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September 2, 2010

Abstract

Let E be an elliptic curve over Q. We known that the ring of endomorphisms of its
reduction modulo an ordinary prime p is an order of the quadratic imaginary field
generated by the Frobenius element πp. However, except in the trivial case of complex
multiplication, very little is known about the fields that appear as algebras of endo-
morphisms when p varies. In this paper, we study the endomorphism ring by looking
at the arithmetic of a2p − 4p, the discriminant of the characteristic polynomial of πp.
In particular, we give a precise asymptotic for the function counting the number of
primes p up to x such that a2p − 4p is square-free and in certain congruence class fixed
a priori, when averaging over elliptic curves defined over the rationals. We discuss the
relation of this result with the Lang-Trotter conjecture, and some other questions on
the curve modulo p.
Keywords: Elliptic curves, Endomorphism rings, Square-free values.
MSC: 11G20,11G05, 11N25.

1 Introduction and statement of results

Let E be an elliptic curve over Q with conductor NE . For each prime p of good reduction (i.e.
p - NE), E reduces to an elliptic curve over the finite field Fp. The Frobenius endomorphism
(x, y) 7→ (xp, yp) of E/Fp has characteristic polynomial

x2 − apx+ p = (x− πp)(x− πp)

where |ap| ≤ 2
√
p by the Hasse bound. Let End(E/Fp) be the ring of endomorphism of

E/Fp. If p > 3 is an ordinary prime for E (or equivalently, ap 6= 0), then

End(E/Fp)⊗Q = Q(πp)

is completely determined by the Frobenius ring Z[πp]. The ring of endormorphism End(E/Fp)
is more subtle, and the Frobenius ring Z[πp] can be a proper subset of End(E/Fp). In fact,
it follows from Deuring’s Theorem [De] that any order R such that

Z[πp] ⊆ R ⊆ Q (πp)

can occur as the ring of endomorphism of some curve E over Fp such that the Frobenius of
E has characteristic polynomial x2 − apx+ p. It is then a natural question to ask whether
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Z[πp] ' End(E/Fp), or whether Z[πp] is the maximal order of Q(πp) (the second question
is of course a refinement of the first one), and when this happens for a fixed curve E when
varying the prime p.

For a fixed E/Fp, let ∆p be the discriminant of the order End(E/Fp). Then, the “dis-
tance” between the endomorphism ring and the Frobenius ring is encoded by the unique
positive integer bp defined by the relation a2p − 4p = b2p∆p. The bp’s where studied by Duke
and Toth in [DuTo], and by Cojocaru and Duke [CoDu] who showed that under the GRH

# {p ≤ x : p - NE and bp = 1} ∼ CCD(E)
x

log x
,

for an explicit non-zero constant CCD(E). The condition bp = 1 is equivalent to the triviality
of the Tate-Shafarevich group of E over its function field Fp(E) [CoDu, Proposition 2.2].

In general, properties of the Frobenius ring can be deduced from a study of the arithmetic
of a2p − 4p and, in particular, in studying the square divisors of a2p − 4p. In this paper, we
study the following question: given an elliptic curve E over Q, for which primes p is a2p− 4p
square-free? For those primes, the Frobenius ring Z[πp] is the maximal order in Q(πp). This
also provides a refinement of the question of Cojocaru and Duke. The result of Cojocaru
and Duke is itself a refinement of a result of Serre who showed that, under the GRH, there
are infinitely many primes such that the group E(Fp) is cyclic [Se86], i.e. we have the string
of implications

a2p − 4p squarefree =⇒ bp = 1 =⇒ E(Fp) cyclic.

Can we then show that there is a positive proportion of a2p − 4p which are square-free,
refining Cojocaru and Duke’s and Serre’s result? Maybe surprisingly, we believe that this is
a much more difficult question. If E has complex multiplication (CM), a2p−4p square-free is
equivalent to p lying in some quadratic progression. For example, let E be the CM elliptic
curve y2 = x3 − x with complex multiplication by Z[i]. Let p be an ordinary prime, which
is a prime congruent to 1 modulo 4. Since E has rational 2-torsion, ap is even, and then 4
divides a2p − 4p, and the natural question to consider is the square-freeness of (a2p − 4p)/4.
Since E has complex multiplication by Z[i], a2p−4p = −4f2 for some f ∈ Z, and (a2p−4p)/4
is square-free if and only if f = 1 if and only if p = (ap/2)2 + 1.

Another reason to investigate square-freeness in the sequence a2p − 4p is that it might
shed light on the following conjecture.

Conjecture 1 (Lang-Trotter conjecture [LaTr]) Let K be an imaginary quadratic num-
ber field, and E an elliptic curve over Q without complex multiplication. Let

ΠE,K(x) = # {p ≤ x : p - NE and Q(πp) = K} .

Then as x→∞
ΠE,K(x) ∼ CLT(E,K)

√
x

log x
,

for some explicit constant CLT(E,K) depending on E and K.

Upper bounds for ΠE,K(x) were investigated by Serre, by Cojocaru, Fouvry and Murty
[CoFoMu], and by Cojocaru and David [CoDa]. But there are no known lower bounds for
ΠE,K(x), in particular there are no known examples of (non-CM) elliptic curves such that
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Q(πp) = K for infinitely many primes p. In fact, we know much less than that, as there are
no known examples of (non-CM) elliptic curves such that Dp, the discriminant of Q(πp),
lies in a fixed congruence class for infinitely many primes p. Here again, one could give a
lower bound for the number of such primes by counting the number of primes p such that
a2p−4p is square-free and in the prescribed congruence class, since in this case a2p−4p = Dp.

