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DISTRIBUTION OF ZETA ZEROES OF ARTIN-SCHREIER
COVERS

ALINA BUCUR, CHANTAL DAVID, BROOKE FEIGON, MATILDE LALIN,
AND KANEENIKA SINHA

ABSTRACT. We study the distribution of the zeroes of the zeta functions of the family
of Artin-Schreier covers of the projective line over Fy when g is fixed and the genus goes
to infinity. We consider both the global and the mesoscopic regimes, proving that when
the genus goes to infinity, the number of zeroes with angles in a prescribed non-trivial
subinterval of [—m, 7) has a standard Gaussian distribution (when properly normalized).

1. Introduction

Recently there has been a great deal of interest in statistics for numbers of rational
points on curves over finite fields, where the curve varies in a certain family but is
always defined over a fixed finite field. This is in contrast to situations studied using
Deligne’s equidistribution theorem [5, 6], which requires the size of the finite field to go
to infinity, and which tends to produce statistics related to random matrices in certain
monodromy groups. When one fixes the base field, one instead tends to encounter
discrete probabilities, typically sums of independent identically distributed random
variables. The first result in this direction is the work of Kurlberg and Rudnick
for hyperelliptic curves [11]; other cases considered include cyclic p-fold covers of
the projective line [2, 3] (for a slightly different approach see [17]), plane curves [1],
complete intersections in projective spaces [4], and general trigonal curves [16].

The number of rational points on a curve over a finite field is determined by the
zeta function, and statistical properties of the number of points may be interpreted
as properties of the coefficients of the zeta function. A related but somewhat deeper
question is to consider statistical properties of zeroes of the zeta function. In the case
of hyperelliptic curves, these properties were studied by Faifman and Rudnick [8]. A
related family was studied in [18].

In this paper, we make similar considerations for the family of Artin-Schreier covers
of P'; this family is interesting because the characteristic of the base field plays a more
central role in the definition than in any of the other families mentioned so far. The
Artin-Schreier construction is special because it cannot be obtained by base-change
from a family of schemes over Z. Since Artin-Schreier covers are cyclic covers of P!,
one obtains a direct link between their zeta functions and certain exponential sums;
while this is also the case for cyclic p-fold covers in characteristics other than p, the
Artin-Schreier case admits a much more precise analysis. One example of how to
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exploit this additional precision is the work of Rojas-Leon and Wan [14] refining the
Weil bound for Artin-Schreier curves.

To explain our results in more detail, we introduce some notation. Fix an odd
prime p and a finite field F, of characteristic p. Each polynomial f € F,[X] whose
degree d is not divisible by p defines an Artin-Schreier cover Cy of P! with affine
model

(1) YP—Y = f(X).

Since f is a polynomial rather than a more general rational function, C'y has p-rank
0. For more details about the structure of the moduli space of Artin-Schreier curves
and its p-rank strata, see [13]. The Riemann-Hurwitz formula implies that the genus
of the above curve is g = (d — 1)(p — 1)/2. As usual, the Weil zeta function of C; has
the form

Fey (u)
A _
AR ()
Here Pg, (u) is a polynomial of degree 2g = (d — 1)(p — 1) which factors as

(2) Po,(u) =[] L(u, £,
P#1

where the product is taken over the non-trivial additive characters ¢ of F, and
L(u, f,) are certain L-functions (see (4) for the formula). Computing the distri-
bution of the zeroes of the zeta functions Zc,(u) as Cy runs over the Fy-points of
the moduli space AS, o of Artin-Schreier covers of genus g and p-rank 0 amounts to
computing the distribution of the zeroes of Hf;i L(u, f,97) for a fixed non-trivial
additive character ¢ as f runs over polynomials of degree d. In fact, going over each
F,-point of the moduli space AS, ¢ once is equivalent to letting f vary over the set
F, of polynomials of degree d containing no non-constant terms of degree divisible
by p, as such terms can always be eliminated in a unique way without changing the
resulting Artin-Schreier cover.

Some statistics for the zeroes in the family of Artin-Schreier covers were considered
in the recent work of Entin [7], who employs the methods of Kurlberg and Rudnick
[11] to study the variation of the number of points on such a family, then translates
the results into information about zeroes. In the present work, we consider the global
and mesoscopic regime, as was done by Faifman and Rudnick [8] for the family of
hyperelliptic curves.

More precisely, we write

(3) ufa Hl_a_] f? )a
where a;(f,v) = /ge2™ % %) and 0;(f,v) € [-1/2,1/2). We study the statistics of
the set of angles {6;(f,v)} as f varies. For an interval Z C [—1/2,1/2), let
Nz(f,¢) =#{1<j<d-1:6;(f) €1},
NI(.ﬂwﬂZ) = NI(fv’(/}) +N1(f7'l/_})a
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and

p—1
Nz(Cy) = Nz(f,¢).
j=1
We show that the number of zeroes with angle in a prescribed non-trivial subinterval
7 is asymptotic to 2¢|Z| (Theorem 4.2), has variance asymptotic to @ log(g|Z))
and properly normalized has a Gaussian distribution.

Theorem 1.1. Fiz a finite field F, of characteristic p. Let F), be the family of
polynomials defined in (5). Then for any real numbers a < b and 0 < |Z| < 1 either
fized or |Z| — 0 while d|Z| — oo,

N2(Cp) = (d=Dp-DiZ| _,| _ 1 //d
222D 1og(d|Z]) vam o

lim Probf(fi a <
— 00

As noted earlier, this result can also be stated in terms of the Fg-points of AS, o.

Corollary 1.2. Fiz a finite field IF, of characteristic p. Then for any real numbers
a<band0<|Z| <1 either fized or |I| — 0 while g|Z| — oo,

Nz(Cf) — 2g|I| b| = 1 /b e—$2/2d.’17.
2z 1og (/1) V2 Ja

glgr()lo Probys, ., | @ <

Theorem 1.1 is obtained by computing the normalized moments of certain approx-
imations of
Nz(Cf) — (p—1)(d — 1)|Z| given by Beurling-Selberg polynomials to verify that they
fit the Gaussian moments. Our results are compatible with the following result for

the distribution of zeroes of the L-functions L(u, f,1) and L(u, f,v).

Proposition 1.3. Fiz a finite field F, of characteristic p. Then for any real numbers
a<band0<|Z| <1 either fized or |Z| — 0 while d|Z| — oo,

Nz(f, 4, 9) — 2(d — 1)|T] | L
<b| =— e dx.
2 log(d|Z)) var /

lim Probz | a <
— 00

Remark 1.4. Analogous results hold for Nz(f,v) as long as the interval Z is sym-
metric.

