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Abstract. Let E be an elliptic curve over Q without complex multiplication.
For each prime p of good reduction, let |E(Fp)| be the order of the group of points
of the reduced curve over Fp. According to a conjecture of Koblitz, there should
be infinitely many such primes p such that |E(Fp)| is prime, unless there are
some local obstructions predicted by the conjecture. Suppose that E is a curve
without local obstructions (which is the case for most elliptic curves over Q). We
prove in this paper that, under the GRH, there are at least 2.778Ctwin

E x/(log x)2

primes p such that |E(Fp)| has at most 8 prime factors, counted with multiplicity.
This improves previous results of Steuding & Weng [20] and Murty & Miri [15].
This is also the first result where the dependence on the conjectural constant Ctwin

E

appearing in Koblitz’s conjecture (also called the twin prime conjecture for elliptic
curves) is made explicit. This is achieved by sieving a slightly different sequence
than the one of [20] and [15]. By sieving the same sequence and using Selberg’s
linear sieve, we can also improve the constant of Zywina [24] appearing in the
upper bound for the number of primes p such that |E(Fp)| is prime. Finally, we
remark that our results still hold under an hypothesis weaker than the GRH.

1. Introduction

The twin prime conjecture is one of the oldest questions in number theory, and
can be stated as: there is an infinity of prime numbers p such that p + 2 is also
prime. The best known result is due to Chen [3], who proved that

(1.1)
∣∣{p 6 x : p+ 2 = P2

}∣∣ > 0.335
Ctwinx

(log x)2

for x > x0, where Pr denotes an integer having at most r prime factors counted with
multiplicity and

Ctwin := 2
∏
`>2

(
1− 1

(`− 1)2

)
.

Here and in the sequel, the letters p and ` denote prime numbers. There are many
generalisations of the twin prime conjecture, and in particular, an analogous con-
jecture for elliptic curves was formulated by Koblitz [13]. Let E be an elliptic curve
defined over Q with conductor NE, and denote by E(Fp) the reduction of E modulo
p. Koblitz [13] conjectured that as x→∞

(1.2) πtwin
E (x) :=

∣∣{p 6 x : p - NE, |E(Fp)| is prime
}∣∣ ∼ Ctwin

E x

(log x)2
,
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where the constant Ctwin
E can be explicitely written as an Euler product like the

twin prime constant (see (2.5) below). The constant Ctwin
E can be 0 when there

are “congruence obstructions”, and the conjecture is then interpreted to mean that
there are finitely many primes p such that |E(Fp)| is prime (see Section 2 for more
details). This conjecture has theoretical relevance to elliptic curve cryptosystems
based the discrete logarithm problem in the group E(Fp).

As the twin prime conjecture, Koblitz’s conjecture is still open, but was shown to
be true on average over all elliptic curves [1]. One can also apply sieve methods to
get lower bounds for the number of primes p such that |E(Fp)| is almost-prime. It
is necessary to distinguish two cases: when E has complex multiplication (CM) or
not. In the first case, Iwaniec & Jiménez Urroz [9, 10] have obtained an analogue
of Chen’s theorem (1.1). In the non-CM case, all results assume the generalized
Riemann hypothesis (GRH) for Dedekind zeta-functions of some number fields. The
first result of this type is due to Miri & Murty [15], who proved by using Selberg’s
sieve [2] that

(1.3)
∣∣{p 6 x : |E(Fp)| = P16

}∣∣� x

(log x)2

for x > x0(E), where the implicit constant depends on the elliptic curve E. Recently
Steuding and Weng [20, 21] have improved 16 to 9, by using Richert’s logarithmic
weighted sieve [7] and some improvements to the error term of the explicit Cheb-
otarev Density Theorem due to Serre [18] and M.-R. Murty, V.-K. Murty & Saradha
[16].

We prove in this paper a better result under a weaker hypothesis, namely we
replace the GRH by the θ-hypothesis which states that there are no zeroes with
<e s > θ for Dedekind zeta-functions and Artin L-functions. This is stated in
Section 3 as Hypothesis 3.4. We also write explicitly the constant in terms of the
twin prime constant Ctwin

E by modifying slightly the set to sieve. In all the following,
the primes p 6 x always exclude the primes dividing the conductor of the elliptic
curve E.

Theorem 1.1. Let E be an elliptic curve over Q without complex multiplication
such that Ctwin

E 6= 0. Assuming Hypothesis 3.4 for any 1/2 6 θ < 1, we have

(1.4)
∣∣{p 6 x : (|E(Fp)|,ME) = 1, |E(Fp)| = Pr

}∣∣ > 1.323

1− θ
Ctwin
E x

(log x)2

for x > x0(E, θ), where ME is an integer depending on E (which will be described
explicitly in Section 2) and

(1.5) r = r(θ) :=

[
18 + 2θ

5(1− θ)

]
+ 1.