Let h be a positive odd integer, and let r be any integer such that the greatest common
divisor (r, h) is square-free. Let

Πsf
E,r,h(x) = #{2 < p ≤ x, prime : a2p − 4p ∈ ∆(r, h)},

where ∆(r, h) is the set of square-free integers n such that n ≡ r mod h. We remark
that if (r, h) is not square-free, then Πsf

E,r,h(x) = 0. As for the restriction to h odd, it
simplifies technical aspects of the proof in various places, but it is not an essential restriction.
Unfortunately, we cannot give an asymptotic (or a lower bound) for Πsf

E,r,h(x), but we can
prove that the correct asymptotic holds on average over elliptic curves.

In all the following, E(a, b) denotes the elliptic curve given by the equation y2 = x3 +
ax+ b, with 4a3 + 27b2 6= 0.

Theorem 2 Let h be a positive odd integer, and let r be any integer such that (r, h) is
square-free. Fix any ε > 0. Let A,B be such that AB > x log8 x, A,B > xε. Let C(A,B)
be the set of all elliptic curves E(a, b) with integer coefficients a, b such that |a| ≤ A and
b ≤ B. Then, as x→∞,

1

|C(A,B)|
∑

E(a,b)∈C(A,B)

Πsf
E(a,b),r,h(x) = C

x

log x
+O

(
x

log2 x

)
,

where C is the positive constant

C =
1

3h

∏
`‖h
`|r

`− 1

`

∏
`|h
`-r

`
(
`− 1−

(
r
`

))
(`− 1)

(
`−

(
r
`

)) ∏
`-h

`4 − 2`2 − `+ 1

`2(`2 − 1)
, (1)

where all products are taken over odd primes ` with the specified conditions.

The result above is similar in spirit, and by the techniques used to prove it, to other
average results as [BaCoDa] for the Koblitz’s conjecture and [FoMu] and [DaPa] for the Lang-
Trotter conjecture. All those results rely on the fact that the average over elliptic curves
in C(A,B) can be rewritten as an average over elliptic curves over Fp by interchanging the
summations, and this average can be reduced to an average of class numbers by means of
Deuring’s Theorem. Hence, Theorem 2 is equivalent to

Theorem 3 Let h be a positive odd integer, and let r be any integer such that (r, h) is
square-free. Let

Πsf(p) = #
{
E over Fp : a2p − 4p ∈ ∆(r, h)

}
.

Then, as x→∞, ∑
p≤x

Πsf(p) =
C

3

x3

log x
+O

(
x3

log2 x

)
,

where C is the constant of Theorem 2.
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There is another sequence related to elliptic curves which was investigated for square-
freeness, namely the sequence p + 1 − ap = |E(Fp)| . Again, there should be a positive
proportion of square-free p+1−ap, but this is still an open question, and there are no known
examples of non-CM elliptic curves over Q with infinitely many square-free p+ 1− ap. The
case of CM curves is very different. Let E be an elliptic curve with CM by an order O in a
quadratic imaginary field K, and let p be a prime of ordinary reduction. Then, p+ 1− ap
is square-free if and only if πp − 1 = p1 . . . ps where the pi are distinct split primes in O,
and the number of such π ∈ O can be counted. When E has CM by the maximal order of a
quadratic imaginary field K, the asymptotic for the number of primes p such that p+1−ap
is square-free was obtained by Cojocaru [Co]. The number of square-free p+1−ap was also
investigated in average over elliptic curves Fp as p tends to infinity by Gekeler [Ge]. The
techniques that he uses are completely different from ours, and rely on the work of Howe
[Ho] on the moduli spaces of elliptic curves over Fp with a given group structure. Gekeler
then proved the analogue of our Theorem 3 for the sequence p + 1 − ap (his results are
stated in a different way, but the two forms are easily seen to be equivalent). As a corollary
of his result [Ge, Proposition 4.2 (i)], one obtains, by going from the average over Fp to
the average over Q as indicated in Section 2, that the number of primes p ≤ x such that
p+ 1− ap is square-free follows the predicted asymptotic on average over all elliptic curves.
It is unclear if the techniques used by Gekeler could be used to prove Theorem 2, as a2p− 4p
is not easily related to the group structure of E(Fp).

The structure of our paper is as follows. In section 2, we reduce the average over elliptic
curves over Q to an average over elliptic curves over Fp. There are several ways to do that,
and we use multiplicative characters as in [BaSh] and [BaCoDa] to obtain the short average
of Theorem 2. Section 3 deals with the main error term by applying the Theorem of Barban,
Davenport and Halberstam. Section 4 deals with the main term of the asymptotic, and it
is basically a computation of the constant (1) of Theorem 2. Finally, we explain in Section
5 what is the conjectural asymptotic for ΠE,r,h(x). The conjectural constant is very similar
to our average constant C, and Theorem 2 then gives additional evidence for the conjecture.

2 Reduction to a short average over finite fields

As we have mentioned in the introduction, the proof of Theorem 2 relies in reducing the
average of Πsf

E,r,h(x) to an average of class numbers by means of Deuring’s Theorem. This
could be done in a straightforward manner by just writing

1

|C(A,B)|
∑

E∈C(A,B)

Πsf
E,r,h(x) =

∑
p≤x

∑
(s,t)∈S

1

|C(A,B)|
∑

|a|≤A, |b|≤B
a≡s (mod p)
b≡t (mod p)

1, (2)

where
S = S(p, r, h) =

{
(s, t) ∈ F2

p : ap(E(s, t))2 − 4p ∈ ∆(r, h)
}
.