Notice that Proposition 1.3 is compatible with the philosophy of Katz and Sarnak,
which predicts that when ¢ — oo, the distribution of Nz(C}) is the same as the
distribution of NI(U), the number of eigenvalues of a 2g X 2g matrix U in the mon-
odromy group of Cy chosen uniformly at random with respect to the Haar measure.
The monodromy groups of Artin-Schreier covers are computed by Katz in [9, 10]. In
the large matrix limit, which corresponds to the limit as d — oo for the family of
Artin-Schreier covers because g = (p—1)(d — 1)/2, the statistics on Nz(U) have been
found to have Gaussian fluctuations in various ensembles of random matrices.



10004 Alina Bucur, Chantal David, Brooke Feigon, Matilde Lalin, and Kaneenika Sinha

1.1. Outline of the article. This article is set up as follows. We begin by reviewing
basic Artin-Schreier theory in Section 2. In Section 3 we prove two explicit formulas
for the zeroes of L(u, f,1) which we will need later to compute the moments. In
Section 4 we prove a result about the number of zeroes of the zeta function for a fixed
Artin-Schreier cover of P'. In Section 5 we recall some facts on Beurling-Selberg poly-
nomials and use them to prove some technical statements about their coefficients. A
certain sum of these trigonometric polynomials approximate the characteristic func-
tion of the interval Z. We use the explicit formula to reduce the problem of studying
this sum of Beurling-Selberg polynomials to a problem about sums of characters of
traces of a polynomial f evaluated at elements in extensions of F,. In Sections 6, 7
and 8 we analyze the first, second and third moments of this sum. These moments
tell us the expectation and variance of the distribution. In Section 9 we compute the
general moments of our approximating function and conclude that it has a standard
Gaussian limiting distribution as the degree d of f goes to infinity for Z either fixed
or in the mesoscopic regime. Finally, in Section 10 we conclude the proof of Theorem
1.1 by proving that under normalization Nz(Cy)—(d—1)(p—1)|Z| converges in mean
square and hence distribution to our approximating function.

2. Basic Artin-Schreier theory

We now recall some more facts about Artin-Schreier covers. For each integer n > 1,
denote by tr,, : Fgn — F, the absolute trace map (not the trace to F,). For each
polynomial g € F,[X] and non-trivial additive character i of Fy, set

Sulg:¥) = Y ¥ltra(g(2))).

:L’E]Fqn

The L-functions that appear in (2) are given by

(4) L(u, f, 1) = exp (Z Sul(f, wfj:) =TT (- pp(Pyutesr) ™,

P

where the product is taken over monic irreducible polynomials in F,[X]. In fact,
throughout this paper P will denote such a polynomial and, if n = deg P we have

Vr(P) = Z P(f(a)) = Y(tr,(f(«))) for any root « of P.

a€Fn

P(a)=0

To see that the exponential is equal to the product over primes in (4), one has to
write the exponential as an Euler product over the closed points of A'. Namely, if we
denote by S,, the set of closed points of A! of degree n, we can write

exp (Z Sn(f, w)f)
n=1
oo [e.¢] ukn
= o (XX Swtim)y ).

n=1z€S,, k=1

L(u, f, )

The denominator of the fraction is k, not kn, because each closed point x € S,
produces n rational points of Fy». Thus,
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L(u, f,)
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which is exactly the product over primes that appears in (4).
Note that for the trivial character ¢ = 1, the same formula gives

1
L(u, f,1) = Zyi(u) = e
The factor at infinity is then given by
1 og=1,
r(o0) =
0 ¥ #1.

Therefore we have

ZCf(u) = HL*(vaﬂ/))a
P
where L*(u, f,1) are the completed L-functions,
* eg —1
L*(u, f0) = [T (1= gy (Po)uts )

v
Here the product is taken over all places v of Fq(X).

From now on we will fix a non-trivial additive character ¢ of IF,, given by a certain
choice € of a primitive pth root of unity in C. Then, all the other non-trivial characters
of F, are of the form oot where o is an automorphism of the cyclotomic field Q(¢). The
reciprocals of zeroes of the L(u, f,c01)) are exactly the Galois conjugates o (e (f, %)),
1 < j <d -1, of the reciprocals of the roots of L(u, f,). In order to compute the
distribution of the zeroes of the Weil zeta functions Z¢, as Cy runs over AS, o(Fy)
we are going to compute the distribution of the angles 6;(f,),0,(f, 1), 1 <j <d-1,
for our specific choice of the additive character 9, as f runs through F;, where g =
(d—1)(p—1)/2. Since the roots of L(u, f,1) and L(u, f,1) are conjugate, it suffices
to work with symmetric intervals. The distribution of the roots of the whole zeta
function is then obtained by combining the (p — 1)/2 distributions for the various
choices of 1.

As discussed in the introduction, we will consider F,-points of the moduli space
AS o of Artin-Schreier covers of p-rank 0. A cover consists of an Artin-Schreier curve
for which we fix an automorphism of order p and an isomorphism between the quotient
and P'. We also choose the ramification divisor to be D = (c0). Thus the one branch
point of our p-rank 0 covers is at infinity.

Concretely, we consider, up to I -isomorphism, pairs of curves with affine model
Cy:YP—Y = f(X) with f(X) a polynomial of degree d = 2g/(p—1)+1 not divisible
by p together with the automorphism ¥ — Y + 1.
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Using the F,-isomorphism (X,Y) — (X, Y +aX¥), we get that C is isomorphic to
Cy where g(X) = f(X) + aX” — a?X*P. By using this isomorphism, we are reduced
to considering the Artin-Schreier curves with model Cy : Y? —Y = f(X) where f(X)
is an element of the family F; defined in the introduction as

d
B4 = {adXd+ad—1Xd1-|-...—|—ao €Fy[X]:aq €Fy,ap =0,1<k< {pJ}

Except for the isomorphisms described above, no two such affine models are isomor-
phic. Therefore considering all affine models Y? —Y = f(X) with f(X) € F} is
equivalent to considering all the F,- points of the moduli space AS, . For more de-
tails on this one-to-one correspondence between our family and AS, o(F,), see [13,
Proposition 3.6].

In [7], the author is considering a slightly different family by also allowing twists,
i.e. isomorphism over Fgr. This amounts to the models C; : Y? — Y = f(X), with
f(X) € Fl, where

d
F = {adXd+ad1Xd—1 +---Fag € Fy[X]:aqy €F,ap, =0,0<k< {J}
P
Finally, we will denote by
Fao={aaX+ag1 X"+ +ag € Fy[X] 1 aq €F;},

the set of all polynomials of degree d in F,[X]. We will also need the map p : Fqg — F}
defined by

d d Llogp(d/i)J )
) —j .
() u<§jaiX1>=ao+ ol X e |x
i=0 i=1 j=0

i#kp,k>1

This map is qL%J—to—one and preserves the trace of f(a), which will allow us to work
with F; instead of F); when taking averages.

