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Abstract. Let E be a non-CM elliptic curve defined over Q. For each prime
p of good reduction, E reduces to a curve Ep over the finite field Fp. For
a given squarefree polynomial f(x, y), we examine the sequences fp(E) :=
f(ap(E), p), whose values are associated with the reduction of E over Fp.
We are particularly interested in two sequences: fp(E) = p + 1 − ap(E) and
fp(E) = ap(E)2 − 4p. We present two results towards the goal of determining
how often the values in a given sequence are squarefree. First, for any fixed
curve E, we give an upper bound for the number of primes p up to X for which

fp(E) is squarefree. Moreover, we show that the conjectural asymptotic for
the prime counting function

πSF
E,f (X) := #{p ≤ X : fp(E) is squarefree}

is consistent with the asymptotic for the average over curves E in a suitable
box.

1. Introduction

Let E be an elliptic curve over Q. For each prime p of good reduction, E
reduces to a curve Ep over the finite field Fp with |Ep(Fp)| = p + 1 − ap(E) and
|ap(E)| ≤ 2

√
p (the Hasse bound). There are many open conjectures about the

distribution of invariants associated with the reductions of a fixed elliptic curve over
Q to curves over the finite fields Fp as p runs through the primes; the conjecture
of Lang and Trotter [22] and the conjecture of Koblitz [21] are two well-known
examples. The Koblitz Conjecture concerns the number of primes p ≤ X such
that |E(Fp)| is prime, and is thus analogous to the twin prime conjecture in the
context of elliptic curves. The fixed trace Lang–Trotter Conjecture concerns the
number of primes p ≤ X such that the trace of Frobenius ap(E) is equal to a fixed
integer t. Another conjecture of Lang and Trotter (also called the Lang–Trotter
Conjecture) concerns the number of primes p ≤ X such that the Frobenius field

Q(
√
ap(E)2 − 4p) is a fixed imaginary quadratic field K. These conjectures are

still completely open. In particular, the only known lower bound for any of the
conjectures described above is a result of Elkies [13], who proved that there are
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infinitely many supersingular primes (or equivalently, infinitely many primes such
that ap(E) = 0).

In this paper, we consider the question of counting the squarefree values in a
sequence associated to the reductions Ep over the finite fields Fp of a fixed elliptic
curve E defined over Q. Two sequences are of particular interest (and were studied
in previous work), namely |Ep(Fp)| = p + 1 − ap(E) and ap(E)2 − 4p. The latter

sequence is of interest since Z[
√
ap(E)2 − 4p] is the ring generated by the Frobenius

element over Fp; thus, it is related to the second conjecture of Lang and Trotter
discussed above.

In general, let f(x, y) ∈ Z[x, y] be squarefree. We consider the general sequence

{fp(E) := f(ap(E), p) : p prime}

associated to a given elliptic curve E over Q.
We define

πSF
E,f (X) := #{p ≤ X : fp(E) is squarefree}.

It is not difficult to predict the precise asymptotic that one should obtain for
πSF
E,f (X) but the precise order of πSF

E,f (X) is not known unconditionally for any

sequence fp(E). If E is a non-CM elliptic curve defined over Q, then assuming
the Generalized Riemann Hypothesis, the Pair Correlation Conjecture, and Artin
Holomorphy Conjecture, Cojocaru showed in her thesis [6] how to obtain the correct
asymptotic for πSF

E,f (X) when fp(E) = p+1−ap(E). Her proof presumably extends

to other sequences. For elliptic curves with complex multiplication, Cojocaru [8]
obtained the correct proportion of primes p for which the sequence p + 1 − ap(E)
is squarefree. Her asymptotic estimate relies heavily on the algebraic properties
that CM elliptic curves possess; the same methods do not appear to be capable
of handling the non-CM case. For CM curves, handling the sequence ap(E)2 − 4p
requires a different approach, as computing the proportion of primes for which
ap(E)2 − 4p is squarefree is equivalent to counting the number of primes in a given
quadratic progression. For example, let E be the CM elliptic curve y2 = x3−x with
complex multiplication by the ring of Gaussian integers Z[i]. Let p be an ordinary
prime that is congruent to 1 modulo 4. Since E has rational 2-torsion, then ap(E) is
even and 4 divides ap(E)2−4p. We want to know when (ap(E)2−4p)/4 is squarefree.
Since E has complex multiplication by Z[i], if ap(E) �= 0, then ap(E)2−4p = −4α2

for some α ∈ Z, and (ap(E)2 − 4p)/4 is squarefree if and only if α = 1 if and only
if p = (ap(E)/2)2 + 1. This latter problem remains a well-known open question.

To gain evidence for conjectures related to the distribution of invariants as-
sociated with the reductions of a fixed elliptic curve over the finite fields Fp, it
is natural to consider the averages for these conjectures over some family of el-
liptic curves. This has been done by various authors originating with the work
of Fouvry and Murty [14] for the number of supersingular primes (i.e., the fixed
trace Lang–Trotter Conjecture for t = 0). See [4, 5, 10, 11, 17, 18] for other av-
erages regarding the fixed trace Lang–Trotter Conjecture. The average order for
the Koblitz Conjecture was considered in [2]. Very recently, the average has been
successfully carried out for the Lang–Trotter Conjecture on Frobenius fields [9].
In [12], the authors considered the average of πSF

E,f (X) for fp(E) = ap(E)2 − 4p
and showed that the conjecture holds on average when the size of the family
is large enough. This is equivalent to determining the average over the finite
fields Fp, namely

∑
p≤X #{E/Fp : ap(E)2 − 4p is squarefree}. For the sequence
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fp(E) = p+ 1− ap(E), the number of squarefree values was also investigated over
the finite fields Fp for p ≤ X by Gekeler [15]. As a corollary to his result, one can
show that the number of primes p ≤ X such that p+1−ap(E) is squarefree follows
the predicted asymptotic on average over all elliptic curves.

