
AVERAGE FROBENIUS DISTRIBUTION FOR INERTS IN Q(i)

CHANTAL DAVID AND FRANCESCO PAPPALARDI

Abstract. Given an integer r, we consider the problem of enumerating the

inert prime ideals p of Q(i) for which a given elliptic curve E has trace of

Frobenius at p equal to r. We prove that on average the number of such prime
ideals up to x is asymptotic to cr log log x where cr is an explicit constant

computed in terms of an Euler product. This result is in accordance with
the standard heuristics. This problem generalises naturally the classical Lang-
Trotter conjecture for elliptic curves over Q.

1. Introduction

Let E be an elliptic curve over a number field K/Q with a minimal model over
the ring of integers OK . Let D(E/K) be the discriminant of E/K, which is an
ideal of OK . For each prime p of OK not dividing D(E/K), E has good reduction
modulo p, and we consider the elliptic curve Ep over the finite field OK/p with

|Ep(OK/p)| = N(p) + 1− ap(E)

where the norm N(p) = pf is the number of elements of the finite field OK/p and
degK(p) = f . The trace of Frobenius ap(E) verifies the Hasse bound

|ap(E)| ≤ 2
√
N(p) = 2pf/2.

Note that E has supersingular reduction at p if and only if p | ap(E).
If f is a divisor of [K : Q], r is any integer, and

πr,f
E (x) = # {p | N(p) ≤ x, degK(p) = f, and ap(E) = r} ,

the classical heuristic argument of Lang–Trotter [13] suggests the following conjec-
ture

Conjecture 1.1. Let K be a number field, and E be an elliptic curve defined over
K without complex multiplication. Let f be a positive integer dividing [K : Q], and
let r be any integer. Then, there exists a constant cE,r,f ∈ R≥0 such that

πr,f
E (x) ∼ cE,r,f


√
x

log x
if f = 1

log log x if f = 2
1 otherwise

.

The constant cE,r,f can be 0, and the asymptotic relation is then interpreted to
mean that there are only finitely many such primes.
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To obtain evidence for this generalised Lang–Trotter conjecture, it is natural to
consider average versions of the conjecture. One considers the function

1
|C|
∑
E∈C

πr,f
E (x)

where C is a suitable set of elliptic curves which may depend on x.
In this paper we will prove the following:

Theorem 1.2. Let r be a non zero integer. Let K = Q(i) and let Cx denote the
set of elliptic curves E : Y 2 = X3 + αX + β with α = a1 + a2i, β = b1 + b2i ∈ Z[i]
and max{|a1|, |a2|, |b1|, |b2|} ≤ x log x. Then for r 6= 0,

1
|Cx|

∑
E∈Cx

πr,2
E (x) ∼ cr log log x

where

cr =
1
3π

∏
l>2

l
(
l − 1−

(
−r2

l

))
(l − 1)(l −

(−1
l

)
)
.

If r = 0, then
1
|Cx|

∑
E∈Cx

π0,2
E (x) <∞.

It is easy to see that the product that defines cr converges. Furthermore,∏
l>2

l(l − 1−
(−1

l )
)

(l − 1)(l −
(−1

l

)
)

=
∏
l>2

(
1−

(−1
l

)
(l − 1)(l −

(−1
l

)
)

)
≈ 1.07820

Let us review the classical case. Let E be an elliptic curve over Q with conductor
NE . For all primes p of good reduction (i.e. p - NE), E reduces to an elliptic curve
over Fp with p+ 1− ap(E) points where |ap(E)| ≤ 2

√
p by Hasse’s Theorem. The

case ap(E) = 0 corresponds to supersingular reduction. Fixing any r ∈ Z, let

πE,r(x) = # {p ≤ x : ap(E) = r} .
If E has complex multiplication, Deuring showed that ap(E) = 0 for half of the
primes. For all other cases, Lang and Trotter [13] conjectured that

πE,r(x) ∼ CE,r

√
x

log x
(1.1)

for some CE,r ∈ R≥0. To this date, no (non–trivial) case of the Lang–Trotter
conjecture is known; in fact, it is not even known if πE,r(x) is unbounded, except
for the case r = 0 where Elkies [5] obtained lower bounds for πE,0(x). In [6],
Elkies extends his proof to show that for any number field K which is not totally
imaginary, any elliptic curve E/K has infinitely many supersingular primes. The
result is also believed to be true for number fields which are totally imaginary, but
the proof does not seem to generalise to this case.

To explain the obstruction from generalising his proof to totally imaginary fields,
Elkies studies the following example. Let E be an elliptic curve over K = Q(

√
−3)

with K-rational 3-torsion. Let p be a rational prime which splits in K, say pOK =
p1p2. Then, p ≡ 1 mod 3, and for i = 1, 2, we have 3 | p+ 1− api(E). Therefore,
api

(E) cannot be 0, and there are no supersingular split primes. Let p be an
inert prime in K, say pOK = p. Then, |ap(E)| ≤ 2p, and p is supersingular when
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ap(E) = 0,±p,±2p. As p ≡ 2 mod 3 and 3 | p2 + 1 − ap(E), the only possible
values are ap(E) = p,−2p. One then expects the number of supersingular primes
to be proportional to ∑

p≤x

1
p
∼ log log x.