2.1. Remark on the number of points. For d large enough, the elements of F),
have the same chance as any random polynomial of degree d in F,[X] to take a given
value in some extension of Fy. Thus, if p { n, as soon as d— |d/p] > ¢", the distribution
of {#Cf(Fgn) : f € Fj;} is given by a sum of i.i.d. random variables, one variable
for each closed point of P! of degree e | n. As long as we stay away from the point
at infinity where f(X) has a pole, the fiber above each closed point x of P! contains
pe rational points on the Artin-Schreier cover C if « happens to be in the kernel of
the absolute trace map try, : Fg» — IFp, and no points otherwise. Hence each random
variable in the sum takes the value pe with probability 1/p and 0 with probability
1—1/p. The average number of points is then 1+ ¢", the constant 1 coming from the
point at infinity where the polynomial f(X) has a pole and the fiber above it contains
just 1 point.

If p | n, the average is higher because there are certain points of P! of degree e
for which the fiber is forced to have pe points (i.e. the points of degree e | %) One
adjusts the computation accordingly and obtains that the average number in Cf(Fgn)
isnow 1 +¢"+ (p— 1)q"/p. This is the essential reason behind Entin’s result on the
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matter [7, Theorem 4], except that his count does not take into account the point at
infinity.

3. Explicit Formulas

Let K be a positive integer, e(f) = ¢*™ and let h(0) = 35 <x are(k) be a
trigonometric polynomial. Then the coefficients a; are given by the Fourier transform

N 1/2
ar = h(k) = / h(6)e(—k0)do.
—1/2

We prove in this section two explicit formulas for L(u, f, 1)), written as an exponen-
tial of a sum or as a product over primes as in (4). The first explicit formula (Lemma
3.1) will be used to compute the moments over the family 7, and the second explicit

formula (Lemma 3.2) will be used to prove a result about the number of zeroes for a
fixed Cy (see Section 4).

Lemma 3.1. Let h(f) = Zlklgkﬁ(k)e(kzﬂ) be a trigonometric polynomial. Let
0;(f,¢) be the eigenangles of the L-function L(u, f,%). Then we have

72

d—1 K o~ B
(M ()= Zh )Sklf, ) + h=k)Sk(f.5)

Proof. Recall from above that

S n d—1
L(U,f, = €exp <Z Q;) H(l_aj(.ﬂw) )
-1 j=1

Taking logarithmic derivatives, we have

d oo
23 log(1 — () = 5 S 8,(£.0)
j=1 n=1
Multiplying both sides by u, we get
d—1 (%9
7aj(fa ﬁ’)“
—— =) Su(f,¥)u",
; 1—a;(f,P)u ,; %)
that is,
d—1 oo
(o (f, 9 ZS (f,%
j=1n=1
Comparing coefficients,
d—1
— S @y ()" = SulF ).
j=1
Thus, for n > 0, we get
d—1
(8) _ Z o2mind; (f.4) _ Sn(f, w).

qn2
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For n < 0, taking complex conjugates, we have by (3) and (8)

d—1

_Ze%in%(ﬁw) — _Zezmwe () — ZO‘J(JIZFQ
j=1 j=1
S\n\(fv'(/)) S (L) Spy(fe7h)
griE T gl T T gz
Thus,
d—1 d—1 K
> hlb;(f,) > h(k)e(ko;(f, 1)
Jj=0 j=1k=—K
d—1 K d—1 -1
= (d—Dh0) + 3 S h(k)e®k0;(f0) + 3 Y hk)e(ko;(f,v))
j=1k=1 lek -K

k/2

= (d—1)h(0) — iﬁ(k) (W) T <S k—’“/2 >
oL

O

Lemma 3.2. Let 0;(f,%) be the eigenangles of the L-function L(u, f,1). Then for
anyn > 1,

d—1
- Ze%mej(f,w) _ Z A(M)¢f(M)
et qn/2

deg(M)=n
where M runs over monic polynomials in F,[X],
AM) = deg P if M = P* for some k > 1 and P irreducible,
o otherwise,
and 1y (P*) = 1y (P)*.

Proof. Comparing equations (4) and (3), we have

d—1
[T = a;(foyu) = [T = ws(Pputesr)
j=1 P

where the product on the right hand side is taken over monic irreducible polynomials
in F,[X]. Taking logarithmic derivatives and multiplying by u, we deduce that

d—1 oo

>3 ey £ ZA YudE My (M),

j=1n=1

Comparing the coefficients of u™, we get

d—1
S ai(f)t = DD A (M),

deg(M)=n
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and the result follows by dividing both sides by ¢"/2. U

4. The distribution of zeroes of L(u, f,1))

In this section we use the Erdos-Turdn inequality (see [12], Corollary 1.1) to prove
a result on the number of eigenangles 0;(f,1) in an interval Z for a fixed L-function

L(u, f,9).

Theorem 4.1. [P. Erdds, P. Turdn] Let x1,xa,...,xN be real numbers lying in the
unit interval [—1/2,1/2). For any interval T C [—1/2,1/2), let A(Z,N,{x,}) denote
the number of elements from the above set in I. Let |Z| denote the length of the
interval. There exist absolute constants By and Bs such that for any K > 1,

N
2 Z Z e?ﬂ'ik$n ]
n=1
We now prove the following theorem, which is the analogue of Proposition 5.1 in
[8].

Theorem 4.2. For anyZ C [—1/2,1/2), let Nz(f,¥) == #{1 < j <d—1: 0;(f,¥) €
I}, Then

|AZ, N, {zn}) = NIZ|l < 5

N2(f) = (d— DIZ| + O (IZd> .

Proof. By the Erdos-Turan inequality and Lemma 3.2, we have

K
1 A(M) (M)
INz(f,0) —(d=DZ|] < ? % Z T
k=1 deg M=k
K
d 1
<gtloam 2 b
k=1 Pa a>1
deg M=k
Applying the function-field analogue of the prime number theorem, the above expres-
K/2
sion is < Ve + qK . Choosing K = [}ggﬂ , we deduce the theorem. O

5. Beurling-Selberg functions

By the functional equation, the conjugate of a root of Z¢,(u) is also a root so
we can restrict to considering symmetric intervals. Let 0 < 8 < 1 and set 7 =
[—6/2,8/2] C [-1/2,1/2). We are going to approximate the characteristic function
of 7, xz, with Beurling-Selberg polynomials I?E. We will use the following properties
of the coefficients of Beurling-Selberg polynomials (see [12], ch 1.2).