All of the aforementioned averages provide evidence for the stated conjectures,
as they demonstrate that the average asymptotic is on the same order of magnitude
as the conjectured asymptotic for any given elliptic curve. In each case, the average
asymptotic involves a constant, which depends on the precise conjecture that is
averaged, but does not necessarily correspond to the constant that appears in the
conjecture for every elliptic curve. It is therefore interesting to investigate whether
the average results are compatible with the corresponding conjectures at the level
of the constants, i.e., whether the average of the conjectured constants is equivalent
to the constant obtained via the average conjecture. This was done by Jones [19]
for both the Lang–Trotter conjecture and the Koblitz conjecture. In this paper, we
show that the same principle holds for the constants associated with the number of
squarefree values of fp(E). Precise statements of our results are given in the next
section.

2. Statement of results

It is not difficult to obtain an upper bound of the correct order of magnitude for
πSF
E,f (X) using the Möbius function to detect squares, along with an explicit version

of the Chebotarev Density Theorem to count #{p ≤ X : d2 | fp(E)}. Furthermore,
one gets the correct order of magnitude with the correct conjectural constant. In
order to give an expression for this constant, we need some definitions. Let f(x, y) ∈
Z[x, y] be squarefree. Let

(2.1) Cf (n) = {g ∈ GL2(Z/nZ) : f(tr g, det g) ≡ 0 mod n}.

For any elliptic curve E over Q, and any positive integer n, let GE(n) be the
subgroup of GL2(Z/nZ) defined in Section 3.1, and let ME be the integer defined
in Section 3.2. We then define

(2.2) CE,f (n) = {g ∈ GE(n) : f(tr g, det g) ≡ 0 mod n}.

Then,

(2.3) CSF
E,f =

∏
��ME

(
1− |Cf (�

2)|
|GL2(Z/�2Z)|

) ∑
n|ME

μ(n)
|CE,f (n

2)|
|GE(n2)| .

Our first result is the following:

Theorem 2.1. Let E be a non-CM elliptic curve defined over Q. For X suffi-
ciently large (depending on E), and any ε > 0, we have

πSF
E,f (X) ≤ CSF

E,f π(X)

(
1 +O

(
1

(log logX)1−ε

))
,

where CSF
E,f is the constant given in (2.3).

Our theorem provides evidence for the conjectural number of squarefree values
in sequences fp(E) associated with elliptic curves.
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Conjecture 2.2. Let E be a non-CM elliptic curve defined over Q. As X →
∞, we have

πSF
E,f (X) ∼ CSF

E,f π(X),

where CSF
E,f is the constant given in (2.3).

As mentioned in the previous section, Conjecture 2.2 has been proven on av-
erage over the family of all elliptic curves for some specific sequences fp(E). Let
E(a, b) denote the elliptic curve given by the equation

y2 = x3 + ax+ b,

with 4a3 + 27b2 �= 0. Let A and B be positive constants. We define

(2.4) C(A,B) := {E(a, b) : |a| ≤ A and |b| ≤ B}.
The following average results are due to David and Urroz, and Gekeler, respec-

tively.

Theorem 2.3 ([12]). Let f(x, y) = x2 − 4y such that fp(E) = ap(E)2 − 4p.

Then for any ε > 0, and any A,B such that AB > x log8 x with A,B > xε, we
have as X → ∞

1

|C(A,B)|
∑

E∈C(A,B)

πSF
E,f (X) ∼ CSF

f π(X)

where

CSF
f =

∏
�

(
1− |Cf (�

2)|
|GL2(Z/�2Z)|

)
=

1

3

∏
� �=2

1− �2 + �− 1

�2(�2 − 1)
.

Theorem 2.4 ([15]). If f(x, y) = y + 1− x such that fp(E) = p+ 1− ap(E),
we have as X → ∞∑

p≤X #{E/Fp : fp(E) is squarefree}∑
p≤X #{E/Fp}

∼ CSF
f

where

CSF
f =

∏
�

(
1− |Cf (�

2)|
|GL2(Z/�2Z)|

)
=

∏
�

1− �3 − �− 1

�2(�2 − 1)(�− 1)
.

The proofs of the average results stated in Theorems 2.3 and 2.4 are very differ-
ent. For Theorem 2.3, the authors use Deuring’s Theorem to count elliptic curves
over Fp such that ap(E)2 − 4p is squarefree, and the theorem follows from taking
an average of class numbers. For Theorem 2.4, the author uses completely different
techniques that rely on Howe’s work on counting points on the moduli spaces of
elliptic curves over Fp with a given group structure. In both cases, the average
constant CSF

f follows from somewhat elaborate computations that are particular to

the sequence fp(E) being studied. For a general sequence fp(E), one believes that
we should have

1

|C(A,B)|
∑

E∈C(A,B)

πSF
E,f (X) ∼ CSF

f π(X)

where

CSF
f :=

∏
�

(
1− |Cf (�

2)|
|GL2(Z/�2Z)|

)
.
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We provide evidence for an average result of this nature by showing that the
average of the conjectural constants CSF

E,f defined in (2.3) coincide with the constant

CSF
f for a general squarefree polynomial f ∈ Z[x, y]. This forms our second result.