Here [t] denotes the integral part of t.

Since (18 + 2θ)/(5− 5θ) < 8 if and only if θ < 11/21, we immediately obtain the
following result, which improves, under a weaker hypothesis, the result of Steuding
& Weng mentioned above.
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Corollary 1.2. Let E be an elliptic curve over Q without complex multiplication
such that Ctwin

E 6= 0. Assuming Hypothesis 3.4 for any 1/2 6 θ < 11/21, we have

(1.6)
∣∣{p 6 x : (|E(Fp)|,ME) = 1, |E(Fp)| = P8

}∣∣ > 2.778
Ctwin
E x

(log x)2

for x > x0(E). In particular (1.6) holds if we assume GRH.

Of course, Theorem 1.1 and Corollary 1.2 imply the same lower bound for∣∣{p 6 x : |E(Fp)| = P8

}∣∣
since we are getting a lower bound for a smaller set. We will see in Section 2 that
it is natural to count primes such that (|E(Fp)|,ME) = 1 when sieving to get the
right constant in Theorem 1.1.

Upper bounds for πtwin
E (x) were first studied by Cojocaru who showed in [4] that

πtwin
E (x) � x/(log x)2 by using Selberg’s linear sieve under the GRH. The implicit

constant depends on the conductor of E, but the exact dependency was not worked
out. Very recently, Zywina [24] applied an abstract form of the large sieve to obtain
that

(1.7) πtwin
E (x) 6 {22 + o(1)} C

twin
E x

(log x)2

as x→∞. His result applies to a more general form of Koblitz’s conjecture, where
the elliptic curve E can be defined over any number field.

The second aim of this paper is to show that Selberg’s linear sieve allows us to
obtain the correct twin prime constant Ctwin

E with a better constant factor than (1.7)
in the case of elliptic curves over Q.

Theorem 1.3. Under the condition of Theorem 1.1, for any ε > 0 we have

πtwin
E (x) 6

(
5

1− θ
+ ε

)
Ctwin
E x

(log x)2

for x > x0(E, θ, ε).

Then, assuming GRH, Theorem 1.3 allows us to improve the constant in (1.7)
from 22 to 10.

Acknowledgments. The authors wish to thank David Zywina for helpful com-
ments and discussions. The first author also wishes to thank l’Institut Élie Cartan de
Nancy-Université for hospitality and support during the preparation of this article.

2. Koblitz’s Conjecture

Let E be an elliptic curve over Q without complex multiplication with conductor
NE, and let Ln := Q(E[n]) be the field extension obtained from Q by adding the
coordinates of the points of n-torsion to Q. This is a Galois extension of Q, and in
all this paper, we denote

G(n) = Gal(Ln/Q).
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Since E[n](Q̄) ' Z/nZ × Z/nZ, choosing a basis for the n-torsion and looking
at the action of the Galois automorphisms on the n-torsion, we get an injective
homomorphism

ρn : G(n) ↪→ GL2(Z/nZ).

If p - nNE, then p is unramified in Ln/Q. Let p be an unramified prime, and let
σp be the Artin symbol of Ln/Q at the prime p. For such a prime p, ρn(σp) is
a conjugacy class of matrices of GL2(Z/nZ). Since the Frobenius endomorphism
(x, y) 7→ (xp, yp) of E over Fp satisfies the polynomial x2 − apx + p where ap is
defined by the relation

(2.1) |E(Fp)| = p+ 1− ap,
it is not difficult to see that

tr(ρn(σp)) ≡ ap (modn) and det(ρn(σp)) ≡ p (modn).

It was shown by Serre [17] that the Galois groups G(n) ⊆ GL2(Z/nZ) are large,
in the sense that there exists a positive integer ME such that

If (n,ME) = 1, then G(n) = GL2(Z/nZ);(2.2)

If (n,ME) = (n,m) = 1, then G(mn) ' G(m)×G(n).(2.3)

For any integer n, let

C(n) = {g ∈ G(n) : det(g) + 1− tr(g) ≡ 0 (modn)} .
The original Koblitz constant was defined in terms of the local probabilities for the
event ` - p+1−ap(E), which can be evaluated by counting matrices g in GL2(Z/`Z).
More precisely, for each prime `, the correcting probability factor is the quotient

E(`) =
1− |C(`)|/|G(`)|

1− 1/`
(2.4)

where the numerator is the probability that p+ 1− ap(E) is not divisible by ` and
the denominator is the probability that a random integer is not divisible by `. If
G(`) = GL2(Z/`Z), which happens for all but finitely many primes by (2.2), then

E(`) =
1− |C(`)|/|G(`)|

1− 1/`
= 1− `2 − `− 1

(`− 1)3(`+ 1)
.