(a) The Ilf are trigonometric polynomials of degree < K, i.e.,
£(x) = Z :f}i((k)e(kx
|k|<EK

(b) The Beurling-Selberg polynomials bound the characteristic function from be-
low and above:
I < xz < I
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(c) The integral of Beurling-Selberg polynomials is close to the length of the

interval:
1/2 N 1/2 1
I (x dx:/ de + ——.
/1/2 k() 71/2 xz(@) K+1

(d) The I[ﬂg are even (since we are taking the interval Z to be symmetric about
the origin). It then follows that the Fourier coefficients are also even, i.e.
TE(—k) = TE(k) for |k| < K.

(e) The nonzero Fourier coefficients are also close to those of the characteristic
function:

T (k) — Rz(k)| <

=~ sin(7k|Z|) 1 N
= I;(k) = — +0 il k>1.

This implies the following bound:

i) < 7=

+m1n{|I| |k} 0< |k| < K;

Proposition 5.1. (Proposition 4.1, [8]) For K > 1 such that K|Z| > 1, we have

S TE2K) = 0,

k>1
= 1
+ 2 _
k>1
e 1
S TEWT Rk = o5 log(K[Z]) +0(1).

k>1

Note that for a given K these sums are actually finite, since the Beurling-Selberg
polynomials Ilf have degree at most K.

Proof. The first two statements are proven in Proposition 4.1 of [8]. Since

~ sin(mk|T 1
TE(k) = % 10 (K> ,

holds for both I (k) and f;((k), the third statement follows by exactly the same proof
as the second statement. O

We will also need the following estimates.
Proposition 5.2. For ai,...,ap,v1,...,% >0, and Bq,...,0 € R, we have,
Do Tel)™ () TH kg = 0(1),

E1yenkn>1
For ay,as,v >0, and B € R,
> TE(k) CTEER) K = 0(1).

k>1
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Proof. Since ‘:f}i((k)‘ < ﬁ -+ min {|I|, ﬁ}, we obtain

Z Ii(kl)al L TE(R) TR kg ke
Sk

< Z kﬁl kﬁrq*'ﬁkl*'”*'\/rkr
ki,....kr

Since > 2,5y kBq=k = O(l) for ¢ > 1 and v > 0, we get that the right hand side above
is also equal to O(1). The second equation is a particular form of the more general
equation established above. O

6. First Moment

Recall that Nz(f,1) denotes the number of angles 6;(f, 1) of the zeroes of the
L-function L(u, f,%) in the interval Z C [—1/2,1/2) of length 0 < |Z| < 1.
From now on, for a function ¢ : 7, — C, we denote its average by

(0 > o(f

fEF,

If al
We want to compute the first moment

(Nz(f,¥)) Z Nz(f 4
fer’
We will do so by proving the following result.
Theorem 6.1. As d — oo,
(N2(£.4) — (d = DIZ]) = O(1),
Remark 6.2. Recall that in Theorem 4.2 we showed that

Nz<f,w)—<d—1)|fl=0( d )

log d

Theorem 6.1, on the other hand, gives us a far better estimate for the average of
(Nz(f,%) — (d — 1)|Z|) than we could have derived from Theorem 4.2.

For the proof of Theorem 6.1, we will use the Beurling-Selberg approximation of
the characteristic function of the interval Z. By property (b) of the Beurling-Selberg
polynomials,

d—
ZI ) < Nz(f, ¢ Z

With the expllclt formula of Lemma 3.1 and property (c), we write

d—1

d—1
2 IR(w) = (=D =S5 S0+
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where

K 74 Tt _

k=1

This gives

d—1 d—1

(10357 (K, f,¢)

In order to complete the proof it remains to estimate (S*(K, f,1)). We will need
the following results from [7]. As we remarked in Section 2, we are using a slightly
different description for the family of Artin-Schreier covers since we do not allow
twists. Because of that, our results are slightly simpler than those stated in [7]. We
have also modified the original notation so that it fits the generalization that we
pursue in the next sections.

Lemma 6.3. ([7], Lemma 5.2)Let h be an integer, p{ h. Assume k < d and o € F .
Then

L plk, a€Fum,
0 otherwise.

(h(try, f(@))) = {

Proof. If p | k and a € Fk/p then try,(f(a)) = ptre (f(a)) = 0 so (Y(try f(a))) = 1.
For the remaining case we first note that the averapge is the same if we average over
the family F,; of degree d polynomials (without the condition a,r = 0). This is due
to the existence of the map p defined by (6).

Denote by u the degree of a over F,. Since u < k < d the map

T fd — Fqu

defined by 7(f) = f(a) is (¢ — 1)g% “-to-one. Thus as f ranges over Fy, f(a) takes
each value in Fgu an equal number of times. Since pt £, try,(f(a)) = £ tr,(f(a)) also
takes every value in F, the same number of times as f ranges over F; and the same
is true for htry(f(a)). Thus each pth root of unity occurs the same number of times
in Y(htry(f(w))) as f ranges over Fq and so the average is 0. O

The lemma has the following consequence.
Corollary 6.4. (7], Corollary 5.3) Let h be an integer, pt h. Assume k < d and set
My = <q-’“/2 > Whtre f<a>>> .
aquk

Then
k,1,h _ _
Myt = e pq~ /271D,

o )0 ptk,
PR Dl k.

where
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We also denote

M = <q—’“/2 > w(—htrkf(a)>>-

OéE]Fqk

Clearly, M1 = MPn,
Notice that changing h allows us to vary the character from 1 to ¥". This will be
useful later.

Proof. (Theorem 6.1) We have that

K 7+ T 7
T (k) (Sk(f, ) + Tic (k) (Sk(f,4)
<Si(Ka fa¢)> = Z qk/2 < >
k=1
K
= D TR)ME + T (=M™
k=1
K
= QZIAIi((k)e g~ /271/P)
k=1
and the result follows from property (e) and (10) taking K = c¢d with ¢ < 1. O

Remark 6.5. We denote by

K
= S TE()ey pg~ 072710
k=1

and
oo

sin(mk|Z|) _(1/2—

C = (1/2—=1/p)k

Z ok pkd
k=1

These terms will reappear in the computation of the higher moments. Note that, since

p > 2, the above infinite series converges absolutely. By Proposition 5.2, C(K) =

O(1). By property (e) of the Beurling-Selberg polynomials, C' = C(K) + O(1/K).

7. Second moment

Let
(11) (K, Cp) = Zsi (K, f, "),

where ST (K, f, 1) is defined in (9).