Then, the set of supersingular primes is much thinner than what is expected for
elliptic curves over Q in (1.1). Similar obstructions also arise for elliptic curves
over Q (for example, if E/Q has rational 3-torsion, then a similar argument shows
that ap(E) = 1 is impossible), but never for the supersingular case. This is one of
our motivations for studying the densities πr,2

E (x) averaging over all elliptic curves
defined over Q(i). The cases r = 0,±p,±2p which are particularly relevant to the
example above are treated in Section 5.

Upper bounds were first obtained by Serre using the Chebotarev Density Theo-
rem [18]. Further improvements and generalisations were later obtained by Elkies,
Kaneko, K. Murty, R. Murty, Saradha and Wan [7, 15, 16, 22]. We refer the reader
to a recent paper of K. Murty [17] for a complete account.

The average problem, for K = Q and r = 0 (the supersingular case) has been
studied by Fouvry and Murty [8], and the general case (K = Q and r ∈ Z) by
the authors [4]. They proved that if Cx is the set of elliptic curves that admit a
Weierstrass model Y 2 = X3 + aX + b with |a| ≤ x log2 x, |b| ≤ x log2 x, then

(1.2)
1
|Cx|

∑
E∈Cx

πr,1
E (x) ∼ cr

√
x

log x
as x→∞

where

(1.3) cr =
2
π

∏
l|r

(
1− 1

l2

)−1∏
l-r

l(l2 − l − 1)
(l − 1)(l2 − 1)

=
2
π

∏
l

l|GL2(Fl)Tr=r|
|GL2(Fl)|

,

and GTr=r denotes the set of elements of G with trace equal to r for G any subgroup
of GL2(Fl). Other averages were considered in [1, 9, 11].

It is natural to ask if the average constant of Theorem 1.2 has an interpretation in
terms of local densities as does the constant (1.3) for the average Lang–Trotter con-
jecture over Q. The authors have no such interpretation, but submit the following
observation. Let

Gl =
{(

a b
−b a

)
| a, b ∈ Fl, a

2 + b2 6= 0
}
⊂ GL2(Fl).

Then ∏
l>2

l · |GTr=r
l |

|Gl|
=
∏
l>2

l(l − 1−
(
−r2

l )
)

(l − 1)(l −
(−1

l

)
)

= 3πcr.

Throughout the proof we will assume that r is odd and positive, since the other
cases are analogous. The case r = 0 is easier, and is treated separately in Section
5.

We follow the framework of [4], with rapidly decreasing functions and contour
integration as used in [1], where the authors also average over a “thin set”. The
proof of Theorem 1.2 follows immediately from the following two results. In all the
following, r is an odd positive integer.
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Theorem 1.3 (Analytic). With the above notations, we have
1
|Cx|

∑
E∈Cx

πr,2
E (x) =

1
π

(kr + o(1)) log log x

where

(1.4) kr =
∞∑

f=1

1
f

∞∑
n=1

1
nϕ(4nf2)

∑
a∈(Z/4nZ)∗

(a
n

)
Cr(a, n, f)

ia a convergent double series, and

Cr(a, n, f) = #{b ∈ (Z/4nf2Z)∗ | b ≡ 3 mod 4, 4b2 ≡ r2 − af2 mod 4nf2}.

Theorem 1.4 (Euler product). With the above notations, we have

kr =
1
3

∏
l>2

l
(
l − 1−

(
−r2

l

))
(l − 1)(l −

(−1
l

)
)
.

Finally, we remark that an average similar to Theorem 1.2 should hold for inerts
in a general imaginary quadratic field. One could follow the steps of the proof of
Theorem 1.2 to get a result for a given field (with a different constant cr which
depends on the field), but it is not clear how to generalise the technical details of
the proof to treat a general imaginary quadratic field.

2. Step one - The analytic number theory

The proof of Theorem 1.3 follows from two results. The average over all curves
in the box Cx is related to an average of Kronecker class numbers of imaginary
quadratic orders using Deuring’s Theorem (Lemma 2.1), and this can be rewritten
as an average of special values of L-functions which can be evaluated (Lemma 2.2).

Let D < 0 be the discriminant of an imaginary quadratic order. Then, the
Kronecker class number H(D) is defined as

(2.1) H(D) = 2
∑
f2|D

h(D/f2)
w(D/f2))

,

where h(d) and w(d) denote respectively the class number and the number of units
of the order of discriminant d.

Lemma 2.1. With the notation of Theorem 1.3

1
|Cx|

∑
E∈Cx

πr,2
E (x) ∼ 1

2

∑
3r<p≤x

p≡3 mod 4

H(r2 − 4p2)
p2

+O(1).