The constant Ctwin
E of [13] was defined as the product over all primes ` of the Euler

factors E(`). In [23], Zywina made the observation that the probabilities are not
multiplicative, as the events are not independent: the fields Q(E[`]) are not neces-
sarily linearly disjoint for all primes `, as observed by Serre in [17]. For any integer
m, let

Ω(m) = {g ∈ G(m) : (det(g) + 1− tr(g),m) 6= 1} .
According to the refinement of [23], the probability factor at ME is defined as

1− |Ω(ME)|/|G(ME)|∏
`|ME

(1− 1/`)
.

The twin prime constant Ctwin
E is then defined as

(2.5) Ctwin
E :=

1− |Ω(ME)|/|G(ME)|∏
`|ME

(1− 1/`)

∏
`-ME

(
1− `2 − `− 1

(`− 1)3(`+ 1)

)
.



ALMOST PRIME VALUES OF THE ORDER OF ELLIPTIC CURVES 5

We remark that Ctwin
E as defined by (2.5) can be 0, when Ω(ME) = G(ME), which

means that p+ 1− ap(E) = |E(Fp)| is never co-prime to ME for any p - NEME. i.e
there is a “congruence obstruction” modulo ME. This happens for example when
E has rational torsion of order t as t | p+ 1− ap(E) for all p - tNE in that case, but
not exclusively, and some other cases of congruence obstructions are exhibited in
[12]. Elliptic curves with congruence obstructions are exceptional, and most elliptic
curves over Q do not have congruence obstructions (for example, Serre curves do
not have congruence obstructions, and most elliptic curves over Q are Serre curves
[11]).

We also remark that if we assume Koblitz’s conjecture, it follows immediately
that

(2.6)
∣∣{p 6 x : (|E(Fp)|,ME) = 1, |E(Fp)| is prime

}∣∣ ∼ Ctwin
E x

(log x)2

as x→∞. It is easy to see that (1.2) and (2.6) are equivalent, as we can write

(2.7)
∑
p6x

|E(Fp)| is prime

1 =
∑
p6x

|E(Fp)| is prime
(|E(Fp)|,ME)=1

1 +
∑
p6x

|E(Fp)| is prime
(|E(Fp)|,ME)>1

1.

The condition that |E(Fp)| is prime and (|E(Fp)|,ME) > 1 implies that |E(Fp)| = p′

for some prime p′ which divides ME. On the other hand, the relation (2.1) and
Hasse’s bound |ap| 6 2

√
p allow us to deduce that |E(Fp)| > p + 1 − 2

√
p > p/16.

Thus p 6 16p′ 6 16ME. This shows that the second sum on the right-hand side of
(2.7) is bounded by 16ME.

In this paper, we sieve the sequence

(2.8) {|E(Fp)| : p 6 x, (|E(Fp)|,ME) = 1}

instead of the sequence

(2.9) {|E(Fp)| : p 6 x}

suggested by (1.2) as in [16, 20, 21]. This will allow us to obtain the correct twin
prime constant Ctwin

E in our theorem.
We will need later the fact that

1− |Ω(ME)|
|G(ME)|

=
∑
d|ME

µ(d)
|C(d)|
|G(d)|

.(2.10)

This can be proven by using the Chebotarev Density Theorem in the extension
LME

/Q. We are using here only the density result of the Chebotarev Density
Theorem, and we refer the reader to Section 3 for versions of the Cheboratev
Density Theorem with an explicit error term that will be needed to perform the
sieve. Since 1− |Ω(ME)|/|G(ME)| is the proportion of matrices in g ∈ G(ME) with
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(det g + 1− tr g,ME) = 1, we have that(
1− |Ω(ME)|
|G(ME)|

)
π(x) ∼

∑
p6x

(|E(Fp)|,ME)=1

1

=
∑
d|ME

µ(d)
∑
p6x

d||E(Fp)|

1

∼ π(x)
∑
d|ME

µ(d)
|C(d)|
|G(d)|

,

as x→∞.

3. Chebotarev Density Theorem

We write in this section an explicit Chebotarev Density Theorem associated with
the Galois extensions of Q obtained by adding the coordinates of the points of
n-torsion to Q.