In the next sections, we are computing the moments of S*(K, Cy). We show that
they fit the Gaussian moments when properly normalized (Theorem 9.7). We will
then use this result to show that

Nz(Cf) — (p—1)(d —1)|Z|
2w og(d|Z])
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converges to a normal distribution as d — oo since it converges in mean square to
SE(K,Cy)
22 log(d|Z))

The following lemma is a generalization of Lemma 6.2 in [7], that also takes into
account the difference in our family of Artin-Schreier covers.
Recall that 7 (o) = ¢ (ja) for a € F,,. We have the following

Lemma 7.1. Fix hy, hy such that pt hihe and let eq,es € {—1,1}. Assume kq, ko >
0, k1 + ko < d. Let ag € Fqkl , Qo € Fqkz with monic minimal polynomials g1, gs of
degrees uy,up over Fy respectively. We have

— erhikiteshoko kiko
17 g1 =92, p | w1 ’ pJf YRS

(W(erh tre, flon) + eshatry, fla2)) = orp| (& 52);

0, otherwise.

Proof. If p | 1% then trg, f(ag) =ptre, f(az) =0, so

(Y(erhy try, flar) + eahg try, f(az))) = (Y(erhy trg, far))).

By Lemma 6.3, this equals 0 if p ¢ % and 1if p | % as pfeihy.
The only remaining case is when p { 515’; We first suppose that g; # go. We note
that we will have the same value if we average over Fy rather than F); due to the

existence of the map u defined by (6). Since uy + uz < k1 + k2 < d, the map
T Fa — Fo[X]/(9192) = Fgu X Fgus

is exactly (¢ — 1)g?~"1~“2_to-one. Hence as f ranges over Fy, (f(a1), f(a2)) takes
every value in Fgu; X Fgu, the same number of times. Now, since p { % and

62h2k2
pt ez,

erhik eahok
1M1 1tru1(f(a1)), 2hoKa

Uy U2

traflea)) )
also takes every value in F), x FF, the same number of times as f ranges over F4. Then
Y (erhy trg, (f(a1)) + eaho try, (f(az))) =
= (a2t (Flon) + eaha = (1)

Ui U2

(trkl f(a1)7trk2 f(OéQ)) = (

assumes every pth root of unity equally many times as we average over F; and so the
average is 0.

If 1 = g2, then oy and aq are conjugates over F, and so are f(a1) and f(a2).
Then try, f(a1) = try, f(az). This implies

k k
e1hy trs, f(Oél) + eghs try, f(ag) = elhli try, f(Oél) + EQhQi try, f(Oég) =
_ erthiki + eahoks tra, f(Oél),

U1
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which is zero when p | W If p does not divide W then

(Y(erhy try, flar) + exha try, f(a2))) = <¢ (‘WW try, f(a1))> =0

Uy
by Lemma 6.3.
O
For positive integers ki, ko, h1, ho with p{ hihg and e, es € {—1,1}, let
Mgl eneak e <q-<’“+’“2’/2 > lerhytr, flar) + ezho try, f(az))>
Oqequkl
a2€F i,
= (]7(kl+k2)/2 Z <77[}(61h1 try, f(Oél) + esho trg, f(a2))> .
a1 €F p
02€F ey

Then we have the following analogue of Theorem 8 in [7].

Theorem 7.2. Assume k1 > ko > 0 and k1 + ko < d. Let 0 < hy,ho < (p—1)/2.

Then
M2(f€cll7k2)7(81,82)7(h17h2) = Ok, 2k,0 (qu—k2/2) +0 (qu—k2/2—k1/6 + q—(1/2—1/P)("~‘1+k2))
. {%Mkl (140 (¢7572)), (er,e2) = (1,—1), by = ho,
0, otherwise,
where

5 _ 13 kl = k27
Mok TN 00 Ry # k.

Before we proceed with the proof, we would like to make a few remarks. In the
instances when we apply this result, we will choose K = ¢d, for 0 < ¢ < 1/2, and
therefore k1, ko < K will imply that ky + ke < d, and will be able to apply Theorem
7.2 for all values of ki, ko under consideration. Also note that the condition k; >

ko > 0 does not restrict the validity of the statement, since Méfj’kl)’(l’_l)*hl’h?) =

Mé%’k2)’(l’_1)7(h2’hl).

Proof. From Lemma 7.1,
k1,k2),(e1,e2),(h1,h
MQ(dl 2),(e1,e2),(h1,h2)

—(k1+k2)/2 2 k1+k
= q (s tk2)/ €p,e1hiki+ezhaksa E W(m)m +6Paklep,k2q( 1hka)/p

m|(ky,ka)
mptky ko
mpl(erhikyteghoka)

where m(m) denotes the number of monic irreducible polynomials of degree m over
F,[X]. The prime number theorem for function fields (see [15], Theorem 2.2) states

that w(m) = %ﬁ +0 ( M/Z) .

q
m
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When ki = ko, the conditions on the summation indices become m | ki, mp 1 kq,
and mp | (e1h1 + eahs)k1, a contradiction unless p | (e1hy + e2hs). Due to the range
in which the hq, ho take values, this can only happen when e; = —eg and h; = hy. In
this case, one gets

Z m(m)m? = k1¢™ + O (k:1qk1/2) .

mlkq
mptky

On the other hand, when k; = 2ko, one gets
> wlmm? = O(kd") = O (kig™/?) .

m|ky
mptho
mp|(2e1hy+eghg)ky

Finally, if k1 > ko but ki # 2ks, we have (kq, k2) < k1/3 and
Z 7(m)m? = O (qukl/g) .

m|(ky,k2)
mpiky,ko
mpl|(erhiky+eghaka)

This concludes the proof of the theorem. O
Finally, we are able to compute the covariances.

Theorem 7.3. Let hy, ho be integers such that 0 < hy,he < (p—1)/2. Then for any
K with max{1,1/|Z|} < K < d/2,

(ST(K, f,")S*(K, f,9")) = (S*(K, f,0")ST(K, f,9"))
% log(K|Z|)+ O (1), hy = ho

o), hi # ha.
Proof. By definition,
(ST(K, f,9")S=(K, f,4"))
K
— Z f[i((kl)f[jé(kz)Méfc;,kz)a(l,l)v(hl,m) +fli{(kl)f]i{(_k2>M2(’kdl,k2),(1,71),(h1,h2)
k1,ka=1

T (k) T (ko) Myl 221D 8D T (o T (= ) Mg 10,
Then, by repeated use of Theorem 7.2 and Proposition 5.2, the summation over k1, ko
is O(l) if hl 7& h2. If h1 = h2 then
K o~ o~ o~
(SE(K, £,9™)?) = 2 Ti(k)Ig(—k)k +0(1) =2 > Tic(k1)’ks + O(1)
k=1 ki>1

— % log(K|Z|) + O(1)

by applying Proposition 5.1. The proof for <Si(K, f,0M)ST(K, f, 1/)}‘2)> follows
along exactly the same lines. (I
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Corollary 7.4. For any K with max{1,1/|Z|} < K < d/2,
_ 2(p—1
(55(1.Cp)%) = (5 (K.Cp)s™(5.Cp) = 22 D ogaeiz) + 000,

Proof. First we note that
p—1
(S5(K,Cp*) = Y (ST f,0M) S (K, f,u"2)).

hi,ha=1

Notice that by Theorem 7.3, the mixed average contributes 5 log(K|Z|) + O(1) for
each term where hy = hy or hy = p — hy. The proof for (S*(K,Cf)S™ (K, Cy)) is
identical. g

8. Third moment

Let k1, ko, k3 be positive integers, e1, e, e3 take values +1, and hq, ho, hs be integers
such that p { h;. Denote k = (ki, ko, k3), € = (e1,ea,e3), and h = (hq, ho, h3). For
every a = (aq, g, 3) € Fony X Foey x Forg, set

m;’s’h(a) = (P(erhq try, f(oa) + eahatry, f(a2) + eshs try, f(asz))),
and
M S e )
a; €F kg
’i=1,g.3’

In an analogous manner to Section 7, one can prove the following.