Theorem 2.5. Let f ∈ Z[x, y] be non-constant and squarefree, and let C(A,B)
be the family of curves defined in (2.4). Then, we have

1

|C(A,B)|
∑

E∈C(A,B)

CSF
E,f ∼ CSF

f .

In particular, the constants appearing in Theorems 2.3 and 2.4 are indeed the
average of the constants from Conjecture 2.2.

Corollary 2.6. Let f(x, y) = y + 1− x or x2 − 4y. As A,B → ∞, we have

1

|C(A,B)|
∑

E∈C(A,B)

CSF
E,f ∼ CSF

f .

We now outline the contents of this paper. In Section 3, we set the notation
and basic definitions, and state some relevant results from the literature. The proof
of Theorem 2.1 will be given in Section 5. As in [19], our proof of Theorem 2.5
requires computing separate averages over non-Serre curves and Serre curves. These
computations are done in Sections 6.1 and 6.2, respectively.

3. Preliminaries

In this section, we introduce the notation and definitions which will be used
throughout the paper. First, we provide the necessary background on torsion fields
attached to elliptic curves and their Galois groups, as well as some information
about Serre curves, which will be used in our proof of Theorem 2.5. We then state
an effective form of the Chebotarev Density Theorem, which will be used to prove
Theorem 2.1.

3.1. Torsion fields of elliptic curves and Serre’s theorem. For each
positive integer n, let E[n] be the group of n-torsion points of E. It is well-known
that E[n] 
 Z/nZ × Z/nZ as an abstract abelian group. Let Q(E[n]) denote the
nth division field of E, obtained by adjoining to Q the x and y-coordinates of the
n-torsion points of E. This is a Galois extension of Q, and Gal(Q(E[n])/Q) acts
on E[n], giving rise to an injective group homomorphism

ρE,n : Gal(Q(E[n])/Q) → GL2(Z/nZ).

Definition 3.1. Let GE(n) denote the image of ρE,n inside GL2(Z/nZ).

Taking the inverse limit of the ρE,n over positive integers n (with a basis chosen
compatibly), one obtains a continuous group homomorphism

ρE : GQ → GL2(Ẑ),

where Ẑ = lim←−Z/nZ, and GQ = Gal(Q/Q).
Serre proved the following theorem:

Theorem 3.2 ([24]). Suppose that E is an elliptic curve over Q which has no
complex multiplication. Then, with the notation defined as above, we have

[GL2(Ẑ) : ρE(GQ)] < ∞.
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Let P (x) be a polynomial of degree d with the leading coefficient a. The
absolute logarithmic height of P (x) is defined as

h(P ) =
1

d

(
log|a|+

∑
α

log
(
max(1, |α|)

))
,

where α ranges over all roots of polynomial P (x). The absolute logarithmic height
of an algebraic number α, denoted by h(α), is defined to be the absolute logarithmic
height of its minimal polynomial. If α is a nonzero rational integer, then h(α) =
log|α|.

In this paper, we will need an effective version of Serre’s theorem, which gives
an explicit bound on the index in terms of the parameters of the curve E. This is
done in the following theorem, which is due to Zywina.

Theorem 3.3 ([27, Theorem 1.1]). Let E be a non-CM elliptic curve defined
over Q. Let jE be the j-invariant of E and let h(jE) be its logarithmic height.
Let N be the product of primes for which E has bad reduction. There are absolute
constants C and γ such that

[GL2(Ẑ) : ρE(GQ)] ≤ Cmax
(
1, h(jE)

)γ
.

3.2. Serre curves. From Serre’s theorem, we know that there exist positive
integers m so that, if

π : GL2(Ẑ) → GL2(Z/mZ)

is the natural projection, we have

(3.1) ρE(GQ) = π−1
(
GE(m)

)
,

i.e., ρE(GQ) is the full inverse image of GE(m). For a non-CM curve E over Q, let
us denote by ME the smallest positive integer m such that (3.1) holds. Then, ME

has the following properties:

If (n,ME) = 1, then GE(n) = GL2(Z/nZ);(3.2)

If (n,ME) = (n,m) = 1, then GE(mn) 
 GE(m)×GE(n);(3.3)

If ME | m, then GE(m) ⊆ GL2(Z/mZ) is the full inverse image of
GE(ME) ⊆ GL2(Z/MEZ) under the projection map.

(3.4)

Serre [24] observed that, although ρE(GQ) has finite index in GL2(Ẑ), it is
never surjective when the base field is Q. Indeed, suppose that an elliptic curve E
is given by the Weierstrass equation

y2 = (x− e1)(x− e2)(x− e3).

Then, the 2-torsion of E can be expressed explicitly as

E[2] = {O, (e1, 0), (e2, 0), (e3, 0)}.
The discriminant ΔE of E is defined as follows:

ΔE = (e1 − e2)
2(e2 − e3)

2(e3 − e1)
2.