We first need some notation and definitions. In all this section, let L/K be a
finite Galois extension of number fields with Galois group G, and let C be a union
of conjucacy classes in G. Let nK and nL be the degrees of K and L over Q, and
dK and dL their absolute discriminant. Let

M(L/K) := |G|d1/nK
K

∏
p

p,

where the product is over the rational primes p which lie below the ramified primes
of L/K. Let πC(x, L/K) be the number of prime ideals p ∈ K such that Np 6 x
which are unramified in L/K and with σp ∈ C, where σp is the Artin symbol at the
prime ideal p.

The following Theorem is an effective version of the Chebotarev Density Theorem
due to Lagarias and Odlyzko [14], with a slight refinement due to Serre [18].

Theorem 3.1 (Effective Chebotarev Density Theorem). (i) Let β be the exceptional
zero of the Dedekind zeta function of L (if any). Then, for all x such that log x�
nL(log dL)2,

πC(x, L/K) =
|C|
|G|

Li(x) +O

(
|C|
|G|

Li(xβ) + |C̃|x exp
{
−cn−1/2

L log1/2 x
})

,

where c is a positive absolute constant, and |C̃| is the number of conjugacy classes
in C.

(ii) Assuming the GRH for the Dedekind zeta function of the number field L, we
have that

πC(x, L/K) =
|C|
|G|

Li(x) +O
(
x1/2|C|nK log

(
M(L/K)x

))
.
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We now apply Theorem 3.1 to the torsion fields of elliptic curves.

Theorem 3.2. Let E be an elliptic curve over Q without complex multiplication,
and let Ln, C(n) and G(n) be as defined above. Assuming the GRH for the Dedekind
zeta function of the number fields Ln, we have that

(i) Let d be a square-free integer such that (d,ME) = 1. Then,

πC(d)(x, Ld/Q) =

∏
`|d

`2 − 2

(`− 1)(`2 − 1)

Li(x) +O
(
d3x1/2 log (dNEx)

)
.

(ii) Let ` be a prime such that ` -ME. Then,

πC(`2)(x, L`2/Q) =
`3 − `− 1

`2(`2 − 1)(`− 1)
Li(x) +O

(
`6x1/2 log (`NEx)

)
.

It was noticed by Serre [18] that one can improve significantly the error term of
Theorem 3.1.(ii) (basically replacing |C| with |C|1/2) by writing the characteristic
functions of the conjucacy classes C in terms of the irreducible characters of G, and
then working with the Artin’s L-functions associated with those characters. Further
applications can be found in [16], [5] and in [20] for the present application. For the
convenience of the reader, we summarize in the next two theorems the main features
of the approach, and how it can be applied in our case.

We first define some notation. For each character χ of G, let L(s, χ) be the Artin
L-function associated to χ. If G is an abelian group, the Artin L-functions of L/K
corresponds to Hecke L-functions, and are then analytic functions of the complex
plane. In general, we have

Conjecture 3.3 (Artin’s conjecture). Let χ be an irreducible non-trivial character
of G. Then, L(s, χ) is analytic in the whole complex plane.

We will write the improvement of Theorem 3.1 under the θ-hypothesis for the
zeros of the L-functions in the critical strip, where 1/2 6 θ < 1, and not the full
Riemann Hypothesis, which allows us to obtain an improvement of the results of
[20] under a weaker hypothesis.

Hypothesis 3.4 (θ-hypothesis). Let L(s) be a Dedekind zeta function, or an Artin
L-function satisfying Artin’s conjecture. Let 1/2 6 θ < 1. Then L(s) is non-zero
for <e s > θ.

Let ϕ be a class function onG, i.e. a function which is invariant under conjugation.
Define

πϕ(x, L/K) :=
∑
Np6x

p unramified

ϕ(σp).

If C is a conjugacy class (or a union of conjugacy classes) in G, and 1C is its
characteristic function, then π1C (x, L/K) = πC(x, L/K) as defined above.

To define π̃ϕ(x, L/K), we need to extend the definition of the Artin symbol σp at
the ramified primes p. This is done in [18, Section 2.5], and we refer the reader to
this paper. Then,

π̃ϕ(x, L/K) =
∑

Npm6x

1

m
ϕ(σmp ),
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where the sum runs over all pairs of primes p of K and integers m > 1 such that
Npm 6 x. With this definition, if ϕ = χ is a character of G and L(s, χ) is the Artin
L-function of χ with

logL(s, χ) =
∞∑
n=1

an(χ)n−s,

then

π̃χ(x, L/K) =
∑
n6x

an(χ).

Then, π̃ϕ(x, L/K) has the following two important properties.