Lemma 8.1. Let p{ hihohg and let e1,ea,e3 € {—1,1}. Assume k1, ko, ks > 0 and
ki+ko+ ks <d. Fori=1,2,3 a; be an element of F_, with minimal polynomial g;
over Iy of degree u;. We have m;’s’h(a) =1 in any of the following cases

(e1hi1ki4eshokoteshsks) kikok
p|111 2N2R2 3337p)[123

*Nn=92=9s w1 uiru2u3
_ (ejlhjl kj1+ej2hj2kj2) kji kjy kjg ; TP :
® gj, = Gj,, D | uj 7]9* wgy gy ug, where (]1,]2,]3) 18 any

permutation of (1,2,3).
e p| ki i=123.

. k.,e;h
Otherwise my'g™" (o) = 0.
Theorem 8.2. Assume k1 > ko > k3 > 0 and k1 + ko + k3 < d. Then
k,e,h
Mgy
_ Mﬁld,e1,h1 M2(7kdz7k3)»(€2,63)7(h17h2) + Mﬁz:i,ez,hsMédel,ks)v(eh@s):(hhh?,)

ks,es,hs 3 r(k1,k2),(e1,e2),(h1,hz2) k1,e1,h1 g rka,e2,h2 3 rks,es,hs
+M1,d M2,d _2M1,d Ml,d Ml,d

+0 (5k1,k2,k3k%q_kl/2 + Oy ko 2k BTGP 4 Oy 2y 2o kg2 + k%q_kl/ﬁ_krhg)

—(1/2—1/p)k1MQ(k;,ks),(ez,es),(hz,hs) q—(1/2—1/p)k2MQ(kdlykLS)»(eheS)’(hlvhS)

€p,k19 + ep i
—(1/2— k1,k2),(e1,e2),(h1,h _ B
+ep,k3q (/2 1/p)k3M2(,dl Hfenealhnhe) +0 <5k1yk2,k3qu k1/2 + 5k17k272k3k%q 3k1/4>

+0 (5k1,2k2,2k3k%q_k1/2 + k2gRa/6=kemka q_(l/z_l/p)(kl+k2+k3)) .
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Proof. We can use induction in the same way as we used it in the proof of Lemma
8.1. The only new term to be considered is given by the case g3 = g2 = g3 and
pu1 ‘ (61h1]€1 + eghoks + 63h3k3). This term yields

—(k1+ka+k3)/2

q €p,e1hiki+ezhoka+eshaks Z m(m)m°.

m|(ky,ko,k3)
mptky, ko, k3
mpl|(erhikyteghokategzhgks)
Suppose that ky > ko > k3. If k1 = k3, we have
E r(m)m® = O (kig"™).
m|kq
mptky
m,p\(elh1+22h2+23h3)kl
If kl = 2]{73, kz = ]Cl or ]{32 = kg, we have
E m(m)m? = O (qukl/z) .
m|(kq1,ko,k3)
mptks
mpl|(ejhyki+eghoko+teszhgks)
Finally, for the other cases,
E m(m)m® = O (qukl/?’) .

m|(ky,ka,k3)
mptky ko kg
mp|(erhikiteghgkytegzhzks)

U
Theorem 8.3. Let 0 < hy, ha, hs < (p—1)/2. For any K with max{1,1/|Z|} < K <
d/3,
(S*(K, f.0M)SH(K, f,9")SH(K, f,9™))
3Clog(K|Z|) + O (1) hy = hy = hs,
= % log(K|Z|) + O (1) hj, = hj, # hj,, (41, J2,73) a permutation of(1,2,3),
0(1) h; distinct.
where C' is the constant defined in Remark 6.5.
Corollary 8.4. For any K with max{1,1/|Z|} < K < d/3,

_6C(p—-1)

(5.0 = L0 wog iz + 001,

9. General Moments

Let n, k1,..., kK, be positive integers, let eq, . .., e, take values +1 and let hy, ..., A,
be integers such that pt h;, 1 <i <n. Let k = (k1,...,ky), e = (e1,...,¢e,) and
h = (hy,...,h,). Let a; € Fpr;, 1 <i <, and let a = (ay,...,a,). We define

myy g™ (@) = (Y(erhn triy f(on) + -+ enhn tri, flan)))
and
MESP S Y g )
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We are computing in this section the general moments

(SE(K, f)") = Z S IE(erky) . T (enkn) M

Lyeeskn=1e1,...,en==%1

and

<Si(K7f7whl)"'Si(K7.f’whn)> = Z Z elkl Ili((enkn)M'rl:,7§7h'

ki, kn=1 ¢;
1<J<n

Lemma 9.1. Assume k1,...,kn, > 0, k1 + -+ k, < d. Let g1,...,9s of degree
Ui, ..., us respectively be all the distinct minimal polynomials over Fy of a1,..., o
(we allow the possibility that some «;’s are conjugate to each other, thus s < n), and
let

1 .
Gi:ufi Z kjejhj, 1§’L§8,
a;ER(gi)
where R(g) is the set of roots of g. Then

k’e’h(a)* 1 ifple for1 <i<s,
n.d "1 0 otherwise.

Proof. As before, we can take the average over the family F; of polynomials of degree
d without the condition that ag, = 0 for 1 < k < d/p. Renumbering, suppose that «;
has minimal polynomial g; for 1 <i < s.

