which gives the bound

Fa(z, r, λ)� N(ar1r
∗
3)ε
(
z2/3+εN(a)−1/2N(r1r

2
2)1/6 + z5/6N(a)−1N(r1)−1/6

)
assuming that T > 1 i.e. N(a)3N(r1r

2
2) 6 z2, which is true since we are taking

N(a) 6 z1/3 in Section 5.3.

The rest of the section is devoted to the proof of Lemma 6.1. We first state
intermediate results in lemmas 6.4, 6.5 and 6.6.

Our first goal is to write ha(r, λ, s) in terms of the generating function

(27) ψ(r, λ, s) =
∑

b≡1 mod 3

λ(b)g(r, b)N(b)−s,

which appears in the work of Patterson; namely, in [40] when λ is trivial, and
[39] for the general case including the ray class character λ, following the work of
Kazhdan and Patterson in [30].

We also define, for any prime π ≡ 1 mod 3,

ψπ(r, λ, s) =
∑

b≡1 mod 3
(b,π)=1

λ(b)g(r, b)N(b)−s.

We now express ha(r, λ, s) in terms of the function ψ(r, λ, s). Our lemma is
similar to [1, Lemma 3.6], or [7, Lemma 3.11] for the function field case, where the
authors of those papers are dealing with slightly different functions.

Lemma 6.4. Suppose a ∈ Z[ω] is square-free with (a, r) = 1. Write r = r1r
2
2r

3
3

with ri ≡ 1 mod 3, r1, r2 square-free and co-prime Let r∗3 be the product of the primes
dividing r3 but not r1r2. Then,

ha(r, λ, s) = g(r, a)λ(a)N(a)−s
∏

π|ar1r2

(1− λ(π)3N(π)2−3s)−1

×
∑

d≡1 mod 3
d|r∗3

µK(d)λ(d)g(ar1r
2
2, d)

N(d)s

∏
π|d

(1− λ(π)3N(π)2−3s)−1

×
∑

c≡1 mod 3
c|dar1

µK(c)N(c)1−2sλ(c)2g(dar1r2
2/c, c)ψ(dar1r

2
2/c, λ, s).
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Proof. Recall that when (r, b) = 1, g(r, b) = 0 when b is not square-free by Lemmata
2.7 and 2.8. Then, rewriting b in the sum ha(r, λ, s) as b = ab′ with b′ ≡ 1 mod 3
and co-prime to a, and using Lemma 2.7, this yields

ha(r, λ, s) =
∑

b≡1 mod 3
a|b, (b,r)=1

λ(b)g(r, b)N(b)−s

= g(r, a)λ(a)N(a)−s
∑

b≡1 mod 3
(b,ar)=1

λ(b)g(ar, b)N(b)−s.

Since (b, r) = 1 in the above sum, g(ar, b) = χb(r3
3)g(ar1r

2
2, b) = g(ar1r

2
2, b). Using

also (a, r) = 1, it follows that∑
b≡1 mod 3
(b,ar)=1

λ(b)g(ar, b)N(b)−s

=
∑

b≡1 mod 3
(b,ar1r

2
2)=1

λ(b)g(ar1r
2
2, b)N(b)−s

∑
d≡1 mod 3
d|(b,r∗3 )

µK(d)

=
∑

d≡1 mod 3
d|r∗3

µK(d)λ(d)

N(d)s

∑
b≡1 mod 3

(bd,ar1r
2
2)=1

λ(b)g(ar1r
2
2, bd)N(b)−s

=
∑

d≡1 mod 3
d|r∗3

µK(d)λ(d)

N(d)s

∑
b≡1 mod 3

(b,adr1r
2
2)=1

λ(b)g(ar1r
2
2, bd)N(b)−s

=
∑

d≡1 mod 3
d|r∗3

µK(d)λ(d)g(ar1r
2
2, d)

N(d)s

∑
b≡1 mod 3

(b,adr1r
2
2)=1

λ(b)g(adr1r
2
2, b)N(b)−s,

using again lemmas 2.7 and 2.8. Since adr1r2 is square-free (recall that d | r∗3), it
follows from [1, Lemma 3.6] with r1 replaced by adr1 that∑
b≡1 mod 3

(b,adr1r
2
2)=1

λ(b)g(adr1r
2
2, b)N(b)−s

=
∏
π|r2

(1− λ(π)3N(π)2−3s)−1
∑

b≡1 mod 3
(b,adr1)=1

λ(b)g(adr1r
2
2, b)N(b)−s

=
∏
π|r2

(1− λ(π)3N(π)2−3s)−1
∏

π|adr1

(1− λ(π)3N(π)2−3s)−1

×
∑

c≡1 mod 3
c|adr1

µK((c))N(c)1−2sλ(c)2g

(
adr1r2

2

c
, c

)
ψ

(
adr1r

2
2

c
, λ, s

)
.