Lemma 2.2. With the notation above, suppose that f2 | r2 − 4p2, set d = df (p) =

(r2 − 4p2)/f2 and denote by χdf (p) =
(

df (p)
.

)
the Kronecker symbol modulo df (p)

(as r is odd, df (p) ≡ 1 mod 4). Then for every c > 0,∑
f≤2x
(f,2r)=1

1
f

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

L(1, χdf (p)) log p = krx+O

(
x

logc x

)
.

where L(s, χdf (p)) is the Dirichlet L–function of χdf (p).
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We will prove these lemmas in Section 4. We show here how to deduce the
analytic step from Lemma 2.1 and Lemma 2.2.

Proof of Theorem 1.3. The definition of the Kronecker class number, the class num-
ber formula

h(d) =
ω(d)|d|1/2

2π
L(1, χd) for d < 0

and Lemma 2.1 imply that

1
|Cx|

∑
E∈Cx

πr,2
E (x) ∼ 1

2π

∑
3r<p≤x

p≡3 mod 4

∑
f2|r2−4p2

1
f

√
4p2 − r2

p2
L(1, χdf (p)).

Since
√

4p2 − r2 = 2p+O( 1
p ) and L(1, χdf (p)) � log p, the above equals

1
π

∑
f≤2x
(f,2r)=1

1
f

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

L(1, χdf (p))
p

+O

∑
p≤x

log p
p3

∑
f2|r2−4p2

1

 .

The sum in the error term is bounded since
∑

f2|r2−4p2 1 � pε. Now using
partial summation and Lemma 2.2, we deduce

∑
f≤2x
(f,2r)=1

1
f

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

L(1, χdf (p))
p

=

1
x log x

∑
f≤2x
(f,2r)=1

1
f

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

L(1, χdf (p)) log p

−
∫ x

3r

∑
f≤2t
(f,2r)=1

1
f

∑
3r<p≤t

p≡3 mod 4
4p2≡r2 mod f2

L(1, χdf (p)) log p
d

dt

(
1

t log t

)
dt =

−kr

∫ x

3r

t
d

dt

(
1

t log t

)
dt+O

(∫ x

2

dt

t logc+1 t

)
=

kr

∫ x

3r

dt

t log t
+O (1) = kr log log x+O(1).

This concludes the proof. �

3. Step two - computing the Euler product

Proof of Theorem 1.4. Let ω(k) be the number of distinct prime divisors of k ∈ N.

Lemma 3.1. If gcd(f, 2r) 6= 1, then Cr(a, n, f) = 0. If gcd(f, 2r) = 1, then

Cr(a, n, f) =

{
b2(n)2ω(f)−ω((n′,f))

∏
l|n′

[
1 +

(
r2−af2

l

)]
if gcd(n′, r2 − af2) = 1

0 otherwise,

where b2(n) is as defined below.
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Proof of Lemma 3.1. From the definition

Cr(a, n, f) = #{b ∈ (Z/4nf2Z)∗ | b ≡ 3 mod 4, 4b2 ≡ r2 − af2 mod 4nf2},

it is clear that Cr(a, n, f) = 0 when gcd(f, 2r) 6= 1. By the Chinese Remainder
Theorem, all solutions modulo 4nf2 arise from solution modulo the prime power
divisors of 4nf2. Furthermore, every solution modulo a prime l lift uniquely to a
solution modulo lα (see [10, Theorem 123]). We write 4n = 2tn′ with n′ odd. Then

Cr(a, n, f) = b2
∏

lα||n′f2

bl

where, if bl = bl(n) = #{b ∈ (Z/lZ)∗ | b2 ≡ (r2 − af2)/4 mod l},

bl =

{
1 +

(
r2−af2

l

)
if (l, r2 − af2) = 1

0 otherwise.

and if b2 = b2(n) = #
{
b ∈ (Z/2tZ)∗

∣∣∣ b≡3 mod 4,
4b2≡(r2−af2) mod 2t

}
,

b2 =

{
2min{3,t−2} if r2 − af2 ≡ 4 mod 2min{t,5}

0 otherwise.

The formula for b2 is shown as follows. If 2 ≤ t < 5 it can be verified directly. If
a ≥ 3, then the number of solutions of the quadratic equation x2 ≡ c mod 2a are
4 if c ≡ 1 mod 8 and 0 otherwise (see [10, p. 98]). Let us write b = −1 + 4u, so
that 4b2 = 4+32(2u2−u) ≡ r2−af2 mod 2t implies r2−af2 ≡ 4 mod 32. In such
a case, the 4 solutions of b2 ≡ r2−af2

4 mod 2t−2 lift to 16 solutions modulo 2t and
half of these are such that b ≡ 3 mod 4. The lemma now follows by observing that
if l | f , then bl = 2 as (r, f) = 1. �

Using this lemma, we rewrite (1.4) as

(3.1) kr =
∑
f∈N,

gcd(f,2r)=1

2ω(f)

fϕ(f2)

∑
n∈N

ϕ(gcd(n, f))
gcd(n, f)2ω((n,f))

1
nϕ(4n)

cf (n)

where

cf (n) =
∑

a∈(Z/4nZ)∗,

gcd(r2−af2,n′)=1

b2(n)
(a
n

)∏
l|n′

(
1 +

(
r2 − af2

l

))
.