Since Y7 u; < 3.7 1 k; < d, the map

T:Fa—=FX]/(g1...95) 2Fgur X -+ X Fpue
is exactly (¢ — 1)g4— (w1t +u)_to-one, and as f ranges over Fy, (f(ay),..., f(as))
takes every value in Fgu; X -+ X Fgus the same number of times. Now, the product
(try, flaa),...,try, f(as)) also takes every value in (Fp,)® the same number of times
as f ranges over Fy, and the same holds for any linear combination
Y1 bty flan) 4+ o+ s tra, flos),

unless p divides every ;. This shows that each pth root of unity occurs as many
times as

Y (1 try, flan) + - 4 s try, fas))
when p does not divide all the +;. We now determine the coefficients ~; for

mkeh Z W (erhy try, flag) + -+ ephn trg, flan)).
fE€Fa
Recall that try, f(a;) = £ tr,, f(oy) for i =1,...,s. Let
1 .
61‘2’(71 Z ejhjk:j, 1§’L§S
a; €R(g:)

Then v; = ¢, i.e.,
keh de 6ltrul a1)+"'+€stru5f(as))7

fE€Fa
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which implies that mi’fl’h(a) takes the value 1if p | ¢; for 1 <i < s, and 0 otherwise.

]
Recall that 7(m) denotes the number of monic irreducible polynomials in F,[X].

Lemma 9.2. Assume ky,...,k, >0, k1 +---+ k, <d. Then M:’g’h s bounded by
a sum of terms made of products of elementary terms of the type

gt tin/2 Z w(m)m”

where the indices ji,...,Jr of the elementary terms appearing in each product are in
bijection with ki, ..., kn.
Let N:f)’s’h be the sum of the terms made exclusively of products of elementary

terms
g~ tiz)/2 Z 7(m)m?.

m|(j1,32)
mpleihyjitezhaio

If n is odd, these terms will also be multiplied by an elementary term
ep,jqij/Q Z m(m)m = €p.j Z m(m)m = ez%j#]qu/P = epajqj/p'

m|j

mplej m‘%

Let E:;sh be the sum of all the other terms appearing in M:’;’h, Then, Mf,’g’h =
k,e,h k,e,h

NEet o (Bt

Proof. We first remark that the number of (ay,..., ;) € Fyny X --- x Fyr, which are

conjugate over F; is
Z 7(m)m?.

m|(k1,....kt)
Using Lemma 9.1, we then have to count the contribution coming from the a =
(a1,...,ap) such that p | ¢ for 1 < ¢ < s. Let P be the set of partitions of n
in s subsets T1,...,Ts. Let k(7T;) be the ged of the k; such that i € T} and let
s(T;) = ZieTj e;hik;. Then, for any such partition, the number of « = (a, ..., ) €
Fyry X -+ X Fyr, such that «; is a root of g; when ¢ € Tj is less than or equal to

Z m(m)ym/Tl ... Z m(m)m!Tel,

mlk(Ty) Ik (Ts)
mp|s(Ty) mp|s(Ts)

This proves the first statement of the lemma. We remark that the above count is an
over-count, as it may also count polynomials g¢1,...,gs which are not distinct. For
example, the number of (v, g, a3, q) € Fysy x -+ x F 5, with minimal polynomials
g1 = 92,93 = ga and g1 # g3 Is

q_(jl"r'“'““‘)/2 Z 7r(m)m2 Z 7T(m)m2 —

m|(31.32) m|(i3.74)
mpleihyjiteahaia mpleghgjgteshaia
—(J1++7a)/2 4
— ¢! )/ w(m)m®,

m|(j1,--34)
mplerhyji+-+eghqia
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keh keh

which can be written as a term in N’ and a term in £’ The general case is
similar. Suppose that n = 2¢ is even. Then using 1nclu81on—exclu81on the number
of (a1,...,an) € (Fyry,...,Fyr, ) such that o; and ayy; have minimal polynomial g;,
and all the g; are distinct can be written as

(]*(I“Jr”'*’”"‘)/2 Z 7r(m)m2 e Z 7r(m)m2 +
m|(k1.kpy1) m|(kg,kog)
mplerhikytepp1hpp1keyy mpleghpkytegghopkes
—I—S(k‘l, ey kn)
where S(k1,...,ky) is a sum of terms in Eg;h.
The case of n = 2¢+1 follows similarly, taking into account that one has to multiply
by the factor e, 5, ¢ "3 ik, m(m)m. O
mplekn

‘We now compute

K

(SE(K, f,™) . SEE £y = Y T(erky) . T (enkn) MO

k1yeen kn=1
€1, en==+1

We will use K = ¢d where 0 < ¢ < 1/n. Then, k; < K implies that k1 +- - -+k, < d,
and we can apply the lemmas above.
Using Lemma 9.2, we have to compute sums of the type

(12) ZF 12 UPk Z O(K) = O(1),

and for r > 2

K
Z TE(erky) .. . Tx(epk,)q~ kit +ho)/2 Z w(m)m’.
K1yeey k=1 ml(ky,..-kr)

mpIE‘if ezhzkz

If r = 2, we have when p | e1hik1 + eahoko

K
N T(erk)TE(esko)g™®H2 N a(m)m?
k1,ka=1 m|(ky,kg)

mpl|(eyhiky+eghoka)
725 log (K|Z|) + O(1) e1hy + ezhy = 0mod p,
(13) =
0(1) otherwise

as we computed in the proof of Theorems 7.2 and 7.3. (In those theorems we had the
extra condition mp { k1, k2 in the sum, but those additional terms only add an O(1)
to the final sum, and we can ignore them.)

For the other terms, we have
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Lemma 9.3. Let r > 2, then

K
Si= Y If(k).. . TE(k)g Frttkd2 N amym” = 0(1)
k1,eoske=1 ml(ky .o k)

Proof. Suppose for the moment that ky > --- > k,.. If k; = k,., we have

Z m(m)m! = O (k{qkl) .

m|(ky.....kr)
mpt(ky,..., kqy)

If k1 = 2k,, and all the other k; are equal to k; or k., we have

Z m(m)m” = O (quk1/2) .

m|(kq,....kp)
mpt(ky,....kr)

In all the other cases,

Z m(m)m” = O (k{qkl/?’) .

ml (g, k)
mpt(ky,..., ky)

Putting things together, we get

K r—1 K
S < Zfi(k)rqu—(r—mk&_’_z f[i{(Qk)éf[jg(k)r—equu_r/g_g/g)k
k=1 (=1 k=1

K
+ N TE(ky) . T (R kR /O etk /2
ki kr=1

< 1
by Proposition 5.2. O
Theorem 9.4. For any K with max{1,1/|Z|} < K < d/n

gy log! (K|Z)) (1+0 (log ' (K[Z)))  n =2,

(SE(K, f)") =

Cirsenr log! (K|Z)) (14 0 (log ™ (K|Z))) n=20+1,
where C' is defined in Remark 6.5.

Proof. By Lemmas 9.2 and 9.3, we observe that the leading term in S* (K, f, )™ will
come from the contributions N;’g. By equation (13), if n = 2¢, the leading terms are

of the form
1 £
(271_2 log (K|I|)>

and if n = 2¢ + 1, the leading terms are of the form

C (2717210g (K|I|))Z.