Combining all of the above, we arrive at the desired result. �

Next, we need to understand ha(r, λ, s+ 1
2 ) in the strip 1/2 + ε 6 σ 6 1 + ε.

Lemma 6.5 (Lemma p. 200 [39]). Let r ∈ Z[ω]. Then, ψ(r, λ, s) can be mero-
morphically continued to the whole complex plane; it is entire for <(s) > 1, except
possibly for a simple pole at s = 4/3 with residue ρ(r, λ) (which can occur only when



26 CHANTAL DAVID AND AHMET M. GÜLOĞLU

λ3 is principal). Write r = r1r
2
2r

3
3, where r1, r2 are square-free and co-prime, and

ri ≡ 1 mod 3. Then ρ(r, λ) = 0 if r2 6= 1, and

ρ(r, λ)� N(r1)−1/6,

when r2 = 1.
Let ε > 0, and σ1 = 3/2+ε. If s = σ+it, σ1−1/2 < σ < σ1, and |s−4/3| > 1/6,

then

ψ(r, λ, s)� N(r)
1
2 (σ1−σ)(1 + t2)σ1−σ,

where both bounds above are dependent on the conductor of the character λ.

The convexity bound of the above lemma can be used to bound the integrands
involved in estimating Fa(z, r, λ), as was used in [23]. Again, we are adapting
the further work of [22] to get better bounds, by replacing pointwise bounds on the
integrands by mean value bounds. Our starting point is the following lemma, which
corresponds to equation (20) of [22] with the difference that we are considering the
function ψ(r, λ, s) defined in (27), and Heath-Brown considers only the case where
λ is trivial. The proof of the general case is identical, using the generalisations of
[30, 39].

Lemma 6.6 ([22, Equation 20]).∫ T

−T
|ψ(r, λ, 1 + ε+ it)|2 dt� T 2N(r)1/2.

We remark that using the convexity bound of Lemma 6.5 would lead to the
weaker bound∫ T

−T
|ψ(r, λ, 1 + ε+ it)|2 dt�

∫ T

−T

∣∣∣N(r)1/4t
∣∣∣2 dt� T 3N(r)1/2.

Combining the previous three lemmas we arrive at the following result for the
function ha(r, λ, s).

Proof of Lemma 6.1. By Lemma 6.4

ha(r, λ, s+ 1
2 ) = g(r, a)λ(a)N(a)−s−1/2

∏
π|ar1r2(1− λ(π)3N(π)1/2−3s)−1

×
∑

d≡1 mod 3
d|r∗3

µK((d))λ(d)g(ar1r
2
2, d)

N(d)s+1/2

∏
π|d

(1− λ(π)3N(π)1/2−3s)−1

×
∑

c≡1 mod 3
c|dar1

µK((c))N(c)−2sλ(c)2g(dar1r2
2/c, c)ψ(dar1r

2
2/c, λ, s+

1

2
).

Hence,

Res
s=5/6

ha(r, λ, s+ 1
2 ) = g(r, a)λ(a)N(a)−4/3

∏
π|ar1(1− λ(π)3N(π)−2)−1

×
∑

d≡1 mod 3
d|r∗3

µK(d)λ(d)g(ar1, d)

N(d)4/3

∏
π|d

(1− λ(π)3N(π)−2)−1

×
∑

c≡1 mod 3
c|dar1

µK(c)N(c)−5/3λ(c)2g(dar1/c, c)ρ(dar1/c, λ),
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which gives

Res
s=5/6

ha(r, λ, s+ 1
2 )� N(a)−1N(r1)−1/6

∑
d≡1 mod 3

d|r∗3

N(d)−1
∑

c≡1 mod 3
c|dar1

N(c)−1

� N(a)−1N(r1)−1/6 log 2N(ar1) log 2N(r∗3).

Using again Lemma 6.4, we have for s = σ + it as in the hypotheses,

ha(r, λ, s+ 1
2 )� N(r1r

2
2)

1
2 (σ1−σ)N(a)

1
2 (σ1−σ)−σ(1 + t2)σ1−σ

×
∑

d≡1 mod 3
d|r∗3

N(d)
1
2 (σ1−σ)−σ

∑
c≡1 mod 3
c|dar1

N(c)
1
2−2σ− 1

2 (σ1−σ)

� N(r1r
2
2)

1
2 (σ1−σ)N(a)

1
2 (σ1−σ)−σN(ar1r

∗
3)ε(1 + t2)σ1−σ,

which proves (22). We now proceed to prove (23). Again, by Lemma 6.4,

ha(r, λ, 1 + ε+ it)�ε N(a)−1/2−ε
∑

d≡1 mod 3
d|r∗3

|µK(d)|
N(d)1/2+ε

×
∑

c≡1 mod 3
c|dar1

|µK(c)|N(c)−1/2−2ε
∣∣ψ(dar1r

2
2/c, λ, σ1 + it)