Observe that the number of terms in the middle sum is Πsf(p). The innermost sum is
simply (

2A

p
+O(1)

)(
2B

p
+O(1)

)
∼ 4AB

p2

4



when A,B are big enough with respect to x. Hence, we get the asymptotic

1

|C(A,B)|
∑

E∈C(A,B)

Πsf
E,r,h(x) ∼

∑
p≤x

Πsf(p)

p2
.

However, this approach results in a poor average, as we need to take AB > x2+ε to get the
asymptotic above.

Following [BaSh] and [BaCoDa], one can obtain a substantial improvement from a better
use of the uniform distribution of equivalent elliptic curves. Indeed, since two elliptic curves
E(s, t) and E(s′, t′) are isomorphic over Fp if and only if s′ = su4 and t′ = tu6 for some
u ∈ F∗p, there are (p − 1)/# Aut(E(s, t)) equations of elliptic curves over Fp which are
Fp-isomorphic to a given elliptic curve E(s, t). Hence, we can write

1

|C(A,B)|
∑

E∈C(A,B)

Πsf
E,r,h(x)

=
1

|C(A,B)|
∑
p≤x

∑
(s,t)∈S

# Aut(E(s, t))

p− 1

∑
|a|≤A, |b|≤B, ∃1≤u<p:

a≡su4 (mod p),

b≡tu6 (mod p)

1, (3)

where for each fixed s, t ∈ Fp, the innermost sum is over all integers |a| ≤ A, |b| ≤ B
such that there exists u ∈ F∗p with a ≡ su4 (mod p) and b ≡ tu6 (mod p). We now want
to approximate the innermost sum by its main term. This is the content of Lemma 4 of
[BaCoDa], and we will use it to prove the short average of Theorem 2. We include it here
for reading convenience.

Lemma 4 [BaCoDa, Lemma 4] For any positive integer k, we have as x→∞

∑
p≤x

1

p

∑
(s,t)∈(F∗p)2

∣∣∣∣∣∣∣∣∣
∑

|a|≤A, |b|≤B, ∃1≤u<p:

a≡su4 (mod p)

b≡tu6 (mod p)

1− 2AB

p

∣∣∣∣∣∣∣∣∣
� ABx1−

1
2k log

k
2−1 x+ (A

√
B +B

√
A)x1+

1
2k log

k
2−1 x+

√
ABx3/2 log2 x.

Now, since
|C(A,B)| = 4AB +O(A+B),

and # Aut(E(s, t)) = 2 except when p|s or p|t, we can rewrite (3) as

1

AB

∑
p≤x

∑
(s,t)∈S

1

2(p− 1)

∑
|a|≤A, |b|≤B, ∃1≤u<p:

a≡su4 (mod p),

b≡tu6 (mod p)

1 +O

(
log log x+

A+B

AB

x

log x

)
(4)

using the trivial bound

1

|C(A,B)|
∑
p≤x

∑
|a|≤A
|b|≤B

ab≡0 (mod p)

1� log log x+
A+B

AB

x

log x
.
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Then, using Lemma 4 to replace the first term in (4), and observing that the error term in
(4) is smaller than the error term of Lemma 4, we have

1

|C(A,B)|
∑

E∈C(A,B)

Πsf
E,r,h(x) =

∑
p≤x

Πsf(p)

p(p− 1)
(5)

+O
(
x1−

1
2k log

k
2−1 x+ (A−1/2 +B−1/2)x1+

1
2k log

k
2−1 x+ (AB)−1/2x3/2 log2 x

)
.

By choosing A,B such that A,B > xε and AB > x log8 x, and k large enough to have
that εk > 1, we have that

1

|C(A,B)|
∑

E∈C(A,B)

Πsf
E,r,h(x) =

∑
p≤x

Πsf(p)

p(p− 1)
+O

(
x

log2 x

)
. (6)

The heart of the proof of Theorem 2 then consists in an estimate for the main term in
(6), and we will show that

∑
p≤x

Πsf(p)

p(p− 1)
= C

x

log x
+O

(
x

log2 x

)
, (7)

which will complete the proof of Theorem 2. With (7) and partial summation, we also get
that ∑

p≤x

Πsf(p) =
C

3

x3

log x
+O

(
x3

log2 x

)
, (8)

and the proof of Theorem 3 also follows from (7). We first apply Deuring’s Theorem to
rewrite the sum in (6) as a sum of class numbers.

Theorem 5 (Deuring’s Theorem [De])
Let p > 3 be a prime and let t be an integer such that t2 − 4p < 0. Let Et(p) be the set of
Fp-isomorphism classes of elliptic curves defined over Fp with ap = t. Then,∑

E∈Et(p)

1

# Aut(E)
= H(t2 − 4p),

where Aut(E) is the automorphism group of E and for any D < 0, H(D) is the Kronecker
class number

H(D) :=
∑
f2|D

D
f2 ≡0,1( mod 4)

h(D/f2)

w(D/f2)

defined in terms of the class number h(D/f2) and number of units w(D/f2) of Q(
√
D/f2).

Then, for any fixed −2
√
p ≤ t ≤ 2

√
p, there are exactly (p−1)H(t2−4p) equations of elliptic

curves defined over Fp with ap = t.
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Using the previous theorem, and noting that for square-free D we have

H(D) =
h(D)

w(D)
,

we can write

∑
p≤x

Πsf(p)

p(p− 1)
=

∑
p≤x, |t|≤2

√
p

t2−4p∈∆(r,h)

h(t2 − 4p)

w(t2 − 4p)p
= 2

∑
p≤x

odd∑
1≤t≤2

√
p

t2−4p∈∆(r,h)

h(t2 − 4p)

w(t2 − 4p)p
(9)

since t2 − 4p is not square-free when t is even.