The definitions of E[2] and ΔE immediately imply that

Q
(√

ΔE

)
⊆ Q(E[2]),

and ρE is not surjective.
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In fact, for each elliptic curve E over Q, there is an index two subgroup HE ⊆
GL2(Ẑ) such that

ρE(GQ) ⊆ HE ⊆ GL2(Ẑ).

For a precise definition of HE , we refer the reader to the original paper of Serre
[24], or the nice exposition in [20, Section 4].

With this in mind, we can state the following definition:

Definition 3.4. An elliptic curve E over Q is a Serre curve if ρE(GQ) = HE .

Throughout this paper, let N (A,B) denote the non-Serre curves in C(A,B)
and let S(A,B) denote the set of Serre curves. Then, we certainly have C(A,B) =
S(A,B) ∪ N (A,B). This decomposition will be useful as it enables us to take
separate averages over Serre versus non-Serre curves.

Jones showed in [20] that most elliptic curves over Q are Serre curves. In our
situation, his result can be stated as follows:

Theorem 3.5 ([19, Theorem 25]). There is an absolute constant β > 0 such
that

|N (A,B)|
|C(A,B)| �

logβ
(
min(A,B)

)√
min(A,B)

.

3.3. Effective Chebotarev Density Theorem. Let K/Q be a finite Galois
extension with Galois group Gal(K/Q), and let C be a union of conjugacy classes in
Gal(K/Q). Let nK be the degree of K/Q, and let dK be an absolute discriminant
of K. Let P(K) be the set of ramified primes, and let

mK = nK

∏
p∈P(K)

p.

If φp : Gal(Qp/Qp) → Gal(Fp/Fp) is the Frobenius map given by φp : x �→ xp,
we define σp to be the pullback of φp. If p � dK , for each unramified prime p, σp

is the Artin symbol at the prime p, which is well-defined up to conjugation. Let C
be a union of conjugacy classes in Gal(K/Q). Let

πC(X,K) = #{p ≤ X : p � dK and σp ∈ C}.
The following theorem is an effective version of the Chebotarev Density Theo-

rem due to Lagarias and Odlyzko [23], with a refinement due to Serre [25].

Theorem 3.6. (i) Let β be the exceptional zero of the Dedekind zeta func-
tion associated to K (if such a zero exists). Then, for all X such that

logX � nK(log dK)2,

we have that

πC(X,K) =
|C|

|Gal(K/Q)|π(X)

+O

(
|C|

|Gal(K/Q)|π(X
β) + |C̃|X · exp

(
− c
√
nK

√
logX

))
,

where c is a positive absolute constant and |C̃| is the number of conjugacy classes
in C.
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(ii) Assuming the GRH for the Dedekind zeta function of K, we have that

πC(X,K) =
|C|

|Gal(K/Q)|π(X) +O
(√

X|C| log(mKX)
)
.

We will make use of the unconditional bound given in Theorem 3.6(i) in our
proof of Theorem 2.1. We need the following lemmas to make the error term
explicit.

Lemma 3.7 ([26]). Let K/Q be a finite Galois extension of degree nK and
discriminant dK . Then, for the exceptional zero β of the Dedekind zeta function
associated to K, we have

(3.5) β < 1− A1

max{|dK |1/nK , log|dK |} ,

where A1 is a positive constant.

Lemma 3.8 ([25, Proposition 6, Section 1.4]). Let K/Q be a finite Galois
extension of degree nK and discriminant dK . Let P(K) be the set of ramified
primes. Then,

nK

2

∑
p∈P(K)

log p ≤ log dK ≤ (nK − 1)
∑

p∈P(K)

log p+ nK log nK .

Corollary 3.9. Let K = Q(E[n]), and C a union of conjugacy classes in
Gal(K/Q). For all X such that logX �E n12(logn)2, we have

πC(X,K) =
|C|

|Gal(K/Q)|π(X) +O

(
X exp

(
− A

n2

√
logX

))
,

where A is an absolute constant.

Proof. This follows immediately from using the bounds given in Lemmas 3.8
and 3.7 in Theorem 3.6(i): for K = Q(E[n]), we have that nK ≤ #GL2(Z/nZ) ≤
n4 and log dK � n4 log(nNE), where NE is the conductor of E. We can apply
Theorem 3.6(i) when logX � n12(logNEn)

2. �

We conclude this section by explaining how the preceding corollary is related
to πSF

E,f (X). Let p � nNE , which implies that p is unramified in K = Q(E[n]).

Since the Frobenius endomorphism (x, y) �→ (xp, yp) of the reduction of E over the
finite field Fp satisfies the polynomial x2−ap(E)x+p, it follows from the definition
of the Frobenius element σp that ρE,n(σp) must have characteristic polynomial
x2 − ap(E)x+ p in GL2(Z/nZ); i.e., we must have

tr ρE,n(σp) ≡ ap(E) mod n

det ρE,n(σp) ≡ p mod n.

Thus, since fp(E) := f(ap(E), p), we have that

#{p ≤ X : fp(E) ≡ 0 mod n}
= #

{
p ≤ X : f

(
tr ρE,n(σp), det ρE,n(σp)

)
≡ 0 mod n

}
= #{p ≤ X : σp ∈ CE,f (n)}

where CE,f (n) is the union of conjugacy classes defined by (2.2).
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4. Key Lemma

Lemma 4.1. Let f(x, y) be any non-constant squarefree polynomial in Z[x, y].
Then, for any ε > 0 and any squarefree integer n, we have

(4.1)
|Cf (n

2)|
|GL2(Z/n2Z)| �f

1

n2−ε
.