∣∣ .
Using Cauchy-Schwarz twice, we bound |ha(r, λ, 1 + ε+ it)|2 by

�ε N(a)−1−2ε
∑

d≡1 mod 3
d|r∗3

|µK(d)|2

N(d)1+2ε

∑
d≡1 mod 3

d|r∗3

∣∣∣∣ ∑
c≡1 mod 3
c|dar1

|µK(c)|
N(c)1/2+2ε

|ψ(dar1r
2
2/c, λ, σ1 + it)|

∣∣∣∣2

�ε N(a)−1−2ε
∑

d≡1 mod 3
d|r∗3

|µK(d)|2

N(d)1+2ε

×
∑

d≡1 mod 3
d|r∗3

( ∑
c≡1 mod 3
c|dar1

|µK(c)|2

N(c)1+4ε

∑
c≡1 mod 3
c|dar1

|ψ(dar1r
2
2/c, λ, σ1 + it)|2

)

�ε N(a)−1−2ε
∑

d≡1 mod 3
d|r∗3

∑
c≡1 mod 3
c|dar1

|ψ(dar1r
2
2/c, λ, σ1 + it)|2.

Using Lemma 6.6, this gives∫ T

−T
|ha(r, λ, σ1 + it)|2dt� T 2N(a)−1−2εN(ar1r

2
2)1/2

∑
d≡1 mod 3

d|r∗3

N(d)1/2
∑

c≡1 mod 3
c|dar1

N(c)−1/2

� T 2N(a)−1/2−εN(r1r
2
2r
∗
3)1/2+2ε,

which proves (23). �
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7. A positive proportion of non-vanishing

To prove Corollary 1.3, we choose φ(x) = φv(x) =
( sin(πvx)

πvx

)2

. Then,

φ̂v(t) =


v − |t|
v2

if |t| ≤ v

0 otherwise

is supported on (−v, v).
For m ∈ Z, m > 0, let

pm(X) =
1

AF ′3
(X)

∑
χ∈F ′3

w
(N(cond(χ))

X

)
δ(χ;m)

δ(χ;m) =

{
1 if ords= 1

2
L(s, χ) = m

0 otherwise.

Since φv(0) = 1 and φv(x) ≥ 0 for all x ∈ R and the zeros are counted with
multiplicity, we have (under GRH)

1

AF ′3
(X)

∑
χ∈F ′3

w
(N(cond(χ))

X

) ∞∑
m=1

pm(X)

6
1

AF ′3
(X)

∑
χ∈F ′3

w
(N(cond(χ))

X

) ∞∑
m=1

mpm(X)

6
1

AF ′3
(X)

∑
χ∈F ′3

w
(N(cond(χ))

X

) ∑
ρ= 1

2 +iγ
L(ρ,χ)=0

φv

(γ logX

2π

)
= D(X;φv,F

′
3).

Since
∑
m>0 pm(X) = 1, this yields

p0(X) =
1

AF ′3
(X)

∑
χ∈F ′3

L( 1
2 ,χ) 6=0

w
(N(cond(χ))

X

)
> 1−D(X;φv,F

′
3) > 1−φ̂v(0)+oX(1),

where the last inequality follows from Theorem 1.2. This proves a weighted version
of Corollary 1.3. We can easily re-state this as a counting version by choosing w as
follows. Assume X ∈ Z, and let

w(t) =


1 0 6 t 6 1

exp
(
1− 1/(1−X2(x− 1)2)

)
1 < x < 1 + 1/X

0 t > 1 + 1/X.

Then, w is smooth on [0,∞) and AF ′3
(X) counts exactly the characters χ ∈ F ′3

with N(cond(χ)) 6 X. Hence we conclude that

#{χ ∈ AF ′3
: N(cond(χ)) 6 X,L(1/2, χ) 6= 0}

#{χ ∈ AF ′3
: N(cond(χ)) 6 X}

=
1

AF ′3
(X)

∑
χ∈F ′3

L( 1
2 ,χ)6=0

w
(N(cond(χ))

X

)

> 1− φ̂v(0) + oX(1),
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and letting X →∞ over the integers, we have

#{χ ∈ AF ′3
: N(cond(χ)) 6 X,L(1/2, χ) 6= 0}

#{χ ∈ AF ′3
: N(cond(χ)) 6 X}

> 1− φ̂v(0) + oX(1)

→ 1− 11

13
=

2

13
.
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12. Dueñez, E.; Miller, S.J. The effect of convolving families of L-functions on the underlying
group symmetries, Proc. London Math. Soc. (3) 99 (2009), no. 3, 787 - 820.
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