Lemma 3.5. [18, Propostion 7] Under the previous notation, we have

πϕ(x, L/K) = π̃ϕ(x, L/K) +O

(
sup
g∈G
|ϕ(g)|

(
1

|G|
log dL + nKx

1/2

))
.

Lemma 3.6. [18, Propostion 8] Let H be a subgroup of G, ϕH a class function on
H and ϕG = IndGH(ϕH). Then

πϕG(x, L/K) = π̃ϕH (x, L/LH).

Proof. This follows from the invariance of the Artin L-functions of induced charac-
ters. �

Using lemmas 3.5 and 3.6, we deduce that

Theorem 3.7. Let L/K be a Galois extension of number fields with Galois group
G. Let H be a subgroup of G and C a conjugacy class in G such that C ∩H 6= ∅.
Let CH be the union of conjucacy classes in H generated by C ∩H. Then

πC(x, L/K) =
|H|
|G|
|C|
|CH |

πCH (x, L/LH)

+O

(
|C|
|CH ||G|

log dL +
|H|
|G|
|C|
|CH |

[LH : Q]x1/2 + [K : Q]x1/2

)
.

Proof. Let ϕ be the class function on G induced from CH . It is easy to see that

ϕ = IndGH(1CH ) =
|G|
|H|
|CH |
|C|

1C ,

and by Lemma 3.6

π̃CH (x, L/LH) =
|G|
|H|
|CH |
|C|

πC(x, L/K).

Using Lemma 3.5 to bound the difference between π and π̃, we get the result. �

The second piece needed for the improved Chebotarev Density Theorem is an
estimate for πC(x, L/K) in the case that G has a normal subgroup H with the
property that the Artin L-functions of G/H satisfy Artin’s conjecture and the θ-
hypothesis. For θ = 1/2, the following theorem is Proposition 3.12 from [16].
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Theorem 3.8. Let D be a non-empty union of conjugacy classes in G and let H be
a normal subgroup of G such that for all Artin L-functions attached to characters of
G/H ' Gal(LH/K), the Artin conjecture and the θ-hypothesis hold. Suppose also
that HD ⊆ D. Then,

πD(x, L/K) =
|D|
|G|

Li(x) +O

((
|D|
|H|

)1/2

xθnK log
(
M(L/K)x

))
.

We now apply the last two theorems to get an improvement to Theorem 3.2. Let
E be an elliptic curve without complex multiplication, let ` - ME, and let L`/Q,
G(`) and C(`) be as defined above. Let B(`) ⊂ G(`) be the subgroup of Borel
matrices. Let CB(`) be the union of conjugacy classes generated by B(`) ∩ C(`).
Applying Theorem 3.7, we get

(3.1) πC(`)(x, L`/Q) =
|B(`)|
|G(`)|

|C(`)|
|CB(`)|

πCB(`)

(
x, L`/L

B(`)
`

)
+O

(
` log (`NE) + `x1/2

)
using the bounds of [18, Section 1.4] for log dL.

Let U(`) ⊂ B(`) be the subgroup of unipotent matrices. It is easy to see that U(`)
is a normal subgroup of B(`), and that B(`)/U(`) is the abelian group of diagonal

matrices over F`. Artin’s conjecture then holds for all L-functions of L
U(`)
` /L

B(`)
` ,

and we apply Theorem 3.8 with G = B(`), H = U(`) and D = CB(`) under the
θ-hypothesis for the appropriate L-functions. This gives

(3.2) πCB(`)

(
x, L`/L

B(`)
`

)
=
|CB(`)|
|B(`)|

Li(x) +O
(
`3/2xθ log (`NEx)

)
.

We are now ready to state the improvement to Theorem 3.2. In the next theorem,
all error terms depend on the elliptic curve E. We remark that we need a version
of the Cheboratev Density Theorem in the extension Ln where n is not necessarily
co-prime to ME in order to sieve the sequence of (2.8).

Theorem 3.9. Let E be an elliptic curve over Q without complex multiplication. As-
suming the θ-hypothesis for the Dedekind zeta functions of the number fields Ln/Q,
we have

(i) Let d,m be square-free integers such that (d,ME) = 1 and m |ME. Then,

πC(dm)(x, Ldm/Q) =
|C(m)|
|G(m)|

∏
`|d

`2 − 2

(`− 1)(`2 − 1)

Li(x) +OE

(
d3/2xθ log (dx)

)
.

(ii) Let ` be a prime such that ` -ME. Then,

πC(`2)(x, L`2/Q) =
`3 − `− 1

`2(`2 − 1)(`− 1)
Li(x) +OE

(
`3xθ log (`x)

)
.