3 An average of class numbers

As usual, we will characterize squarefree values by using the Moebius function. In order to
do so, we first let β > 0 a parameter to be chosen later, and let

K = [(log x)2β ], Y =
x

K + 1
, R = (log x)β . (10)

Then ∑
p≤x

Πsf(p)

p(p− 1)
= T1 + T2 +O(Y/ log x), (11)

where

Ti =
∑

Y<p≤x, |t|≤2
√
p

t2−4p∈∆(r,h)

h(t2 − 4p)

w(t2 − 4p)p

∑
d2|t2−4p
d∈Ii

µ(d),

for I1 = [1, R], I2 = (R, 2
√
x], and the error term is to take account of the primes p < Y .

The main term of (9) will come from T1. In order to bound T2 we observe that, by the
well known bound h(d)�

√
d log d, (see (2.31) and (5.64) of [IK]), we find the trivial upper

bound

T2 � log x
∑

R<d<2
√
x

∑
|t|≤2

√
x

∑
p≤x

4p≡t2(mod d2)

1
√
p

= log x
∑

R<d<2
√
x

∑
|t|≤2

√
x

x/d2−1∑
l=0

∑
ld2+1≤p≤(l+1)d2

4p≡t2(mod d2)

1
√
p

�
√
x log x

∑
R<d<2

√
x

1

d

x/d2−1∑
l=1

1√
l
� x log x

R
. (12)
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Now, to estimate T1, we first split the sum over the primes up to x into K sums over the
intervals [kY, kY + Y ] of length Y , and write T1 as

T1 = 2
∑

1≤k≤K

∑
kY <p≤kY+Y

odd∑
1≤t≤2

√
p

t2−4p∈∆(r,h)

h(t2 − 4p)

ω(t2 − 4p)p

∑
d2|t2−4p
d≤R

µ(d) (13)

On each interval kY < p ≤ kY + Y , we approximate the sum over {1 ≤ t ≤ 2
√
p} by

{1 ≤ t ≤ 2
√
kY } with an error term of RY log x. Replacing (12) and (13) in (11), we have

∑
p≤x

Πsf(p)

p(p− 1)
= 2

∑
1≤k≤K

odd∑
1≤t≤2

√
kY

odd∑
d≤R

µ(d)
∑

kY<p≤kY+Y

d2|t2−4p

t2−4p≡r mod h

h(t2 − 4p)

ω(t2 − 4p)p

+O(x/ logβ−1 x)

=
1

π

∑
1≤k≤K

odd∑
1≤t≤2

√
kY

odd∑
d≤R

µ(d)
∑

kY<p≤kY+Y

d2|t2−4p

t2−4p≡r mod h

√
4p− t2 L(1, χt2−4p)

p

+O(x/ logβ−1 x),

using the class number formula. Let

U = x1/2R2. (14)

Since

L(1, χt2−4p) =
∑
n≥1

χt2−4p(n)

n
=

odd∑
n≥1

χt2−4p(n)

n
+

1

2

∑
n≥1

χt2−4p(2n)

n

=

(
1 +

χt2−4p(2)

2

) odd∑
n≥1

χt2−4p(n)

n
+

1

4

∑
n≥1

χt2−4p(n)

n
,

using Polya-Vinogradov inequality to bound the tail of the L-function, we obtain

∑
p≤x

Πsf(p)

p(p− 1)
=

2

3π

∑
1≤k≤K

odd∑
n≤U

1≤t≤2
√
kY

1

n

odd∑
d≤R

µ(d)
∑

kY<p≤kY+Y

d2|t2−4p

t2−4p≡r mod h

√
4p− t2
p

χt2−4p(n)

+O(x/ logβ−1 x), (15)

since χt2−4p(2) = −1 for any t, p in the previous conditions. Using quadratic reciprocity, we
can write χ as a character mod n, and we use this to rewrite the main term of (15) as

M =
2

3π

∑
1≤k≤K

odd∑
n≤U

1≤t≤2
√
kY

(t2−r,h)=1

1

n

∑
α(mod n)

(t2−α,n)=1
α≡r mod (n,h)

(α
n

) odd∑
d≤R

(d,nt)=1

r≡0 mod (d2,h)

µ(d)S(k, Y, n, t, α, d)
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where

S(k, Y, n, t, α, d) =
∑

kY≤p≤kY+Y

p≡ν(t,α,r) mod [nd2,h]

√
4p− t2
p

,

and ν(t, α, r) is the invertible residue modulo [nd2, h] solving the congruences

4p ≡ t2 − r mod h, for (t2 − r, h) = 1,

4p ≡ t2 − α mod n, for (t2 − α, n) = 1,

4p ≡ t2 mod d2 for (t, d) = 1,

under the conditions (n, d) = 1, r ≡ α mod (n, h) and r ≡ 0 mod (d2, h) insuring that the
congruences are compatible.

In order to compute the asymptotic of M , we first change the weights and consider

M ′ =
2

3π

∑
1≤k≤K

odd∑
n≤U

1≤t≤2
√
kY

(t2−r,h)=1

1

n

∑
α(mod n)

(t2−α,n)=1
α≡r mod (n,h)

(α
n

) odd∑
d≤R

(d,nt)=1

r≡0 mod (d2,h)

µ(d)S′(k, Y, n, t, α, d),

where

S′(k, Y, n, t, α, d) =
∑

kY≤p≤kY+Y

p≡ν(t,α,r) mod [nd2,h]

√
4kY − t2 log p

kY log kY
.