The final coefficient is obtained by counting the numbers of ways to choose the ¢
(or £+1) coefficients k}s with positive sign (e; = 1) and to pair them with those with
negative sign (e; = —1).
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O

As S*(K, f,¢) = ST(K, f,4), it is sufficient to study the sum of S* (K, f,1)7) for
jup to (p — 1)/2 rather than p — 1.

We let
1 =2
50(C) = n Y4
C n=20+1.

Theorem 9.5. Let { = |5 ]. Let 0 < hy,...,hy, < (p—1)/2. Then for any K with
max{1,1/|Z|} < K < d/n,
(SE(K, f™).. S5(K, f9"))
ou(C) S
where C' is defined in Remark 6.5 and
Ahy, ... hy) =#{ (e1,...,en) €{-1,1},0 €S,|
e1hg(1) + e2ho2) = - = €2 1ho(20—1) + €20ho(20) = Omod p}

log! (K|Z]) (1 + O (log™ " (K1Z))))

where S, denotes the permutations of the set of n elements.

Proof. By Lemmas 9.2 and 9.3, we observe that the leading term in the product
SE(K, f,9™M)...ST(K, f, ") will come from the contributions N:;’;’h. By Theorem
7.3, if n = 2/, the leading terms are of the form

= <K|I|>)z

272
and if n = 2¢ + 1, the leading terms are of the form
¢

1

The final coefficient is obtained by counting the numbers of ways to choose the ¢
(or £+ 1) coefficients k; with positive sign (e; = 1) and to pair them with k; with

negative sign (e; = —1) in such a way that p divides e;h; + e;h;.
]
We note that if n = 2/,
(p—1)/2 ¢
(p—1)"(20)!
Biyeeshin=1
There are (52!5),_7! ways of choosing pairs {e;, e;} (because the order does not count inside

the pair). For each pair either e; or e; can be negative and the other one positive so
there are a total 2¢ choices for the signs. Finally, for each pair there are ((p —1)/2)
possible values for h; and this determines h;.

Remark 9.6. A consequence of Theorem 9.5 is that the moments are given by sums
of products of covariances, exactly in the same way as the moments of a multivariate
normal distribution. Moreover, the generating function of the moments converges due
to (14). Therefore, our random variables are jointly normal. Since the variables are
uncorrelated (cf. Theorem 7.3), it follows that our random variables are independent.
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Recall that
p—1
SE(K,Cp) =Y SH(K, f,47).
j=1

Theorem 9.7. Assume that K = d/loglog(d|Z|), d — oo and either 0 < |Z] < 1 is
fized or |Z| — 0 while d|Z| — co. Then

SE(K,Cy)
201 1og(d|Z])

has a standard Gaussian limiting distribution when d — oo.

Proof. First we compute the moments and then we normalize them. Let £ = [ 5 |. We
note that with our choice of K we have
log(K|Z]) _ | logloglog(d|Z])

log(d|Z]) log(d|Z])

Therefore, we can replace log(K|Z|) by log(d|Z|) in our formulas.
Recall that S*(K, f,¢7) = S*(K, f,4?~7), then

n

(p—1)/2 ‘ (p—1)/2 ‘ ‘
SEK,Cp)m =2 Y SEEK f)| =27 > SEHK, fu). . SEK, £,
Jj=1 J1yeeerin=1
Therefore, we can compute the moment
(p—1)/2 ‘ .
(SE(K,Cpmy = 2" > (SEK, fu). . SE(K, f,47))
Jis--dn=1

and then by Theorem 9.5 this is asymptotic to

(p—1)/2
2765,(C) , ‘ ‘
“2r2y 108 (dIII)j Z;ZIA(gl,...,jn).

Finally we use equation (14) to conclude that when n = 2¢,

log! (d17]) = 0% (p~ 1) log (dl))

"(p — 1)4(20)!
(s, 0p) = 2 L

and the variance is asymptotic to % log(d|Z]).
Hence the normalized moment converges to 0 for n odd and for n even,
SE(K,Cp)% !
h _ SEECHT) (20!
d—o0 - 012¢

2/
( e 1og<dz|>)
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10. Proof of main theorem

We prove in this section that
Nz(Cy) —29|7]
V(2(p —1)/72) log(d|Z])]

converges in mean square to
S*(K, Cy)
V(2(p —1)/7?) log(d[Z])

Then, using Theorem 9.7, we get the result of Theorem 1.1 since convergence in mean
square implies convergence in distribution.

Lemma 10.1. Assume that K = d/loglog(d|Z|), d — oo and either 0 < |Z| < 1 is
qwﬂcnu1m91ﬂﬂ+5ﬂme

fized or |I| — 0 while d|Z| — co. Then
2
—0
V(2(p —1)/7?) log(d[Z])

Proof. From equation (10) from Section 6, using the Beurling-Selberg polynomials
and the explicit formula (Lemma 3.1), we deduce that

W)}l—i(cli*) < Nz(Cp) — (p—1)(d—1)[Z| + S~ (K,C})
< S_(K,Cf)_s-‘_(K»Cf)"‘%j_dl_l)
and
:@%%%iﬁ—s —Nz(Cy) + (p = 1)(d = 1|T| - $*(K, Cy)
< Sf(chf)—SﬂKva)jL%'

Using these two inequalities to bound the absolute value of the central term, we
obtain

< max{(W) ,<<S_(K,Cf)—5+(K,Cf)+(p_I;)J(rdl_1>> >}

<(@—nw—n)2

K+1

p—1)(d-1)

+ max{0,<(S(K,cf)S+(K,Of))2>+2( e <S(K,cf)s+(K,cf)>}.

Now using the estimate in the proof of Theorem 6.1, we have that

(ST(K,Cp) = S*(K,Cp)) = (S7(K,Cy))—(ST(K,Cy)) =0(1).
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For the remaining term we note that

(57, cp) = 5% (K,Cp)?)

p—1
= {(57w.en)?)+ (57 w.Cn)*) - 2< S ST(K, S T(K, f,¢j2)> .
J1,J2=1
By Corollary 7.4, this equals
-1 )]
2 2

log(d|Z]) + O(1) log(d|Z]) + O(1) = O(1).

Therefore,

((N2(Cp) = (p— )(d — DIT| + §¥(K,Cp)*) = 0 ((W) )

and

Vv 2(p — 1)/7%) log(d[Z])
when d tends to infinity and K = d/loglog(d|Z]). O

<<Nz<cf> ~(p—1)(d = DIT| + SH(K, cf>>2> .

Remark 10.2. Proposition 1.3 is proved in a similar way. For this, one uses Theorem
9.4 to examine the moments of

S*(K, f,¢) + SH(K, f,9) _ 25F(K, f,9)
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