Proof. We begin by showing that for any prime p, we have

(4.2) |Cf (p
2)| = #{g ∈ GL2(Z/p

2Z) : f(tr g, det g) ≡ 0 mod p2} �f p6.

Let (
a b
c d

)
∈ GL2(Z/pZ).

For each pair (D,T ) with D ∈ F∗
p and T ∈ Fp, we first count the matrices in

GL2(Z/pZ) with determinant ad − bc = D and trace a + d = T . We consider the
following two cases:

Case 1. ad−D �≡ 0 (mod p).
We observe that ad−D = (T−d)d−D ≡ 0 (mod p) if and only if d2−Td+D ≡ 0

(mod p). This criterion is satisfied for N := 1 +
(
T 2−4D

p

)
values of d, where

( ·
p

)
is the Legendre symbol. Thus, the number of values of d in GL2(Z/pZ) for which
ad − D �≡ 0 (mod p) is p − N. The choice of a is completely determined by the
choice of d. Moreover, the number of choices for the pair (b, c) is p − 1, since we
must exclude the pair that would yield ad−D ≡ 0 (mod p). As a result, we have
(p−N)(p− 1) matrices with the prescribed properties.

Case 2. ad−D ≡ 0 (mod p).
From the previous case, we see that the number of choices for d is N and the

number of choices for a is 1. In this case, we have 2p− 1 choices for b and c. This
gives us (2p− 1)N matrices with ad−D ≡ 0 (mod p).

By summing the counts obtained in the two cases described above, we see that
the full count of matrices in GL2(Z/pZ) with determinant D and trace T is

(p−N)(p− 1) + (2p− 1)N = p2 + p(N − 1) = p2 +O(p).

Therefore, letting Sf,D(p) be the set of roots of the polynomial f(x,D) over Fp

for any D ∈ F∗
p, we have that

|Cf (p)| =
∑
D∈F∗

p

#{g ∈ GL2(Z/pZ) : f(tr g,D) = 0}

≤
∑
D∈F∗

p

T∈Sf,D(p)

#{g ∈ GL2(Z/pZ) : tr g = T, det g = D}

�
∑
D∈F∗

p

|Sf,D(p)| p2 ≤ (degx f) · p3 �f p3.

Then, in order to bound |Cf (p
2)|, we want to count of lifts g̃ ∈ GL2(Z/p

2Z) of
a given matrix g ∈ Cf (p) which satisfy

(4.3) f(tr g̃, det g̃) ≡ 0 mod p2.

We write

g̃ =

(
a+ k1p b+ k2p
c+ k3p d+ k4p

)
, 1 ≤ ki ≤ p, i = 1, 2, 3, 4,
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and T = tr g, D = det g, tr g̃ = T +pu, det g̃ = D+pv. Using the Taylor expansion
of f , we have that

f(T + pu,D + pv) ≡ f(T,D) + p

(
u
∂f

∂x
(T,D) + v

∂f

∂y
(T,D)

)
mod p2.

Let

h(k1, k2, k3, k4) =

(
u
∂f

∂x
(T,D) + v

∂f

∂y
(T,D)

)
=

(
d
∂f

∂y
(T,D) +

∂f

∂x
(T,D)

)
k1 +

(
a
∂f

∂y
(T,D) +

∂f

∂x
(T,D)

)
k4

− b
∂f

∂y
(T,D)k3 − c

∂f

∂y
(T,D)k2.

Then, we need to count the number of solutions to the congruence

(4.4) h(k1, k2, k3, k4) ≡ −f(T,D)

p
mod p.

(Recall that p divides f(T,D) by hypothesis, since we are lifting elements of Cf (p)).
If h(k1, k2, k3, k4) �= 0, the number of solutions (k1, k2, k3, k4) to the congruence

given in (4.4) is bounded by �f p3. If h(k1, k2, k3, k4) = 0, then we can have p4

solutions (k1, k2, k3, k4) if f(T,D) ≡ 0 mod p2. Notice that, unless b = c = 0, we
have that h(k1, k2, k3, k4) �= 0, except in the case where

∂f

∂x
(T,D) =

∂f

∂y
(T,D) ≡ 0 mod p.

So, we only need to consider the pairs (T,D) such that

(4.5) f(T,D) =
∂f

∂x
(T,D) =

∂f

∂y
(T,D) ≡ 0 mod p.

We claim there is a bounded number of such pairs (T,D) when f(x, y) is square-
free. Indeed, in that case f(x, y) and ∂f/∂x are co-prime, and it follows from
the polynomial analogue of Bezout’s identity (Max Noether’s fundamental theorem
[16, p. 702]) that one can find polynomials a(x, y), b(x, y) ∈ Z[x, y] and Δ1(x) ∈ Z[x]
such that

a(x, y)f(x, y) + b(x, y)
∂f

∂x
(x, y) = Δ1(x).

Similarly, one can find polynomials a(x, y), b(x, y) ∈ Z[x, y] and Δ2(y) ∈ Z[y] such
that

a(x, y)f(x, y) + b(x, y)
∂f

∂y
(x, y) = Δ2(y).