Lemma 6 Let M and M ′ be the two sums defined above where Y = x/(K + 1) and K =
[log2β x] for some β ≥ 1. Then as x→∞

M −M ′ � x

logβ−1 x
.

Proof: It is enough to note that

S(k, Y, n, t, α, d)− S′(k, Y, n, t, α, d) =
∑

kY≤p≤kY+Y

p≡ν(t,α,r) mod [nd2,h]

(√
4p− t2
p

−
√

4kY − t2
kY

)

+
∑

kY≤p≤kY+Y

p≡ν(t,α,r) mod [nd2,h]

(√
4kY − t2
kY

−
√

4kY − t2 log p

kY log kY

)
�
√
Y

knd2
.

Summing over k, n, t, α, d, with trivial bounds for the remaining terms, gives the result.

We then have to evaluate the sum M ′ above. We first define some notation. For any
positive integers a, q such that (a, q) = 1, let

ψ(X,Y ; a, q) =
∑

X<p<X+Y
p≡a(mod q)

log p

E(X,Y ; a, q) = ψ(X,Y ; a, q)− Y

ϕ(q)
,
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where, as usual, ϕ denotes the Euler function.

Substracting and adding
Y

ϕ([nd2, h])
to the sum M ′ above, we write it as M ′ = S1 + S2

where

S1 =
2Y

3π

∑
1≤k≤K

odd∑
n≤U

1≤t≤2
√
kY

(t2−r,h)=1

√
4kY − t2
kY log kY

1

n

∑
α(mod n)

(t2−α,n)=1
α≡r(mod (n,h))

(α
n

) ∑
d≤R

(d,nt)=1

r≡0 mod (d2,h)

µ(d)

ϕ([nd2, h])
(16)

and

S2 �
∑

1≤k≤K

1√
kY

odd∑
1≤t≤2

√
kY

(t2−r,h)=1

∑
n≤U
d≤R

(d,nt)=1

r≡0(mod (d2,h))

1

n

∑
α(mod n)

(t2−α,n)=1
α≡r(mod (n,h))

|E(kY, Y ; ν(t, α, r), [nd2, h])|

�
∑

1≤k≤K

∑
q≤R2Uh

R3

q

∑
a mod q
(a,q)=1

|E(kY, Y ; a, q)| (17)

since each q ≤ R2Uh can be written as q = [nd2, h] in at most R ways, and for each fixed
integer t, and for any α 6≡ α′ mod n, ν(t, α, r) 6≡ ν(t, α′, r) modulo q = [nd2, h]. We now
use:

Theorem 7 (Barban-Davenport-Halberstam) Let X,Y be positive numbers such that X +
Y ≤ x. Then, for any N > 0, there exist M > 0 such that∑

q≤Q

∑
a mod q
(a,q)=1

|E(X,Y ; a, q)|2 � x2

logN x

whenever Q ≤ x log−M x.

Remark: An easy application of the triangular and Cauchy-Schwartz inequalities, gives
this particular form of the Barban-Davenport-Halberstam theorem, from the more classical
given for example in Theorem 17.1 of [IK].

Using Cauchy-Schartz and Theorem 7 on (17), we get that for any A > 0

S2 � R3
∑

1≤k≤K

 ∑
q≤R2Uh
a mod q
(a,q)=1

|E(kY, Y ; a, q)|2


1/2 ∑

q≤R2Uh
a mod q
(a,q)=1

1

q2


1/2

� x log−A x (18)

since
R2Uh ≤ x

logM x

10



for any M > 0, and x sufficiently large.
We now evaluate S1. Consider the sum

S(T ) =

odd∑
1≤t≤T

(t2−r,h)=1

odd∑
n≤U

1

n

∑
α(mod n)

(t2−α,n)=1
α≡r(mod (n,h))

(α
n

) ∑
d≤R

(d,nt)=1

r≡0 mod (d2,h)

µ(d)

ϕ([nd2, h])
. (19)

Theorem 8 Let R, U as before. Then, as T, x→∞ we have for any ε > 0

S(T ) =
3

2
CT +O

(
T logR

R

)
+O

(
1

T 1−ε

)
.

where C is the constant given in (1).

Let us assume for a moment the previous theorem, which will be proved in the next
section, and let us show how the evaluation of S1 in (16) follows from the asymptotic of
S(T ). This will complete the proof of Theorem 2.

We define F (t) such that

S(T ) =

odd∑
1≤t≤T

(t2−r,h)=1

F (t),

where S(T ) is the sum defined in (19), and consider

S1(X) =

odd∑
1≤t≤2

√
X

(t2−r,h)=1

√
4X − t2
X logX

F (t).

Using Theorem 8 and partial summation we get, for the main term of S1(X),

S1(X) =
3
2C

X logX

∫ 2
√
X

0

t2(4X − t2)−1/2dt+O(1/R) =
3
2Cπ

logX
+O(1/R). (20)

Replacing (20) into (16), we get

S1 =
2Y

3π

∑
1≤k≤K

S1(kY ) = CY
∑

1≤k≤K

1

log kY
+O(x/R)

= C
x

log x
+O

(
x

log2 x

)
. (21)

Using (21), and collecting the error terms from (18), Lemma 6 and (15) with β ≥ 3, this
shows that ∑

p≤x

Πsf(p)

p(p− 1)
= C

x

log x
+O

(
x

log2 x

)
,

and it completes the proof of Theorem 2.

11



4 Proof of Theorem 8

Let

ct(n) =
∑

α mod n
(t2−α,n)=1

α≡r mod (n,h)

(α
n

)

be the sum over residues modulo n that appears in (19).