Proof. The proof of (i) with d = ` and m = 1 follows directly by replacing (3.2) in
(3.1), and the general case of (i) follows by applying the same reasoning as above to
the extension Ldm/Q with Galois group G(dm) ' G(m)×

∏
`|d GL2(F`). The proof

of (ii) follows similarly using G(`2) ' GL2(Z/`2Z). �
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4. Greaves’ weighted sieve and proof of Theorem 1.1

We first recall the simplified version of Greaves’ weighted sieve of dimension 1,
i.e. taking E = V and T = U in [8, Theorem A].

Let A be a finite sequence of integers and P a set of prime numbers. Let B = B(P)
denote the set of all positive square-free integers supported on the primes of P . For
each d ∈ B, define

Ad := {a ∈ A : a ≡ 0 (mod d)}.
We assume that A is well distributed over arithmetic progressions 0 (mod d) in the
following sense: There are a convenient approximation X to |A| and a multiplicative
function w(d) on B verifying

(A0) 0 6 w(p) < p (p ∈ P)

such that
(i) the “remainders”

(4.1) r(A, d) := |Ad| −
w(d)

d
X (d ∈ B)

are small on a average over the divisors d of

(4.2) P (z) :=
∏

p<z, p∈P

p;

(ii) there exists a constant A > 1 such that

(Ω1)

∣∣∣∣ ∑
z16p<z2
p∈P

w(d)

d
log p− log

z2

z1

∣∣∣∣ 6 A (2 6 z1 6 z2).

Let U and V be two constants verifying

(4.3) V0 6 V 6 1
4
, 1

2
6 U < 1, U + 3V > 1,

where V0 := 0.074368 · · · . The simplified version of Greaves’ weighted sieve function
is given by

(4.4) H(A, DV , DU) :=
∑
a∈A

G
(
(a, P (DU))

)
,

where D > 2 is the basic parameter of considered problem,

G (n) :=
{

1−
∑

p|n, p∈P

(
1−W (p)

)}+

,

with
(
{x}+ := max{0, x}

)
, and

W (p) :=


1

U − V

(
log p

logD
− V

)
if DV 6 p < DU ,

0 otherwise.
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It is clear that

H(A, DV , DU) =
∑
a∈A

(a,P (DV ))=1

G
(
(a, P (DU))

)
>

∑
a∈A

(a,P (DV ))=1

{
1−

∑
p|(a,P (DU ))

(
1−W (p)

)}

=
∑
a∈A

(a,P (DV ))=1

{
1− U

U − V
∑

DV 6p<DU

p|a

(
1− 1

U

log p

logD

)}
.

The last quantity is the sum of weights of Richert’s logarithmic weighted sieve [7,
Chapter 9, (1.2)]. Therefore, Greaves’ weighted sieve is always better than Richert’s
sieve. It is worth pointing out that Richert’s logarithmic weighted sieve would have
been sufficient for our propose. In fact, for our choice of parameters, these two
sieves coincide in the main term (comparing [7, Lemma 9.1] and (4.12) below). The
greatest advantage of Greaves’ weighted sieve is the bilinear form error term. In
many applications (for example P2 in short intervals, [22]), this advantage allows to
take a larger level of distribution D to obtain better results. The actual version of
Chebotarev Density Theorem does not allows us to profit of this advantage for our
problem.

As usual, let Ω(n) and ω(n) denote the number of prime factors of n counted with
and without multiplicity, respectively. Define

ω(a, z) := ω(a) +
∑

p>z, ν>2
pν |a

1,

where the sum is taken over all pairs of primes p > z and integers ν > 2 such that
pν divides a.

The function H will be used to detect the integers in A having few of prime factors
in the following way.

Lemma 4.1. Let E be an elliptic curve over Q and let

A := {|E(Fp)| : p 6 x, (|E(Fp)|,ME) = 1},

P := {p : p -ME}.

If there are real positive constants U, V, ξ, x0(E), B and positive integer r such that
(4.3) holds and for x > x0(E),

max
a∈A

a 6 DrU+V ,(4.5)

∑
DV 6p<DU

|Ap2| �E
x

(log x)3
,(4.6)

H
(
A , DV , DU

)
> B

Ctwin
E x

(log x)2
,(4.7)
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where D := xξ, then we have

(4.8)
∣∣{p 6 x : (|E(Fp)|,ME) = 1, Ω(|E(Fp)|) 6 r

}∣∣ > {B + o(1)} C
twin
E x

(log x)2

for x > x0(E).