Lemma 3.2. (i) cf (n) is a multiplicative function of n.
(ii) Let l be an odd prime. Then cf (lα) = cgcd(f,l)(lα).
(iii) Let l be an odd prime not dividing f . Then

(3.2) cf (lα) =


1 if α = 0(−1

l

)α
ϕ(lα) if l|r

lα−1(l − 3) if α is even and l - r
lα−1(−1−

(−1
l

)
) if α is odd and l - r
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(iv) Let l be an odd prime such that l | f and l - r. Then

cl(lα) =


1 if α = 0
2ϕ(lα) if α > 0 is even
0 if α is odd.

(v) c1(2α) = (−2)α.

The proof of Lemma 3.2 will be done in Section 4. Using the lemma, we have

kr =

 ∑
f∈N,

gcd(f,2r)=1

2ω(f)

fϕ(f2)

∏
l>2

∑
α≥0

ϕ(gcd(lα, f))
gcd(lα, f)2ω(gcd(lα,f))

1
lαϕ(lα)

cf (lα)

∑
j∈N

c1(2j)
2jϕ(2j+2)

.

Using cf (lα) = cgcd(l,f)(lα) and∑
j∈N

c1(2j)
2jϕ(2j+2)

=
∑
j∈N

(−2)j

22j+1
= 1/3,

we obtain

kr =
1
3


∑
f∈N,

gcd(f,2r)=1

2ω(f)

fϕ(f2)

∏
l|f

1 +
1
2

∑
α≥1

cl(lα)
l2α∑

α≥0

c1(lα)
lαϕ(lα)


∏
l>2

∑
α≥0

c1(lα)
lαϕ(lα)



=
1
3

∏
l>2

1 +
(
r2

l

) 1 +
1
2

∑
α≥1

cl(lα)
l2α∑

α≥0

c1(lα)
lαϕ(lα)

∑
β≥1

2
l3α−1(l − 1)

 ·

∑
α≥0

c1(lα)
lαϕ(lα)

 .

As
∑
β≥1

1
l3β

=
1

l3 − 1
, we obtain

kr =
1
3

∏
l>2

∑
α≥0

c1(lα)
lαϕ(lα)

+
(
r2

l

)
2l

(l − 1)(l3 − 1)

1 +
1
2

∑
α≥1

cl(lα)
l2α

 ,
and it follows from Lemma 3.2 that

1 +
1
2

∑
α≥1

cl(lα)
l2α

=
l2 + l + 1
l2 + l

,
∑
α≥0

c1(lα)
lαϕ(lα)

=


l

(l−(−1
l )) if l | r

− l(−1
l )+3

(l2−1)(l−1) + 1 if l - r.

Therefore

kr =
1
3

∏
l|r, l>2

l

(l −
(−1

l

)
)

∏
l-r, l>2

(
1−

l
(−1

l

)
+ 3

(l − 1)(l2 − 1)
+

2
(l − 1)(l2 − 1)

)

=
1
3

∏
l>2

l(l − 1−
(−1

l

)
)

(l − 1)(l −
(−1

l

)
)

and this concludes the proof. �
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4. Proofs of the Lemmas

Proof of Lemma 3.2. (i) It is easy to check that cf (n) is multiplicative using the
Chinese Remainder Theorem.
(iii) Let l be an odd prime not dividing f . We also assume α ≥ 1 otherwise the
statement is clear. Let f∗ be the inverse of f modulo l. Then,

cf (lα) =
∑

a∈(Z/4lαZ)∗,

gcd(r2−af2,lα)=1

b2(1)
(a
l

)α
(

1 +
(
r2 − af2

l

))

and since b2(1) = 1 if a ≡ (rf∗)2 ≡ 1 mod 4 and 0 otherwise, we have

cf (lα) = lα−1
∑

a∈(Z/lZ)∗

a6≡(rf∗)2 mod l

(a
l

)α
(

1 +
(

(rf∗)2 − a

l

))
.

If α is even,
∑

c∈(Z/lZ)∗

(
c
l

)
= 0 and therefore

cf (lα) = lα−1

l − 1−
(
r2

l

)
+

∑
c∈(Z/lZ)∗,

c6≡(rf∗)2 mod l

(c
l

) = lα−1

(
l − 1− 2

(
r2

l

))
.

If α is odd, we have

cf (lα) = lα−1
∑

a∈(Z/lZ)∗

a6≡(rf∗)2 mod l

((a
l

)
+
(

(rf∗)2a− a2

l

))

= lα−1

−(r2
l

)
+
∑

a∈Z/lZ

(
(rf∗)2a− a2

l

) .