Lemma 9 Let r, h, t be integers such that (t2 − r, h) = 1, and let p be an odd prime. Then,
ct(n) is a multiplicative function of n, with value at prime powers given by

1. If p | h, then ct(p
`)p−` =

1

(p`, h)

(
r

p`

)
.

2. If p - h, then

ct(p
`)p−` =


0 if p | t, ` odd;
−1/p if p - t, ` odd;
1− 1/p if p | t, ` even;
1− 2/p if p - t, ` even.

Proof: This is a straightforward case by case computation, and we omit it.

Now, for each fixed odd t in (19), such that (t2 − r, h) = 1, we evaluate the sum

odd∑
n≤U

ct(n)

n

odd∑
d≤R

(d,nt)=1

r≡0 mod (d2,h)

µ(d)

ϕ([nd2, h])
.

For any (d, n) = 1, we have that

ϕ([nd2, h]) =
ϕ(n)ϕ(d2)ϕ(h)

ϕ((n, h))ϕ((d2, h))
> ϕ(n)ϕ(d2). (22)

We also observe that ∑
d>R

(d,nt)=1

r≡0 mod (d2,h)

1

ϕ(d2)
�
∑
d>R

log log d

d2
<

logR

R
,

and
odd∑

n>U

ct(n)

nϕ(n)
�

odd∑
n>U

log log n

n
∏
p2γ+1||n p

�
odd∑

n>U1/2

2ω(n) log log n

n2
<

1

U1/2−ε

for any ε > 0. Then,

odd∑
n≤U

ct(n)

n

odd∑
d≤R

(d,nt)=1

r≡0 mod (d2,h)

µ(d)

ϕ([nd2, h])
= Ct +O

(
logR

R

)
, (23)
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where

Ct =

odd∑
n≥1

ct(n)

n

odd∑
d≥1

(d,nt)=1

r≡0 mod (d2,h)

µ(d)

ϕ([nd2, h])
=

odd∑
d≥1

(d,t)=1

(d2,h)|r

µ(d)

odd∑
n≥1

(n,d)=1

ct(n)

nϕ([nd2, h])
. (24)

We now use the multiplicativity of the functions involved to write the constant Ct as an
Euler product.

Lemma 10 Let r, h, t be integers such that (t2 − r, h) = 1, and (h, r) is squarefree. Then,

Ct = P (r, h)
∏
p|t
p-h

(
1 +

2p2 + p− 1

p4 − p3 − 2p2 − p+ 1

)
,

where

P (r, h) =
1

ϕ(h)

∏
p|h

p

p−
(
r
p

) ∏
p‖h
p|r

(
1− 1

p

)∏
p-h

p4 − p3 − 2p2 − p+ 1

p(p− 1)(p2 − 1)
,

and all the products run over odd prime numbers.

Proof: We first observe that

p4 − p3 − 2p2 − p+ 1

p(p− 1)(p2 − 1)
= 1− p2 + 2p− 1

p(p− 1)(p2 − 1)
, (25)

so each of the products of Ct is convergent. Although intricate, the proof consists of a
combination of straightforward computations using Lemma 9. We always assume that every
prime appearing in the products below is odd. We first note that

odd∑
d≥1

(d,nt)=1

r≡0 mod (d2,h)

µ(d)ϕ((d2, h))

ϕ(d2)
=
∏
p-nt
p‖h
p|r

(
1− 1

p

) ∏
p-nht

(
1− 1

p(p− 1)

)

Hence, using (22), we get

Ct = F (h, t)

odd∑
n≥1

ct(n)ϕ((n, h))

nϕ(n)

∏
p|(r,n)
p‖h
p-t

(
1− 1

p

)−1 ∏
p|n
p-ht

(
1− 1

p(p− 1)

)−1
,

for

F (h, t) =
1

ϕ(h)

∏
p-ht

(
1− 1

p(p− 1)

) ∏
p‖h
p|r
p-t

(
1− 1

p

)
.

Again, writing the sum over n as an Euler product, we get that

Ct = F (h, t)
∏
p

1 + δ(p)
∑
j≥1

ct(p
j)

pj
ϕ((pj , h))

ϕ(pj)

 , (26)
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where

δ(p) =



(
1− 1

p(p− 1)

)−1
when p - ht;

(
1− 1

p

)−1
when p ‖ h, p | r, p - t;

1 otherwise.

Finally, we use Lemma 9 to note that when p|h, ct(p
j)
ϕ((pj , h))

ϕ(pj)
=

(
r

p

)j
, independently

of t. For primes p - h, we have that ϕ((pj , h)) = 1. Hence, by splitting the inner sum in
(26) into odd and even terms, we get

∑
j≥1

ct(p
j)

pj
ϕ((pj , h))

ϕ(pj)
=

p

(p− 1)(p2 − 1)

(
p
ct(p)

p
+
ct(p

2)

p2

)
.

The result now follows by considering the different cases in Lemma 9.