Then, the number of (T,D) ∈ F2
p satisfying (4.5) is bounded by degΔ1 × degΔ2,

independently of p.
Thus, we see that each matrix in Cf (p) lifts to either �f p3 matrices or �f p4

matrices (in the case where h(k1, k2, k3, k4) = 0). So, for each prime p, we have

|Cf (p
2)| �f p6,

which proves (4.2). It follows immediately that

|Cf (p
2)|

|GL2(Z/p2Z)|
�f

1

p2
.
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Finally, by applying the Chinese Remainder Theorem over all prime divisors of
the squarefree integer n, we have that

|Cf (n
2)|

|GL2(Z/n2Z)| =
∏
p|n

|Cf (p
2)|

|GL2(Z/p2Z)|
�f

∏
p|n

1

p2
� 1

n2−ε
,

which concludes the proof of the lemma. �

5. Proof of Theorem 2.1

Our proof of Theorem 2.1 will rely on the following lemma:

Lemma 5.1. Let CSF
E,f be the conjectural constant defined by (2.3). Then

CSF
E,f =

∞∑
d=1

μ(d)
|CE,f (d

2)|
|GE(d2)|

.

Proof. By the properties (3.2) and (3.3) of ME and the Chinese Remainder
Theorem, we can write

∞∑
d=1

μ(d)
|CE,f (d

2)|
|GE(d2)|

=
∑
k|ME

∞∑
d=1

(d,ME)=k

μ(d)
|CE,f (d

2)|
|GE(d2)|

=
∑
k|ME

μ(k)
|CE,f (k

2)|
|GE(k2)|

∞∑
j=1

(j,ME)=1

μ(j)
|CE,f (j

2)|
|GE(j2)|

=
∑
k|ME

μ(k)
|CE,f (k

2)|
|GE(k2)|

∏
��ME

(
1− |Cf (�

2)|
|GL2(Z/�2Z)|

)
= CSF

E,f .�

Now we commence with our proof of Theorem 2.1. For every real number z ≥ 2,
we have

πSF
E,f (X) ≤ #{p ≤ X : �2 � fp(E), ∀� ≤ z}.

Let P (z) :=
∏

�≤z �, and define

ΩE(P (z)2) := {g ∈ GE(P (z)2) : �2 � f(tr g, det g), ∀� ≤ z}.
Moreover, let n = P (z)2 and K = Q(E[n]). As described at the end of Sec-

tion 3.3, we can use Corollary 3.9 to obtain

#{p ≤ X : �2 � fp(E), ∀� ≤ z}
= #{p ≤ X : σp ∈ ΩE(P (z)2)}

= π(X) ·
∣∣∣∣ΩE(P (z)2)

GE(P (z)2)

∣∣∣∣ +O

(
X exp

(
− A

P (z)4

√
logX

))
,

forX sufficiently large (where A is an absolute constant). Taking logX � P (z)24 ×(
logP (z)

)2
yields

P (z) �E log1/24−ε X,

for any ε > 0. Then our error term is

O

(
X exp

(
− A

P (z)4

√
logX

))
= OE

(
X exp

(
−A(logX)1/3+ε

))
.
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Now, using Lemma 5.1, we obtain

|ΩE(P (z)2)|
|GE(P (z)2)| =

∑
n|P (z)

μ(n)
|CE,f (n

2)|
|GE(n2)|

= CSF
E,f +O

(∑
n≥z

|CE,f (n
2)|

|GE(n2)|

)
.

Proceeding as in the proof of Lemma 5.1, we have that

∑
n≥z

|CE,f (n
2)|

|GE(n2)| ≤
∑
k|ME

|CE,f (k
2)|

|GE(k2)|
∑

j≥z/k

|Cf (j
2)|

|GL2(Z/j2Z)|

�E

∑
j≥z/ME

|Cf (j
2)|

|GL2(Z/j2Z)|

�E,f

∑
j≥z/ME

1

j2−ε
�E,f

1

z1−ε
,

where the penultimate inequality follows from Lemma 4.1.
Therefore, we have

πSF
E,f (X) ≤ CSF

E,f · π(X) +OE,f

(
π(X)

z1−ε
+X exp

(
−(logX)1/3+ε

))
.

To optimize, we want to choose the largest possible value of z such that P (z) �
log1/24−ε X. We take z = c log logX for c > 0 small enough, which yields

πSF
E,f (X) ≤ CSF

E,f · π(X)

(
1 +OE,f

(
1

(log logX)1−ε

))
.

This completes the proof of Theorem 2.1. �

6. Averaging the constants over families of elliptic curves

In this section, we prove Theorem 2.5 by separating the family of curves E ∈ C
into two subsets: Serre curves and non-Serre curves. We handle the average over
non-Serre curves in Section 6.1, and we compute the average over Serre curves in
Section 6.2.