Since that affine conic X2 +Y 2− (rf∗)2X = 0 has l−
(−1

l

)
points, we deduce that∑

a∈Z/lZ

(
(rf∗)2a− a2

l

)
= −

(
−r2

l

)
+
(
−1
l

)
(l − 1)(1−

(
r2

l

)
),

and therefore

cf (lα) = lα−1

(
−
(
−r2

l

)
−
(
r2

l

)
+
(
−1
l

)
(l − 1)(1−

(
r2

l

)
)
)
.

Finally

cf (lα) = c1(lα) =

l
α−1

(
l − 1− 2

(
r2

l

))
if α is even

lα−1
((−1

l

)
(l − 1)−

(
r2

l

)
(
(−1

l

)
l + 1)

)
if α is odd.

(iv) We now suppose that l | f and l - r. Then

cf (lα) =
∑

a∈(Z/4lαZ)∗,

gcd(r2,l)=1

b2(1)
(a
l

)α
(

1 +
(
r2

l

))
= 2lα−1

∑
a∈(Z/lZ)∗

(a
l

)α

= lα−1(l − 1)(1 + (−1)α).
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(v) If α ≥ 3, then

cf (2α) = 8
∑

a∈(Z/2α+2Z),

a≡r2−4 mod 25

(a
2

)α

= 8
(
r2 − 4

2

)α 2α+2

25
,

and
(
r2 − 4

2

)
=
(
−3
2

)
= −1 since r is odd. The remaining cases α ≤ 2 are done

in a similar way and this concludes the proof. �

Proof of Lemma 2.1. Let t be a parameter to be chosen later, and let Ct be the set
of elliptic curves E over Z[i] that admit a Weierstrass equation of the form

E : Y 2 = X3 + αX + β.

with α = a1 + a2i, β = b1 + b2i ∈ Z[i] and max{|a1|, |a2|, |b1|, |b2|} ≤ t. It is easy to
see that

|Ct| = 16t4 +O(t3),

so that
1
|Ct|

=
1

16t4
+O

(
1
t5

)
.

For any prime p ≡ 3 mod 4, let us denote with Fp2 the field with p2 elements. If Ẽ
is a curve defined over Fp2 , let Ct(Ẽ) denotes the set

Ct(Ẽ) =
{
E ∈ Ct | Ep = Ẽ

}
,

i.e. the set of elliptic curves E in Ct which reduce to Ẽ over Fp2 . If t > p, we have

(4.1) |Ct(Ẽ)| = 16t4

p4
+O

(
t3

p3

)
+O

(
t4

p20

)
since every element of Fp2 can be written as A+ Bθ where A,B ∈ Fp and θ2 = 1.
The last term of (4.1) accounts for non-minimal models at p.

Let Tp2(r) denotes the number of elliptic curves over Fp2 with p2 +1− r rational
points. We have the following classical result

Lemma 4.1 (Deuring’s Theorem [14, 19]). Let r be an integer such that r2−4p2 <
0. Then,

Tp2(r) =



H(r2 − 4p2)
p2 − 1

2
when p - r;

O
(
p2
)

when r = 0;

O
(
p2
)

when r = ±p;

p3

24
+O

(
p2
)

when r = ±2p.

Remark. There are several standard definitions for the Kronecker class number.
We are using in this paper the “weighted” Kronecker class number defined by (2.1),
as in [14], but unlike [19].
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We now write
1
|Ct|

∑
E∈Ct

πr,2
E (x) =

1
|Ct|

∑
E∈Ct

∑
p≤x

p≡3 mod 4
ap(E)=r

1 =
1
|Ct|

∑
E∈Ct

∑
3r<p≤x

p≡3 mod 4
ap(E)=r

1 + O(1)

where the condition 3r < p ≤ x insures that p > 3, that r2 − 4p2 < 0 and that r 6=
p, 2p. Reversing summations, and using Deuring’s Theorem with r 6= 0,±p,±2p,
we then have

1
|Ct|

∑
E∈Ct

πr,2
E (x) =

∑
3r<p≤x

p≡3 mod 4

[
1

16t4
+O

(
1
t5

)][
16t4

p4
+O

(
t3

p3
+

t4

p20

)]
Tp2(r)

+ O(1)

=
∑

3r<p≤x
p≡3 mod 4

[
H(r2 − 4p2)

2p2
+O

(
log2 p

t
+

1
p2

)]
+ O(1)

=
1
2

∑
3r<p≤x

p≡3 mod 4

H(r2 − 4p2)
p2

+ O (1)

if t = x log x. This completes the proof. �

Proof of Lemma 2.2. Let us introduce a parameter U and start from the identity

L(1, χdf (p)) =
∑
n∈N

(
df (p)
n

)
1
n

=
∑
n∈N

(
df (p)
n

)
e−n/U

n
+O

(
|df (p)|7/32

U1/2

)
(4.2)

which follows from standard contour integration. More precisely, one starts from
the integral identity∑

n∈N

(
df (p)
n

)
e−n/U

n
= L(1, χdf (p)) +

∫
<(s)=−1/2

L(s+ 1, χdf (p))Γ(s+ 1)
Us

s
ds

and apply the Burgess’ bound L(1/2 + it, χdf (p)) � |t||df (p)|7/32 [2] to estimate
the integral.