We now proceed to prove Theorem 8. In the following, all primes p are odd and all
products are restricted to odd primes. Let us call G the multiplicative function with value

at a prime p given by G(p) =
2p2 + p− 1

p4 − p3 − 2p2 − p+ 1
. Using (23) and Lemma 10, we have

that

S(T ) = P (r, h)

odd∑
t≤T

(t2−r,h)=1

∑
d|t

(d,h)=1

µ2(d)G(d) +O

(
T logR

R

)

= P (r, h)
∑
d≤T

(d,h)=1

µ2(d)G(d)

odd∑
t≤T/d

(d2t2−r,h)=1

1 +O

(
T logR

R

)
. (27)

To compute the inner sum, we write

odd∑
t≤T/d

(d2t2−r,h)=1

1 =

odd∑
t≤T/d

∑
k|(d2t2−r,h)

µ(k) =
∑
k|h

µ(k)
∑
t≤T/d

t2≡rd−2 mod k
t≡1 mod 2

1. (28)

Because of the Moebius function, we can suppose that k is square-free. In that case, by
the Chinese Remainder Theorem, the number of solutions modulo 2k to the congruences
t2 ≡ rd−2 mod k and t ≡ 1 mod 2 is ∏

p|k

(
1 +

(
r

p

))
.
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Using that in (28), we have that

odd∑
t≤T/d

(d2t2−r,h)=1

1 =
T

2d

∏
p|h

1−
1 +

(
r
p

)
p

+O(τ(h)2ω(h)). (29)

Now we observe that∑
d≤T

(d,h)=1

µ2(d)G(d)

d
=
∏
p-h

(
1 +

G(p)

p

)
+O

(
1

T 2−ε

)
. (30)

Using (29) and (30) in (27) completes the proof of Theorem 8 with

C =
P (r, h)

3

∏
p|h

1−
1 +

(
r
p

)
p

∏
p-h

(
1 +

G(p)

p

)

=
1

3h

∏
p‖h
p|r

p− 1

p

∏
p|h
p-r

p(p− 1−
(
r
p

)
)

(p− 1)(p−
(
r
p

)
)

∏
p-h

p4 − 2p2 − p+ 1

p2(p2 − 1)
.

5 Conjectures and Constants

We write in this section a precise conjecture for the asymptotic behavior of

Πsf
E,r,h(x) = #{2 < p ≤ x, prime : a2p − 4p ∈ ∆(r, h)}.

Using the Moebius function to detect square-free numbers, we write

Πsf
E,r,h(x) =

∑
p≤x

a2
p−4p≡r mod h

∑
d2|a2

p−4p

µ(d)

=
∑

d≤2
√
x

µ(d)πd2(x; r, h) (31)

where
πd2(x; r, h) =

∑
p≤x

d2|a2
p−4p

a2
p−4p≡r mod h

1.

To evaluate πd2(x; r, h), we use the Chebotarev Density Theorem on the field extension
Q(E[m])/Q obtained by adjoining the m-torsion points of E to Q where m = [d2, h] is the
least common multiple of d2 and h. Since E[m] ' Z/mZ× Z/mZ as an abstract group, by
considering the Galois action on a basis for the m-torsion, we get a Galois representation

ρm : Gal(Q(E[m])/Q)→ GL2(Z/mZ)

15



which sends the Frobenius element σp of Gal(Q(E[m])/Q) to a conjugacy class of matrices
such that, for each g in the conjucacy class, we have

tr g ≡ ap mod m,

det g ≡ p mod m.

Then, by applying the Chebotarev Density Theorem to Gal(Q(E[m])/Q), we can evalu-
ate πd2(x; r, h) as desired. Let us set some notation. Let GE([d2, h]) ⊆ GL2(Z/[d2, h]Z) be
the image of ρ[d2,h] and let

CE(d, r, h) = {g ∈ GE([d2, h]) : tr2 g − 4 det g ≡ 0 mod d2 , tr2 g − 4 det g ≡ r mod h}.

Using the Chebotarev Density Theorem under the Generalized Riemann Hypothesis (see
for example [Se81, p. 133]), it follows that

πd2(x; r, h) = #{p ≤ x : σp ∈ CE(d, r, h)}

=
|CE(d, r, h)|
|GE([d2, h])|

π(x) +O
(
|CE(d, r, h)|x1/2 log (dx)

)
(32)

where the error term depends on E and h.
In order to use (32) in (31) to estimate Πsf

E,r,h(x), we need to control the error term which
should be o(π(x)). This seems to be out of reach with the present techniques, given the
size of the error term in (32). There are some known techniques to improve the error term
of (32) by replacing |CE(d, r, h)| by |CE(d, r, h)|1/2 [MuMuSa], but even such an improved
error term will not allow to evaluate (31). We remark that in the result of Cojocaru and
Duke [CoDu], the Chebotarev Density Theorem is used to count primes splitting completely
in some extensions depending on E, where the error term is then much smaller.

We now concentrate on the conjectural main term of Πsf
E,r,h(x),

π(x)

∞∑
d=1

µ(d)
|CE(d, r, h)|
|GE([d2, h])|

,

obtained by using the main term of (32) in (31) and the convergence of the sum, proved
below.

Using properties of the Galois representations ρ[d2,h] associated to E we will rewrite the
constant as an Euler product. For any curve without complex multiplication (CM), Serre
proved in [Se72] that the image of the Galois representation associated to all the torsion

points of E is open in GL2(Ẑ). It follows that for each E without CM, there is an integer
ME such that for any n with (n,ME) = 1, we have

GE(n) = GL2(Z/nZ), (33)

and for any n, n′ with (n,ME) = (n′, n) = 1, we have

GE(nn′) = GE(n)×GE(n′). (34)
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We remark that the integer ME is always even. Using (34) and the Chinese Reminder
Theorem and noting that the sum is restricted to squarefree numbers d, we write∑

d

µ(d)
|CE(d, r, h)|
|GE([d2, h])|

=
∑

k|[h,ME ]

∑
(d,[h,ME ])=k

µ(d)
|CE(d, r, h)|
|GE([d2, h])|

=
∑

k|[h,ME ]

µ(k)
|CE(k, r, h)|
|GE([k2, h])|

∑
(j,ME)=(j,h)=1

µ(j)
|CE(j2)|
|GE(j2)|

(35)

where
CE(j2) =

{
g ∈ GE(j2) : tr2 g − 4 det g ≡ 0 mod j2

}
.