6.1. Averaging over non-Serre curves.

Proposition 6.1. There exists an absolute constant δ > 0 such that

1

|C(A,B)|
∑

E∈N (A,B)

CSF
E,f � logδ(AB)√

min (A,B)
.
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Proof. For any E ∈ C(A,B), we have that

CSF
E,f =

∞∑
d=1

μ(d)
|CE,f (d

2)|
|GE(d2)|

≤
∞∑
d=1

|Cf (d
2)|

|GE(d2)|

≤ [GL2(Ẑ) : ρE(GQ)]

∞∑
d=1

|Cf (d
2)|

|GL2(Z/d2Z)|

� [GL2(Ẑ) : ρE(GQ)]

where the final inequality follows from Lemma 4.1.
Using Theorem 3.3, we have that for any E(a, b) ∈ C(a, b),

CSF
E,f � [GL2(Ẑ) : ρE(GQ)] �

(
max

(
1, h(jE(a,b))

))γ

where γ is an absolute constant. Since |a| ≤ A and |b| ≤ B, we have that

h(jE(a,b)) = h([1728(4a)3,−16(4a3 + 27b2)])

� log
(
max(A,B)

)
≤ logAB,

and then CSF
E(a,b),f � (logAB)γ . Now, using Theorem 3.5 to bound the size of

N (A,B), we get immediately that

1

|C(A,B)|
∑

E∈N (A,B)

CSF
E,f � logβ+γ(AB)√

min (A,B)
,

and Proposition 6.1 follows by taking δ = β + γ. �

6.2. Averaging over Serre curves. In this section, our goal is to show the
following.

Proposition 6.2. Let C(A,B) be the set of elliptic curves given by equations
y2 = x3 + ax + b, with 4a3 + 27b2 �= 0 and |a| ≤ A and |b| ≤ B. Let S(A,B) ⊆
C(A,B) be the subset of Serre curves. Let f ∈ Z[x, y] be a non-constant squarefree
polynomial.

Then, we have

1

|C(A,B)|
∑

E∈S(A,B)

∣∣CSF
E,f − CSF

f

∣∣ � 1

A
+

(
logB(logA)7

B

)
.

Consequently,
1

|C(A,B)|
∑

E∈S(A,B)

CSF
E,f ∼ CSF

f

as A,B → ∞.

First, we review several relevant properties of Serre curves; we refer the reader
to [19] for details and proofs. Let E be a Serre curve and let ΔSF(E) be the
squarefree part of the discriminant of E. Note that ΔSF(E) depends only on E/Q,
and not on the particular Weierstrass model. If E is a Serre curve, then ρE(GQ) =
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HE (where HE is the subgroup of index 2 defined in Section 3.2). Also, we have
that

(6.1) ME =

{
2|ΔSF| if ΔSF = 1 (mod 4)

4|ΔSF| otherwise,

and the subgroup HE = ρE(GQ) is the full pre-image of GE(ME) under the canon-
ical surjection

π : GL2(Ẑ) → GL2 (Z/MEZ) .

Moreover, if E is a Serre curve and d | ME , d �= ME , then the natural projection
of GE(ME) into GL2(Z/dZ) is surjective, i.e.,

(6.2) GE(d) = GL2(Z/dZ).

When E is a Serre curve, we can describe GE(ME) explicitly by defining, for
each odd prime p, the group homomorphisms

ψp : GL2(Z/pZ) → {±1}

g �→
(
det g

p

)
.

We then define ψME
: GL2(Z/MEZ) → {±1} by

ψME
( · ) = ψ2νp(ME)( · )

∏
p‖ME

ψp( · ),

where the homomorphisms ψ2k for k = 1, 2, 3 are as described in [19]. Then we
have

GE(ME) = ψ−1
ME

(1).

In order to prove Proposition 6.2, we will need the following pair of lemmas:

Lemma 6.3. Let E be an elliptic curve over Q which is a Serre curve. Let n
be a squarefree integer such that n | ME and GE(n

2) �= GL2(Z/n
2Z). Then, either

n = ME , n = ME/2 or n = ME/4.

Proof. First, we assume that E is a Serre curve, n | ME , n �= ME and
(n,ME/n) = 1. Under these assumptions, we have n2 | nME and n2 �= nME .
The subgroup GE(n

2) of GL2(Z/n
2Z) is the projection of GE(MEn) obtained by

reducing every matrix in GE(MEn) modulo n2. In order to prove that GE(n
2) =

GL2(Z/n
2Z), we will project GE(MEn) into GL2(Z/n

2Z). From (3.4), it follows
that GE(MEn) is the full inverse image of GE(ME), i.e.,

GE(MEn) = {g̃ ∈ GL2(Z/MEnZ) : g̃ ≡ g mod ME , for some g ∈ GE(ME)}
= {g̃ = (g̃1, g̃2) ∈ GL2(Z/n

2Z)×GL2(Z/(ME/n)Z) :

g̃1 ≡ g mod n, g̃2 ≡ g mod ME/n for some g ∈ GE(ME)},
where the second line follows from the Chinese Remainder Theorem and the fact
that, in this case,

(
n2, (ME/n)

)
= 1 and g̃ is the usual unique lift of (g̃1, g̃2) to

GL2(Z/MEnZ).
Since GE(n

2) is the projection of GE(MEn) into GL2(Z/n
2Z), we obtain

GE(n
2) = {g̃1 ∈ GL2(Z/n

2Z) : g̃1 ≡ g mod n for some g ∈ GE(ME)}
= {g̃1 ∈ GL2(Z/n

2Z) : g̃1 ≡ g mod n for some g ∈ GE(n)},
(6.3)
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where the second line follows from our assumptions that n | ME and GE(n) is
the projection of GE(ME) modulo n. From here, we may conclude that GE(n

2)
is the full inverse image of GE(n). By (6.2), since n | ME and n �= ME , we have
GE(n) = GL2(Z/nZ). Therefore, by (6.3), we have

GE(n
2) = {g̃1 ∈ GL2(Z/n

2Z) : g̃1 ≡ g mod n for some g ∈ GL2(Z/nZ)}
= GL2(Z/n

2Z).