Summing (4.2) and noticing that |df (p)|7/32 �
(

p
f

)7/16

, it follows that∑
f≤2x
(f,2r)=1

1
f

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

L(1, χdf (p)) log p(4.3)

=
∑

f≤2x
(f,2r)=1

1
f

∑
n∈N

e−n/U

n

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

(
df (p)
n

)
log p+O

(
x23/16

U1/2

)
.

Choosing

(4.4) U > x7/8 log2c x,

the error term above is

O

(
x23/16

U1/2

)
= O

(
x

logc x

)
.
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We now deal with the values of f with V ≤ f ≤ 2x, and note that

∑
V≤f≤2x
(f,2r)=1

1
f

∑
n∈N

e−n/U

n

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

(
df (p)
n

)
log p �

log x
∑
n∈N

e−n/U

n

∑
f≥V

(f,2)=1

1
f

∑
m≤x

4m2≡r2 mod f2

1 �

log x
∑
n∈N

e−n/U

n

∑
f≥V

(f,2r)=1

#{h ∈ Z/f2 | 4h2 ≡ r2 (f2)}
f

x

f2
�

x log x
∑
n∈N

e−n/U

n

∑
f≥V

2ω(f)

f3
(4.5)

using the fact that 4X2 ≡ r2 mod f2 has at most 2ω(f) solutions X modulo f2

when f is odd (this follows from [10, Theorem 123] and the Chinese Remainder
Theorem). From the standard formula [21, Exercise 2, p.53]

∑
m≤T

2ω(m) =
6
π2
T log T +O(T )

and partial summation, we obtain

∑
f≥V

2ω(f)

f3
� log V

V 2
.

As
∑

n∈N
e−n/U

n � logU , it follows that (4.5) is O
(

x

logc x

)
when

(4.6) V ≥ log x)(c+3)/2.

Therefore (4.3) equals

∑
f≤V
(f,2r)=1

1
f

∑
n∈N

e−n/U

n

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

(
df (p)
n

)
log p+O

(
x

logc x

)
.

We estimate the terms with n ≥ U logU by observing that since

∑
n≥U log U

e−n/U

n
� 1

U logU

∫ ∞

U log U

e−x/Udx� 1
U logU

,

we have
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∑
f≤V
(f,2r)=1

1
f

∑
n≥U log U

e−n/U

n

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

(
df (p)
n

)
log p �

log x
U logU

∑
f≤V
(f,2r)=1

1
f

∑
m≤x

4m2≡r2 mod f2

1 �

x log x
U logU

� x

logc x
(4.7)

as U is chosen according to (4.4).
We finally deal with the main term of (4.3). As the Kronecker symbol is periodic

modulo 4n, we write∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

(
df (p)
n

)
log p =

∑
a∈(Z/4nZ)∗

(a
n

) ∑
3r<p≤x

p≡3 mod 4

4p2≡r2 mod f2

(r2−4p2)/f2≡a mod 4n

log p

=
∑

a∈(Z/4nZ)∗

(a
n

) ∑
b∈(Z/4nf2Z)∗

b≡3 mod 4
4b2≡r2−af2 mod 4nf2

ψ1(x, 4nf2, b)

+O
(

2ω(nf)

f2

)
(4.8)

where as usual
ψ1(x, 4nf2, b) =

∑
2≤p≤x

p≡b mod 4nf2

log p

and the O(2ω(nf)/f2) term comes from the primes p ≤ 3r.
If we write

E1(x, 4nf2, b) = ψ1(x, 4nf2, b)− x

ϕ(4nf2)
,

then (4.8) equals

x
∑

a∈(Z/4nZ)∗

(a
n

) Cr(a, n, f)
ϕ(4nf2)

+
∑

a∈(Z/4nZ)∗

(a
n

) ∑
b∈(Z/4nf2Z)∗

b≡3 mod 4
4b2≡r2−af2 mod 4nf2

E1(x, 4nf2, b)(4.9)

+O
(

2ω(nf)

f2

)
with

Cr(a, n, f) = #{b ∈ (Z/4nf2Z)∗ | b ≡ 3 mod 4, 4b2 ≡ r2 − af2 mod 4nf2}.

Let us look at the middle term of (4.8) and note that if we interchange the
summation over b ∈ (Z/4nf2Z)∗ and that over a ∈ (Z/4nZ)∗, for every fixed b
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there is at most 1 value of a ∈ (Z/4nZ)∗ with f2a ≡ r2− 4b2 mod 4nf2. Therefore

(4.10)
∑

a∈(Z/4nZ)∗

(a
n

) ∑
b∈(Z/4nf2Z)∗

b≡3 mod 4
4b2≡r2−af2 mod 4nf2

E1(x, 4nf2, b) �
∑

b∈(Z/4nf2Z)∗

|E1(x, 4nf2, b)|.