Proof. Since W (p) 6 1, we have 0 6 G (n) 6 1 for all n ∈ N. Thus hypothesis (4.7)
allows us to write

(4.9)

∑
a∈A

(a,P (DV ))=1,G ((a,P (DU )))>0

1 >
∑
a∈A

(a,P (DV ))=1

G
(
(a, P (DU))

)
= H

(
A , DV , DU

)
> B

Ctwin
E x

(log x)2

for x > x0(E).
For each a ∈ A counted in the sum on the left-hand side of (4.9), we have

(a, P (DV )) = 1 and

0 <
{

1−
∑

p|a, p<DU

(
1−W (p)

)}+

= 1− 1

U − V
∑

p|a, p<DU

(
U − log p

logD

)
.

This and hypothesis (4.5) imply

0 < U − V −
∑

p|a, p<DU

(
U − log p

logD

)

6 U − V −
∑
p|a

(
U − log p

logD

)
−

∑
p>DU , ν>2, pν |a

(
U − log p

logD

)
6 U − V − Uω(a,DU) +

log a

logD

6 U − V − Uω(a,DU) + rU + V

= U
(
r + 1− ω(a,DU)

)
.

Hence for such a we have (a, P (DV )) = 1 and ω(a,DU) 6 r. Combining this with
(4.9), we obtain

(4.10)

∣∣{p 6 x : (|E(Fp)|,ME) = (|E(Fp)|, P (DV )) = 1, ω
(
|E(Fp)|, DU

)
6 r
}∣∣

> B
Ctwin
E x

(log x)2
.

When (|E(Fp)|, P (DV )) = 1, we have ω
(
|E(Fp)|, DU

)
= Ω(|E(Fp)|) unless a is

divisible by the square of a prime p such that DV 6 p < DU and the required result
(4.8) now follows from (4.10) and hypothesis (4.6). �
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Now we are ready to prove Theorem 1.1.
In Lemma 4.1, take

r = r(θ) :=

[
18 + 2θ

5(1− θ)

]
+ 1, ξ =

2(1− θ)
5

(1− ε), U =
5

8
, V =

1

4

where ε is an arbitrary small positive number. It is easy to see that condition (4.3)
is satisfied. In order to verify (4.5), it is sufficient to show that ξ(rU +V ) > 1, since
ap satisfies Hasse’s bound |ap| < 2

√
p. In view of the fact that ε is arbitrarily small,

we have

ξ(rU + V ) >
2(1− θ)

5
(1− ε)

((
18 + 2θ

5(1− θ)
+

8ε

(1− θ)(1− ε)

)
5

8
+

1

4

)
= 1 + ε.

It remains to verify (4.6) and (4.7).
First Theorem 3.9(ii) allows us to deduce∑

DV 6p<DU

|Ap2| �
∑

DV 6p<DU

(
x

p2 log x
+ p3xθ log x

)
� D−V x+D4Uxθ

� x1−ε(1−θ)

for all x > 3. This shows that (4.6) is satisfied.
For d square-free with (d,ME) = 1, we can write

|Ad| =
∑
p6x

(|E(Fp)|,ME)=1
|E(Fp)|≡0(mod d)

1

=
∑
m|ME

µ(m)
∑
p6x

|E(Fp)|≡0(mod d)
|E(Fp)|≡0(mod m)

1

=
∑
m|ME

µ(m)
∑
p6x

|E(Fp)|≡0(mod dm)

1

=
∑
m|ME

µ(m)πC(dm)(x, Ldm/Q).

Using Theorem 3.9(i) and (2.10), we get that

|Ad| = Li(x)
|C(d)|
|G(d)|

∑
m|ME

µ(m)
|C(m)|
|G(m)|

+OE

(
|C(d)|1/2xθ log(dx)

)
= Li(x)

|C(d)|
|G(d)|

(
1− |Ω(ME)|
|G(ME)|

)
+OE

(
d3/2xθ log(dx)

)
.

Thus we obtain

(4.11) |Ad| =
w(d)

d
X + r(A , d)
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for all d ∈ B(P), with

w(d) =
d|C(d)|
|G(d)|

=
∏
`|d

`(`2 − 2)

(`− 1)(`2 − 1)

and

X :=

(
1− |Ω(ME)|
|G(ME)|

)
Li(x), |r(A , d)| �E d

3/2xθ log(dx).