If n is an odd squarefree positive integer, then by (6.1), we have (n,ME/n) = 1,
which implies that GE(n

2) = GL2(Z/n
2Z). Suppose that the squarefree integer n

is even. Then, n = 2m and m is odd. If ν2(ME) = 1, then (n,ME/n) = 1, and
GE(n

2) = GL2(Z/n
2Z). If ν2(ME) = 2, then (2n,ME/2n) = 1. If 2n �= ME ,

we have that GE((2n)
2) = GL2(Z/(2n)

2Z) which, by projection into GL2(Z/n
2Z),

implies that GE(n
2) = GL2(Z/n

2Z). Similarly, if ν2(ME) = 3, then (4n,ME/4n) =
1. If 4n �= ME , we have that GE((4n)

2) = GL2(Z/(4n)
2Z), which implies that

GE(n
2) = GL2(Z/n

2Z).
Therefore the only cases where GE(n

2) may not equal GL2(Z/n
2Z) are those

listed in the statement of our lemma. �

Lemma 6.4. Let f(x, y) be any squarefree non-constant polynomial in Z[x, y],
and let E be a Serre curve. Let n be a squarefree integer in {ME ,ME/2,ME/4}∩Z.
Then for any ε > 0, we have

(6.4)
|CE,f (n

2)|
|GE(n2)| � |Cf (n

2)|
|GL2(Z/n2Z)| �

1

M2−ε
E

.

Proof. The first inequality of (6.4) follows immediately since E is a Serre
curve, and therefore |GE(n)| ≥ |GL2(Z/nZ)|/2 for any n. The second inequality
follows from Lemma 4.1 as ME is not divisible by the square of any odd prime. �

Proof of Proposition 6.2. For E ∈ S(A,B), we have

(6.5) CSF
E,f − CSF

f =
∑

GL2(Z/n2Z) �=GE(n2)

μ(n)

(
|CE,f (n

2)|
|GE(n2)| − |Cf (n

2)|
|GL2(Z/n2Z)|

)
.

We would like to detect the squarefree integers n such that GL2(Z/n
2Z) �= GE(n

2).
If (n,ME) = 1 then by (3.2), n is not counted in the sum. Therefore we only need to
consider those values of n where (n,ME) �= 1, in which case we may write n = n1n2

with (n1,ME) = 1 and n2 | ME . (Recall that n is squarefree.) Using the property
given in (3.3), we obtain

GE(n
2) = GL2(Z/n

2
1Z)×GE(n

2
2),

and

|CE,f (n
2)|

|GE(n2)| =
|Cf (n

2
1)|

|GL2(Z/n2
1Z)|

|CE,f (n
2
2)|

|GE(n2
2)|

.

Lemma 6.3 gives us a set of conditions for the values ofME and ΔSF that |GE(n
2
2)| �=

GL2(Z/n
2Z) can occur for squarefree values of n when E is a Serre curve defined

over Q. We will now describe how to bound CSF
E,f −CSF

f in each of these instances.
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In the case where ME = 2|ΔSF| with ΔSF ≡ 1 mod 4, we can use Lemma 6.3
together with (6.5) to show that

(6.6) CSF
E,f − CSF

f �
∑

μ(n) �=0
n=MEn1

|CE,f (M
2
E)|

|GE(M2
E)|

|Cf (n
2
1)|

|GL2(Z/n2
1Z)|

+
|Cf (n

2)|
|GL2(Z/n2Z)| .

Similarly, when ME = 4|ΔSF| with ΔSF odd, we have

(6.7) CSF
E,f − CSF

f �
∑

μ(n) �=0
n=(ME/2)n1

|CE,f (M
2
E/4)|

|GE(M2
E/4)|

|Cf (n
2
1)|

|GL2(Z/n2
1Z)|

+
|Cf (n

2)|
|GL2(Z/n2Z)|

and when ME = 4|ΔSF| with ΔSF even, we have

(6.8) CSF
E,f − CSF

f �
∑

μ(n) �=0
n=(ME/4)n1

|CE,f (M
2
E/16)|

|GE(M2
E/16)|

|Cf (n
2
1)|

|GL2(Z/n2
1Z)|

+
|Cf (n

2)|
|GL2(Z/n2Z)| .

In all other cases, we have
CSF

E,f − CSF
f = 0.

Using Lemma 6.4 in (6.6), (6.7) and (6.8), we obtain

CSF
E,f − CSF

f � 1

M2−ε
E

∑
n1

1

n2−ε
1

� 1

M2−ε
E

.

In order to complete our argument, we will need the following result from [19]:
for any positive integer k,

(6.9)
1

4AB

∑
|a|≤A,|b|≤B

4a3+27b2 �=0

1

|(4a3 + 27b2)SF|k
� 1

A
+

(
logB(logA)7

B

)k(k+1)/2

.

From here, we may conclude that

1

|C(A,B)|
∑

E∈S(A,B)

CSF
E,f =

|S(A,B)|
|C(A,B)|C

SF
f +O

(
1

A
+

(
logB(logA)7

B

)3−ε)
∼ CSF

f ,

since almost all elliptic curves are Serre curves (see [20]); i.e., as A,B → ∞,

|S(A,B)|
|C(A,B)| ∼ 1.

This completes our proof of Proposition 6.2. �
Theorem 2.5 then follows from Proposition 6.1 and Proposition 6.2.
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