Substituting (4.9), (4.10) and (4.7) in (4.3), we obtain∑
f≤2x
(f,2r)=1

1
f

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

L(1, χdf (p)) log p =(4.11)

∑
f≤V
n≤U log U
(f,2r)=1

e−n/U

nf

x ∑
a∈(Z/4nZ)∗

(a
n

) Cr(a, n, f)
ϕ(4nf2)

+
∑

b∈(Z/4nf2Z)∗

|E1(x, 4nf2, b)|



+O
(

x

logc x

)
taking into account that∑

f≤V
(f,2r)=1

∑
n<U log U

e−n/U2ω(nf)

nf3
� U logU � x

logc x

when

(4.12) U � x

logc+1 x
.

Now apply Cauchy–Schwarz to the middle term of (4.11) and obtain

(4.13)
∑

f≤V
(f,2r)=1

1
f

∑
n≤U log U

e−n/U

n

∑
b∈(Z/4nf2Z)∗

|E1(x, 4nf2, b)| ≤

≤
∑
f≤V

1
f

 ∑
n≤U log U

ϕ(4nf2)
n2

1/2 ∑
n≤U log U

∑
b∈(Z/4nf2Z)∗

E1(x, 4nf2, b)2

1/2

�

�
√

logU
∑
f≤V

f

 ∑
m≤4V 2U log U

∑
b∈(Z/mZ)∗

E1(x,m, b)2

1/2

.

Now the Barban, Davenport, Halberstam Theorem (see [3, page 169]) asserts that
for x > Q ≥ x/ logk x ∑

m≤Q

∑
b∈(Z/mZ)∗

E1(x,m, b)2 � Qx log x.

Therefore if x > 4V 2U logU > x/ logk x, (4.13) is � V 3
√
U logU

√
x log x which is

O(x/ logc x) if U and V satisfy (4.4), (4.6) and (4.12). A possible choice is

(4.14) U =
x

log5c+15 x
and V = log(c+3)/2 x.
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Replacing in (4.11), we have proved that∑
f≤2x
(f,2r)=1

1
f

∑
3r<p≤x

p≡3 mod 4
4p2≡r2 mod f2

L(1, χdf (p)) log p = x
∑

f≤V
n≤U log U
(f,2r)=1

e−n/Ucf (n)
nfϕ(4nf2)

+O

(
x

logc x

)

where we set
cf (n) =

∑
a∈(Z/4nZ)∗

(a
n

)
Cr(a, n, f).

We claim that∑
f≤V
n≤U log U
(f,2r)=1

e−n/Ucf (n)
nfϕ(4nf2)

=
∑

f,n∈N
(f,2r)=1

cf (n)
nfϕ(4nf2)

+O

(
1

logc x

)
.

Using Lemma 3.1

|cf (n)| ≤ ϕ(n)Cr(a, n, f) ≤ ϕ(n)2ω(nf),

and therefore ∑
f≤V
n≤U log U
(f,2r)=1

e−n/Ucf (n)
nfϕ(4nf2)

=
∑

f∈N
(f,2r)=1

∑
n≤U log U

e−n/Ucf (n)
nfϕ(4nf2)

+

O


∑

f>V
n≤U log U
(f,2r)=1

e−n/Uϕ(n)2ω(nf)

nfϕ(4nf2)

 .

Since ϕ(4nf2) ≥ 2ϕ(f2)ϕ(n) and
∑
f>V

2ω(f)

fϕ(f2)
� log V

V 2
, the error term above is

� log V
V 2

∑
n≤U log U

e−n/U2ω(n)

n
� log V log2 U

V 2
= O

(
1

logc x

)
as U and V are chosen according to (4.14).

Furthermore∑
f∈N
(f,2r)=1

∑
n≤U log U

e−n/Ucf (n)
nfϕ(4nf2)

=
∑

f∈N
(f,2r)=1

∞∑
n=1

e−n/Ucf (n)
nfϕ(4nf2)

+

O

∑
f∈N

2ω(f)

fϕ(f2)

∑
n>U log U

e−n/U2ω(n)

n


and since 2ω(n) �

√
n, the error term above is

� 1√
U logU

∫ ∞

U log U

e−t/Udt = O

(
1

logc x

)
.
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The last identity we need to conclude the proof is∑
f∈N
(f,2r)=1

∞∑
n=1

e−n/Ucf (n)
nfϕ(4nf2)

=
∑

f∈N
(f,2r)=1

∞∑
n=1

cf (n)
nfϕ(4nf2)

+O

(
1

logc x

)

Consider the Dirichlet series

Af (s) =
∞∑

n=1

cf (n)
ϕ(4nf2)ns

.

Using the bounds for cf (n) of Lemma 3.2 and [4, Lemma 3.4]), one sees that Af (s)
converges for <(s) > 0. We have the identity

∞∑
n=1

cf (n)e−n/U

nϕ(4nf2)
= Af (1) +

∫
<(s)=−1/2

Γ(s+ 1)Af (s+ 1)
Us

s
ds.