Since (j,ME) = 1, GE(j2) = GL2(Z/j2Z) by (33), and we get that

∑
(j,ME)=(j,h)=1

µ(j)
|CE(j2)|
|GE(j2)|

=
∏

`-hME

`4 − 2`2 − `+ 1

`2(`2 − 1)
. (36)

We now look at the first sum of (35). We write h = h1h2 where p | h1 ⇒ p | ME

and p | h2 ⇒ p - ME . Then, [h,ME ] = [h1,ME ]h2. Similarly, for any k | [h,ME ], we write
k = k1k2 where p | k1 ⇒ p |ME and p | k2 ⇒ p -ME . Using (34) and the Chinese Reminder
Theorem, we get that∑

k|[h,ME ]

µ(k)
|CE(k, r, h)|
|GE([k2, h])|

=
∑
k2|h2

µ(k2)
|CE(k2, r, h2)|
|GE([k22, h2])|

∑
k1|[h1,ME ]

µ(k1)
|CE(k1, r, h1)|
|GE([k21, h1])|

.

Let h2 =
∏
` `
α(`), β(`) = max (α(`), 2) and

CE(`α(`), r) =
{
g ∈ GE(`α(`)) : tr g2 − 4 det g ≡ r mod `α(`)

}
.

Then,

|CE(k2, r, h2)|
|GE([k22, h2])|

=
∏
`|h2

|CE(`α(`), r)|
|GE(`α(`))|

∏
`|k2

|CE(`, r, `α(`))|
|CE(`α(`), r)|

|GE(`α(`))|
|GE(`β(`))|

,

and ∑
k2|h2

µ(k2)
|CE(k2, r, h2)|
|GE([k22, h2])|

=
∏
`|h2

|CE(`α(`), r)|
|GE(`α(`))|

− |CE(`, r, `α(`))|
|GE(`β(`))|

=
∏
`|h2

|DE(`, r, `α(`))|
|GE(`β(`))|

(37)

where

DE(`, r, `α(`)) =
{
g ∈ GE(`β(`)) : tr(g)2 − 4 det(g) 6≡ 0 mod `2 and tr(g)2 − 4 det(g) ≡ r mod `α(`)

}
.
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It is a lengthy, but straightforward computation, to show that for any odd prime ` - ME

and any integer α ≥ 1,

|DE(`, r, `α)|
|GE(`max (α,2))|

=



`(`− 1−
(
r
`

)
)

(`− 1)(`−
(
r
`

)
)`α

when ` - r;

`− 1

`α+1
when ` | r and α = 1;

1

`α
when ` ‖ r and α ≥ 2;

0 when `2 | r and α ≥ 2.

The last case (`2 | r and α ≥ 2) happens only when `2 | (r, h), which is impossible when
(r, h) is square-free. If (r, h) is not square-free, it is clear that Πsf

E,r,h(x) is empty.
Replacing (36) and (37) in (35), we get that∑

d

µ(d)
|CE(d, r, h)|
|GE([d2, h])|

=
∑

k1|[h1,ME ]

µ(k1)
|CE(k1, r, h1)|
|GE([k21, h1])|

×

1

h

∏
`-ME
`‖h
`|r

`− 1

`

∏
`-ME
`|h
`-r

`(`− 1−
(
r
`

)
)

(`− 1)(`−
(
r
`

)
)

∏
`-ME
`-h

`4 − 2`2 − `+ 1

`2(`2 − 1)
. (38)

Conjecture 11 Let E be an elliptic curve over Q without complex multiplication, and let
ME be an integer satisfying (33) and (34). Let h be a positive odd integer, and r an integer
such that (h, r) is square-free. Write h = h1h2 where p | h1 ⇒ p |ME and p | h2 ⇒ p -ME.
Then as x→∞

Πsf
E(a,b),r,h(x) ∼ CSF (E, r, h)

x

log x
,

where CSF (E, r, h) is the constant given by (38).

Then, Theorem 2 gives evidence for the asymptotic of Conjecture 11, and also for the
constant CSF (E, r, h) appearing on the asymptotic. We remark that the average constant
C of Theorem 2 corresponds to a curve with ME = 1, even if there are no such curves over
Q, as 2 always divides ME . This also explains the factor 1/3 which appears in the average
constant C since

|CE(4)|
|GL2(Z/4Z)|

=
1

3
.

A similar heuristic leads to the following conjecture for the number of primes p smaller
than x such that p+ 1− ap(E) is square-free.

Conjecture 12 Let E be an elliptic curve over Q without complex multiplication, and let
ME be an integer satisfying (33) and (34). Let ΠE(x) be the number of primes of good
reduction such that p+ 1− ap(E) is square-free. Then as x→∞

ΠE(x) ∼ C ′SF (E)
x

log x
,
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where C ′SF (E) is the constant

C ′SF (E) =
∑
k|ME

µ(k)
|C ′E(k2)|
|GE(k2)|

∏
`-ME

1− `3 − `− 1

(`2 − 1)`2(`− 1)
,

where GE(k2) ⊆ GL2(Z/k2Z) is the image of ρk2 and

C ′E(k2) =
{
g ∈ GE(k2) : det(g) + 1− tr(g) ≡ 0 mod k2

}
.

The work of Gekeler mentioned in the introduction then gives evidence for Conjecture
12, and in particular for the constant C ′SF (E) appearing in the conjecture. We stress again
that the techniques used by Gekeler and our techniques are completely different, but they
both uncover the conjectural constants computed from Galois representations in this section
(and of course, neither the work of Gekeler or the work of this present paper relies on Galois
representations, and counting elements of Galois groups).
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