Since

w(`) = 1 +
`2 − `− 1

(`− 1)(`2 − 1)
,

conditions (A0) and (Ω1) are satisfied. Thus Theorem A of [8] is applicable. Denoting
by γ the Euler constant and defining

V (D) :=
∏
p<D
p∈P

(
1− w(p)

p

)
,

Theorem A of [8] allows us to write

(4.12)

H
(
A , DV , DU

)
>

2eγXV (D)

U − V

{
U log

1

U
+ (1− U) log

1

1− U
− log

4

3

+ α(V )− V log 3− V β(V ) +O

(
log3D

(log2D)1/5

)}
− (logD)1/3

∣∣∣ ∑
m<M

∑
n<N

mn|P (DU )

αmβnr(A ,mn)
∣∣∣

where M and N are any two real numbers satisfying

M > DU , N > 1, MN = D

and αm, βn are certain real numbers satisfying |αm| 6 1, |βn| 6 1. The functions
α(V ) and β(V ) are given by

α(V ) := log
1− V
(3/4)

−
∫ 1/V

4

(
2

u
log(2− uV ) + log

1− 1/u

1− V

)
log(u− 3)

u− 2
du,

β(V ) := log
1− V

3V
−
∫ 1/V

4

(
log(2− uV ) + log

1− 1/u

1− V

)
log(u− 3)

u− 2
du,

for 1
6
6 V 6 1

4
.
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By using the prime number theorem, it follows that

(4.13)

V (D) =
∏

`6D, `-ME

(
1− |C(`)|
|G(`)|

)

=
∏

`6D, `-ME

(
1− 1

`

) ∏
`6D, `-ME

(
1− |C(`)|
|G(`)|

)(
1− 1

`

)−1

=
∏
`6D

(
1− 1

`

) ∏
`|ME

(
1− 1

`

)−1 ∏
`6D, `-ME

(
1− |C(`)|
|G(`)|

)(
1− 1

`

)−1

∼ e−γ

logD

∏
`|ME

(
1− 1

`

)−1 ∏
`-ME

(
1− `2 − `− 1

(`− 1)3(`+ 1)

)
as D →∞.

On the other hand, denoting by µ(d) the Möbius function, Theorem 3.9(ii) implies
that

(4.14)

∣∣∣ ∑
m<M

∑
n<N

mn|P (DU )

αmβnr(A ,mn)
∣∣∣ 6∑

d6D

µ(d)23ω(d)d3/2xθ log(dx)

� xθD5/2+ε(1−θ)/2

� x1−ε(1−θ)/2

since D = xξ with ξ = 2
5
(1− θ)(1− ε).

Combining (4.12), (4.13), (4.14) and (2.5), we can find that

H
(
A , DV , DU

)
>
{

2J(ξ, U, V ) + o(1)
} Ctwin

E x

(log x)2

with

J(ξ, U, V ) :=
α(V )− V β(V )− V log 3− U logU − (1− U) log(1− U)− log(4/3)

ξ(U − V )
.

Since J(ξ, U, V ) is continuous in (ξ, U) and α(1
4
) = β(1

4
) = 0, a simple numerical

computation shows that

2J(ξ, U, V ) = 2J

(
2(1− θ)

5
,

5

8
,

1

4

)
+O(ε)

=
1.32304 · · ·

1− θ
+O(ε).

This implies

H
(
A , DV , DU

)
>

1.32303

1− θ
Ctwin
E x

(log x)2

for x > x0(E, θ). This completes the proof of Theorem 1.1. �
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5. Selberg’s linear sieve and proof of Theorem 1.3

We use the notation of Section 4. As usual, we write the sieve function

S(A ,P, z) := |{a ∈ A : p | a and p ∈P ⇒ p > z}|.
Then in view of (2.7), we can write the following trivial inequality

(5.1) πtwin
E (x) 6 S(A ,P, D1/2) +O(D1/2)

for all x > 1, where D = xξ with ξ = 2(1−θ)(1−ε)/5 as before, and the O-constant
depends on the curve E.

Using Selberg’s linear sieve [7, Theorem 8.3] with q = 1, it follows that

S(A ,P, D1/2) 6 XV (D1/2){F (2) + o(1)}+ R,

where

R :=
∑
d<D

d|P (D1/2)

3ω(d)|r(A , d)|

�
∑
d<D

µ(d)23ω(d)d3/2xθ log(dx)

� x1−ε(1−θ)/2,

using Theorem 3.9(i).
Since F (2) = eγ, replacing D by D1/2 in the asymptotic formula (4.13), we get

that

XV (D1/2)F (2) = Ctwin
E

2Li(x)

log xξ
{1 + o(1)}

6

(
5

1− θ
+ ε

)
Ctwin
E x

(log x)2

for x > x0(E, θ, ε).
Combining these estimates, we find that

(5.2) S(A ,P, D1/2) 6

(
5

1− θ
+ ε

)
Ctwin
E x

(log x)2

for x > x0(E, θ, ε). Theorem 1.3 now follows from (5.1) and (5.2). �
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