Estimating the integral we obtain∫
<(s)=−1/2

Γ(s+ 1)Af (s+ 1)
Us

s
ds� 1

f
√
U
.

Summing over f we have the claim. �

5. Conclusion

For any elliptic curve E over K = Q(i), we define

π′E(x) = # {p | N(p) ≤ x, degK(p) = 2, and ap(E) = p or ap(E) = −p}
π′′E(x) = # {p | N(p) ≤ x, degK(p) = 2, and ap(E) = 2p or ap(E) = −2p}
πss

E (x) = # {p | N(p) ≤ x, degK(p) = 2, and p is a supersingular prime} ,

and we now compute the average of those densities over all elliptic curves E over
K = Q(i). Unlike the average of Theorem 1.2 for r 6= 0 which requires delicate
computations, those averages are trivial as Deuring’s Theorem does not involve
Kronecker class numbers in those cases. We also compute the average of π0,2

E (x)
which is similar, and this completes the proof of Theorem 1.2.

Theorem 5.1. Let K = Q(i) and let C′x (respectively C′′x) denote the set of elliptic
curves E : Y 2 = X3 + αX + β with α = a1 + a2i, β = b1 + b2i ∈ Z[i] and
max{|a1|, |a2|, |b1|, |b2|} ≤ log log x (respectively x/ log x ). Then,

1
|C′x|

∑
E∈C′x

π0,2
E (x) < ∞

1
|C′x|

∑
E∈C′x

π′E(x) < ∞

1
|C′′x |

∑
E∈C′′x

π′′E(x) ∼ 1
24

log log x

1
|C′′x |

∑
E∈C′′x

πss
E (x) ∼ 1

24
log log x.
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Proof of Theorem 5.1. Following the proof of Lemma 2.1, and using Tp2(0) = O(p2),
we have

1
|Ct|

∑
E∈Ct

π0,2
E (x) =

1
|Ct|

∑
E∈Ct

∑
p≤x

p≡3 mod 4
ap(E)=0

1

=
∑
p≤x

p≡3 mod 4

[
1

16t4
+O

(
1
t5

)][
16t4

p4
+O

(
t3

p3
+

t4

p20

)]
Tp2(0)

=
∑
p≤x

p≡3 mod 4

O

(
1
p2

+
1
pt

)

= O(1) if t = log log x.

The proof for π′E(x) is exactly the same. For π′′E(x), we have Tp2(2p)+Tp2(−2p) =
p3/12 +O(p2) from Lemma 4.1, and working as above

1
|Ct|

∑
E∈Ct

π′′E(x) =
1
12

∑
p≤x

p≡3 mod 4

1
p

+O

1
t

∑
p≤x

p≡3 mod 4

1


=

1
24

log log x+O(1) if t =
x

log x
.

The average result for πss
E (x) now follows by summing the first three estimates. �
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8. E. Fouvry and M. R. Murty, On the distribution of supersingular primes, Canad. J. Math.
48 (1996), 81–104.

9. E. Fouvry and M. R. Murty, Supersingular primes common to two elliptic curves, Number
theory (Paris, 1992–1993), 91–102, London Math. Soc. Lecture Note Ser., 215, Cambridge
Univ. Press, Cambridge, 1995.

10. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Science

Publications, New York, 1979, Fifth Edition.
11. K. James, Average Frobenius distributions for elliptic curves with 3-torsion, preprint.

12. J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem,

Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham,
Durham, 1975), Academic Press, London, 1977, pp. 409–464.

13. S. Lang and H. Trotter, Frobenius distributions in GL2-extensions, Springer-Verlag, Berlin,

1976.
14. H. W. Lenstra, Factoring integers with elliptic curves, Ann. of Math. 126 (1987), 649–673.



AVERAGE FROBENIUS DISTRIBUTION FOR INERTS IN Q(i) 17

15. M. R. Murty, V. Kumar Murty, and N. Saradha, Modular forms and the Chebotarev density
theorem, Amer. J. Math. 110 (1988), 253–281.

16. V. K. Murty, Modular forms and the Chebotarev density theorem. II, Analytic number theory

(Kyoto, 1996), Cambridge Univ. Press, Cambridge, 1997, pp. 287–308.
17. V. K. Murty, Frobenius distribution and Galois representations, Automorphic forms, auto-

morphic representations, and arithmetic (Fort Worth, TX, 1996), 193–211, Proc. Sympos.
Pure Math., 66, Part 1, Amer. Math. Soc., Providence, RI, 1999.

18. J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études

Sci. Publ. Math. 54 (1981), 323–401.
19. R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory Ser. A 46

(1987), 183–211.

20. Jean-Pierre Serre, Abelian l-adic representations and elliptic curves, W. A. Benjamin, Inc.,
New York-Amsterdam, 1968.

21. G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies
in Advanced Mathematics, 46. Cambridge University Press, Cambridge, 1995.

22. Da Qing Wan, On the Lang-Trotter conjecture, J. Number Theory 35 (1990), 247–268.

(David) Department of Mathematics and Statistics, Concordia University 1455 de
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